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ABSTRACT
This paper explores the degree of sparsity of a signal ap-
proximation that can be reached while ensuring that a suf-
ficient amount of information is retained, so that its main
characteristics remains. Here, sparse approximations are ob-
tained by decomposing the signals on an overcomplete dic-
tionary of multiscale time-frequency “atoms”. The resulting
representation is highly dependent on the choice of dictio-
nary, decomposition algorithm and depth of the decompo-
sition. The class identity is measured by indirect means as
the speech/music discrimination power of features derived
from the sparse representation compared to those of classi-
cal PCM-based features. Evaluation is performed on French
Broadcast TV and Radio recordings from the QUAERO
project database with two different statistical classifiers.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing—Signal analysis, synthesis, and pro-
cessing

General Terms
Algorithms,Experimentation

1. INTRODUCTION
For some time now, sparse decomposition algorithms have

appeared as powerful tools for compactly representing a sig-
nal. The main idea is to find amongst a number of pre-
defined waveforms (dictionary), a small (sparse) linear com-
bination of them that efficiently captures most of the signal
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information. Given a dictionary D, a discrete signal x[n] in
RN can be written:

x[n] =
X

λ∈Λ

αλΦλ[n] + ε[n] (1)

where Λ is the set of parameters for the non-zero encoding
coefficients, with a cardinality hopefully much smaller than
N , Φλ are the so-called atoms from the dictionary and ε[n] is
the residual. While there exist different strategies, it is com-
monly acknowledged that not only do sparse representations
allow coding gain improvements, but also higher-level tasks
such as source separation [3] or sound enhancement. Spar-
sity arises from the overcompleteness of the dictionary and
convergence properties of decomposition algorithms such as
Matching Pursuit [4]. Such algorithms are the results of ex-
tensive research for tackling the combinatorial problem of
minimizing both the size of Λ (i.e., the sparsity) and the
residual’s energy (i.e., the agreement between model and
data). However, little has been done so far to evaluate how
the exact degree of sparsity influences the high-level infor-
mation content of the representation, in other words how far
sounds can be simplified while retaining their “identity”.

This ill-posed problem is here addressed using Ravelli’s
framework [6] - where overcompleteness is the result of cu-
mulating Modified Discrete Cosine Transforms (MDCT) of
different scales - since he demonstrated in [7] the useful-
ness of his codec for indexing purposes. The adequacy of
the representation for indexing purposes will be indirectly
measured as performance in a simple speech/music discrim-
ination task.

The speech / music classification of digital audio streams
has been extensively examined over the past decades, both
on compressed [2, 10] and uncompressed data [8, 9, 5] . A
wide range of applications such as Automatic Speech Recog-
nition systems, multi-modal coding schemes, indexing, seg-
mentation and information retrieval of audio data relies on
such systems. Most proposed methods share the same global
pattern: audio stream is sliced in temporal frames, then a
range of features is computed on each frame. Temporal inte-
gration and statistical classification algorithms finally yield
a speech/music segmentation of the audio stream.

Given the simultaneous time-frequency resolution avail-
able with a union of MDCT bases, it is possible to derive
low-level features from the sparse approximations and eval-
uate their performances for a given task. A study of spar-



sity influence can then be done. The important point is
that we want to take advantage of the intrinsic simplicity of
the sparse representation, and the meaningfulness of its pa-
rameters, by computing these features directly in the sparse
domain, instead of resynthesizing the signal and computing
the standard features. As we shall see, the computation of
features is here always extremely simple.

This article goes as follows: Section 2 recalls Ravelli’s
framework of sparse representation, Section 3 describes the
new proposed features and classification schemes. In Section
4 a search for sufficient sparsity levels is conducted then com-
parison is made with classical features over the QUAERO
dataset, then Section 5 suggests some conclusions.

2. DECOMPOSITION IN A UNION OF
MDCT BASES

Solving equation 1 while minimizing both the size of Λ
and the residual’s energy is a combinatorially hard problem.
Greedy algorithms such as Matching Pursuit [4] usually pro-
vide suboptimal solutions at a reasonable cost. Sparsity can
often be enforced by designing appropriate overcomplete dic-
tionaries. Ravelli [6] proposes to use a union of M MDCT
bases (called blocks), at 8 different dyadic scales (i.e., frame

size), to build an overcomplete dictionary D =
SM−1

m=0 Dm:
Atoms from block m all have the same length Lm and

have the following form:

Φm,p,k[n] = wm[u]
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and u = n − p.Lm − Tm, where p denotes the frame index,
k the frequency bin index, and Tm a temporal offset needed
to align different window sizes. In the following we will use
the notation im to summarize parameters m,p and k. Each
MDCT block is in itself an orthogonal base but combining
them brings overcompleteness. Decomposing on such a dic-
tionary yields a representation of the form:

x̃[n] =

M−1X
m=0

Im−1X
im=0

αimΦim [n] (3)

where Im is the number of atoms picked from block m to
represent the signal. It is worth noticing that because the
Matching Pursuit algorithm substracts each selected atom
from the signal, it is not equivalent as to performing M
MDCT in parallel and selecting the largest coefficients in
each one.

