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ABSTRACT

Automatic temporal segmentation of music signals into note onsets
is central for a large number of audio applications. In this paper,
we present a variation of a previously existing note onset detection
method, based on the so-called spectral energy flux. The proposed
algorithm has a lower computational cost and incorporates a more
accurate estimation of the frequency content derivative, yielding
better results for a wide range of music signals. The performance
of the system was validated using a database of musical record-
ings containing 670 note onsets. This database was hand-labeled
and cross validated by three annotators. Comparisons to previous
work are also presented along with possible directions of future
research.

Keywords: onset detection, differentiator filter, adaptive thresh-
olding.

1. INTRODUCTION

Computer assisted music analysis is an increasingly active research
area. In this field, automatic temporal segmentation of a music
stream into note onsets plays an important role for numerous ap-
plications. For example, automatic transcription, rhythm parsing,
music retrieval, audio editing and special effects.

The term musical note onset, perhaps better defined as a phe-
nomenal accent [1], refers to discrete temporal events in an audio
stream where there is a marked change in any of the perceived
psychoacoustical properties of sound, i.e., loudness, timbre, and
pitch. Throughout the present document, we adopt a signal pro-
cessing approach and we strive to detect magnitude changes, har-
monic changes and pitch leaps. That is, acoustic effects that can
be heard and are musically relevant for the listener.

Robust onset detection for a wide range of music signals has
proven to be a difficult task due to the large variety of instruments
that can be employed, whether they play simultaneously or not
and the different kinds of attacks and dynamic ranges that they
can produce. In recent years a large effort has been invested to this
problem. In [2] Bello provides an in-depth survey of the most com-
monly used methods. In general, these approaches can be divided
into two main categories according to the working principle:

• deterministic techniques, they use time–frequency or time–
scale features of the audio signal,
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• statistic techniques, lie on the assumption that the signal
can be described by a probabilistic model.

We propose in this article a model that lies into the first cat-
egory. This system significantly improves the calculation of a
method so-called the Spectral Energy Flux (SEF) or Spectral Dif-
ference (SD) by performing an accurate estimation of the deriva-
tive of the signal frequency content with respect to time at a rela-
tively low computational cost.

After presenting in section 2 the algorithm description, we
study its performance in section 3 and validate it on a 670 onsets
database of hand-labeled music segments. Comparisons between
our approach and the previous algorithm are also presented. Re-
sults are given as tables and ROC curves and they are followed by
a discussion. Finally, section 4 highlights concluding comments
and possible directions for future research.

2. METHOD DESCRIPTION

Early endeavors to detect note onsets in music signals used to pro-
cess the amplitude envelope of the waveform as a whole. This ap-
proach has proved to be very vulnerable since note onsets can be
easily masked in the bulk signal by continuous tones of higher am-
plitude. More recent advances [3] have shown that musical events
are more likely detected after separating the music signal in fre-
quency channels. There exists no consensus on an optimal fre-
quency decomposition for onset detection, since several decompo-
sitions reported in the literature have led to comparable results.

An overview of the system that we propose in this article is
presented in Figure 1. It uses the band-wise processing principle
as motivated above. First, the signal is decomposed into frequency
channels using the STFT (Short Time Fourier Transform). Each
frequency band is processed as depicted in Figure 2 to find the
time-location and intensity of its onset component. Then, contri-
butions from all frequencies are summed, smoothed and thresh-
olded. Finally, the system output, called the detection function, is
a signal that bears peaks with magnitude and location related to
the onsets intensity and position.