The depth of the decomposition is expressed by the strictly
increasing Signal-To-Residual Ratio (SRR) defined by:

SRR = 10 log

 
‖Pλ∈Λ αλΦλ[n]‖22

‖ε[n]‖22

!
(4)

An exemple of pseudo-sepctrogram of such decomposition
on a short monophonic trumpet signal is given figure 1.

3. SPEECH/MUSIC DISCRIMINATION

3.1 New Features
The decomposition in equation 3 can be easily retrieved

from coding coefficients [6]. This multi-scale framework al-
lows a great precision both in time and frequency. It is
intuitive to reckon that energy repartition in the different

Figure 1: Multi-scale Time Frequency sparse repre-
sentation of a short trumpet signal using 3 MDCT
bases of scale 128, 1024 and 8192 samples and a SRR
of 20 dB in the decomposition. Transient parts are
represented by small scale MDCT atoms (narrow in
time) while sustained harmonics are represented by
longer ones (thin in frequency).

scales as well as the number of coefficients needed to reach
a given SRR should depend on the class of data. Two very
simple scale-related features can then be derived:

Scale Coefficient Count (SCC): is simply the vector of
Im or the number of atoms selected on each MDCT
block.

Scale Amplitude Repartition (SAR): normalized vector
of the summed amplitudes of atoms selected on each
block:

SARm =

PIm−1
im=0 |αim |PM−1

m=0

PIm−1
im=0 |αim |

(5)
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Figure 2: Centroids of SAR features at 10 dB using
8 MDCT bases with Lm ranging from 128 to 16384.

Figure 2 shows the SAR vector centroids for different
classes of signals at 10 dB of SRR. Solo instruments are taken
from the RWC database. Pop music, Speech and Mixture
signals are taken from radio broadcast recordings. Speech
and Solo Instruments can be easily distinguished, but Mix-
ture and Pop music present fewer differences. Above 5 dB,
the SRR yields little modification to these profiles.



Table 1 shows the average number of atoms per second for
the same signals and various decomposition depths. With
a fixed decomposition depth the number of coefficients (and
so bitrates) needed to represent monophonic musical signals
is far less than for speech and again less than for pop mu-
sic. SCC appears to provide useful independent additional
information to discriminate between these classes.

SRR (dB)
Class 1 5 10 15 20

Pop Music 3 48 314 926 1893
Solo Instrument 1 6 21 61 190

Speech 2 21 89 267 625
Mixture 2 24 116 372 883
Noise 324 1969 4145 6302 8419

Table 1: Average number of atoms per second, for
various SRR and classes of signal.

3.2 Classification techniques
Different types of classifiers can be used to perform a

speech / music discrimination task. Linear Discriminant
Analysis (LDA) is a powerful statistical tool for such prob-
lems. It finds a linear combination of the features that best
satisfies a naive bayes distribution assumption. Abundant
litterature is available on the subject and efficient imple-
mentations are easily found on the web. Here, the imple-
mentation from Matlab c©Statistics ToolboxTMis used. Sup-
port Vector Machines (SVM) have been thoroughly used by
the machine learning community. This kernel-based method
finds a hyperplan that separates the annotated training data
set in classes with a maximum margin. In this paper, the
implementation described in [1] is considered. Both classi-
fier are used to evaluate the merit of the proposed features,
compared to the classical MFCC and ∆-MFCC features.

4. EXPERIMENTS AND RESULTS

4.1 Finding the right decomposition depth
To begin with, evaluation is performed on one hour of

radio broadcast (sliced in 10 parts of 6 minutes each) taken
from the QUAERO project database, composed of popular
western musical pieces, news report and interviews. Features
are calculated for several depths of decomposition (SRR) on
frames of size 16384 samples with 50 % overlap. Then a
LDA classifier is trained on 8 random slices and tested on
its classification output of the other 2. To cross-validate the
results, 10 random permutations are taken. Figure 3 shows
mean error results for speech and music detection tasks with
the SAR features and the combination of SAR and SCC.
It appears that increasing the SRR leads to better results,
however it also means less sparsity.

To evaluate the quality of these results, a comparison
point is taken with the score obtained with ∆-MFCC fea-
tures with the same dataset and classifier. ∆-MFCC are
computed on short windows of 512 samples, then temporally
integrated on larger frames of length 16384 samples with 50
% overlap. Figure 3 clearly indicates that the proposed fea-
tures reach the same level of precision than the ∆-MFCC
for an approximate depth of 5 dB of SRR. It is also clear
that there is a sharp error decrease between 1 and 5 dB, and
a much slower decay (at least for speech scores) after 5 dB.

Since decompositions at 5 dB are much faster and more
sparse than at 10 dB and given that performances do not
seem very different, a decomposition depth of 5 dB has
been chosen in the remaining of this paper as a good spar-
sity/representation compromise.
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Figure 3: Error rates for a Music/non Music and
Speech/ non Speech discrimination task over 1 hour
of Radio Broadcast and varying SRR. Mean errors
obtained with a LDA classifier and random permuta-
tions of the Learning and Testing sets

4.2 Validation on larger datasets
The previous experiment was conducted on just one hour

of radio broadcast recordings. It was sufficient to postulate
that with a very raw approximation of a signal (5 dB of
SRR), robust indexing tasks can be achieved with results
comparable to classical methods. To validate this hypothe-
sis, larger and more complicated datasets must be used.

Since finer estimation of the discriminating power is also
important, the next experiment will distinguish between mu-
sic, speech and mixture cases. To do so, the QUAERO eval-
uation set containing 36 hours of TV and Radio broadcast is
used. This set is once again divided in learning and testing
parts with a 80 - 20 % ratio and 20 random permutations are
used. Table 2 gives the results. They confirm our assump-
tions that the proposed features reach levels comparable to
those of MFCC and ∆-MFCC.

Results emphasize the fact that the proposed features
yield better performances than MFCC but poorer ones than
∆-MFCC. It also stresses the fact that they fail to correctly
recognise ambiguous situations where speech is present over
music. This can easily be explained considering the very low
level of decomposition that is used. Mixture cases are often
strong speaker voice over faint music or radio jingle and in
such cases, the representation at only 5 dB of SRR does not
contain enough elements from the music component.

In the last experiment, the whole QUAERO dataset -
more than 80 hours of TV and Radio recordings - is used as



Ground Truth (proportions)
Features (size) Classification output Music ( 39.53 %) Speech ( 38.63 %) Mix ( 15.95 %)
MFCC (13) Music 73.27 ( ± 4.13 %) 17.49 (± 4.77 %) 33.47 (± 5.89 %)

Speech 13.80 (± 2.76 %) 67.21 (± 7.16 %) 40.54 (± 4.91 %)
Mix 6.30 (± 2.11 %) 8.99 (± 2.65 %) 22.59 (± 3.12 %)

∆-MFCC (13) Music 92.25 ( ± 1.89 %) 10.75 (± 6.41 %) 19.11 (± 2.95 %)
Speech 3.78 (± 1.09 %) 82.47 (± 6.80 %) 65.59 (± 4.10 %)
Mix 3.12 (± 0.84 %) 5.97 (± 1.70 %) 14.18 (± 1.98 %)

SAR (7) Music 78.03 ( ± 5.69 %) 7.77 (± 1.39 %) 19.59 (± 3.21 %)
Speech 12.30 (± 4.08 %) 81.39 (± 2.27 %) 64.84 (± 4.46 %)
Mix 6.41 (± 1.33 %) 6.40 (± 0.75 %) 11.93 (± 2.28 %)

SCC + SAR (15) Music 80.34 ( ± 5.12 %) 6.13 (± 1.53 %) 16.17 (± 2.69 %)
Speech 10.58 (± 3.55 %) 85.14 (± 2.77 %) 66.44 (± 4.20 %)
Mix 7.03 (± 1.41 %) 6.63 (± 1.16 %) 15.30 (± 2.40 %)

Table 2: Mean scores (and variances) for a speech/music/mixture discrimination task using different features
and a LDA classifier. Learning is performed with 20 random permutations of 80% of the dataset. Bold scores
indicates the best correct classification scores and italic scores the least critical errors.

well as another classifier based on Support Vector Machines
(SVM). Table 3 gives the speech/music confusion matrix
for different features combinations. SAR and SCC features
are still computed at 5 dB SRR. Here, performances are
slightly worse for the proposed features than for MFCC, but
a good overall F-measure of 80 % is reached for music, better
than sole ∆-MFCC. Interesting results can be obtained with
combinations of new features and MFCC (see for example
MFCC + SAR).

Features (Size) Speech Music

MFCC (13)
Speech 75.45 % 24.55 %
Music 14.39 % 85.61 %

∆-MFCC (13)
Speech 85.10 % 14.90 %
Music 28.72 % 71.28 %

SCC + SAR (15)
Speech 72.45 % 27.55 %
Music 17.72 % 80.28 %

MFCC + SAR (20)
Speech 82.45 % 17.55 %
Music 13.12 % 86.88 %

Table 3: Confusion Matrix for different combinations
of features with a SVM classifier over the QUAERO
project audio database.

5. CONCLUSIONS AND FUTURE WORK
A compromise between sparsity and speech/music dis-

criminating power has been proposed. The experiments con-
ducted here suggest that, at only 5 dB of Signal-to-Residual
Ratio, which is very sparse for most music signals, meaning-
ful features can be derived at very low complexity from the
sparse representation, that gives performances comparable
to PCM-based methods. Experiments suggest that increas-
ing the decomposition depth yields even better results but
this would come at a cost in computational time and stor-
age space. Results also prove that complex tasks can be
adressed easily in the sparse domain for large datasets and
future work will explore other information retrieval tasks
such as similarity search.

Finally, it should be noted that, at low approximation
levels such as the 5 dB SRR employed here, the overall
sound quality is poor. Perceptual studies should investigate

whether a similar tradeoff between sparsity and discrimina-
tory power also holds for human-based source classification.
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