2.1. Spectral energy flux

The system that we present resides on the general assumption that
the appearing of a phenomenal accent in an audio stream leads
to a variation in the signal’s frequency content at certain frequency
components. For example, in the case of a violin producing pitched
notes, the resulting signal will have a strong fundamental frequency
that leaps in time and related harmonic components at integer mul-
tiples of the fundamental attenuating as frequency increases. In the
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Fig. 1. Onset detection system overview.
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Fig. 2. Processing performed at each frequency channel.

case of a percussive instrument playing, the resulting signal will
tend to have sharp energy boosts in the passband. The input audio
signal is analyzed using the STFT, leading to

X̃(m,k) =
∞

∑
n=−∞

w(Mm−n)x(n)e− j 2π
N kn (1)

where x(n) denotes the audio signal, w(n) a finite-length sliding
window, M the hop size, m the time (frame) index and k = 0, . . . ,N−
1 the frequency (bin) index. To detect the above mentioned vari-
ations in the frequency content of the audio signal, previous ap-
proaches (for example [3, 4]) have proposed the calculation of the
derivative of X̃(m,k) with respect to time

E(l,k) = ∑
m

h(l−m)G(m,k) (2)

where E(l,k) is known as the Spectral Energy Flux (SEF) and
where h(m) is an approximation to an ideal differentiator

H(e j2π f )' j2π f (3)

and where
G(m,k) = F {|X̃(m,k)|} (4)

is a transformation that accentuates the psychoacoustically rele-
vant properties of X̃(m,k).

In solving many physical problems by means of numerical
methods, it is a challenge to seek derivatives of functions given
in discrete points. For example, in [3, 4] authors propose a first
order difference with h = [1,−1], which is a rough approximation
to (3). In this paper, we use a differentiator filter h(m) of order
2L based on the formulae for central differentiation developed by
Dvornikov in [5] which provides a much closer approximation to
(3). The underlying principle is the calculation of an interpolat-
ing polynomial of order 2L passing through 2L+1 discrete points
which is used to find the derivative approximation. A comprehen-
sive description of the method and its accuracy to approximate (3)
can be found in [5]. The analytical expression to compute the first
L coefficients of an antisymmetric FIR differentiator is given by

g(i) =
1

iα(i)
(5)

with

α(i) =
L

∏
j = 1
j 6= i

(

1−
i2

j2

)

(6)

and i = 1, . . . ,L. The coefficients of h(m) are given by

h = [−g(L), . . . ,0, . . . ,g(L)]. (7)

In our proposal, the transformation G(m,k) calculates a per-
ceptually plausible power envelope for frequency channel k and is
formed of two steps. First, psychoacoustic research on computa-
tional models of mechanical to neural transduction [6] shows that
the auditory nerve adaptation response following a sudden stim-
ulus change can be characterized as the sum of two exponential
decay functions:

s(m) = αe−m/T1 +βe−m/T2 for m≥ 0 (8)

formed by a rapid decline component with time constant (T1) in
the order of 10 ms and a slower short-term decline with a time
constant (T2) in the region of 70 ms. This adaptation function per-
forms energy integration, emphasizing the most recent stimulus
but masking rapid modulations. From a signal processing stand-
point, this can be viewed as two smoothing low-pass filters having
a discontinuity that preserves edge sharpness and avoids dulling
signal attacks. In practice, the smoothing window is implemented
as a 2nd-order IIR filter with z-transform

S(z) =
α+β− (αe−1/T2 +βe−1/T1)z−1

1− (e−1/T1 + e−1/T2)z−1 + e−(1/T1+1/T2)z−2
. (9)

Figure 3 shows the role of the energy integration function after
convolving it with a pitched channel of a signal’s time–frequency
representation.

The second part of the envelope extraction consists in a log-
arithmic compression. This operation has also a perceptual rele-
vance since the logarithmic difference function gives the amount
of change in a signal’s intensity in relation to its level, that is

d
dt

log I(t) =
∆I(t)
I(t)

. (10)

This means that the same amount of increase is more prominent in
a quite signal [3, 7].

In practice, the algorithm implementation is straightforward,
and is carried out as presented in Figure 1. The time–frequency
representation (1) is computed using an N point FFT. The absolute
value of every frequency channel, |X̃(m,k)| is convolved with s(n).
Since [6] only provides an expression to calculate the parameters
of (8) from experimental data, these values were fixed to maximize
the low-pass vs. time-spread trade-off. The smoothing operation
is followed by a logarithmic compression. The resulting G(m,k)
is given by

G(m,k) = log10

(

∑
i
|X̃(i,k)|s(m− i)

)

. (11)

At those time instants where the frequency content of x(n)
changes and new frequency components appear, E(l,k) exhibits
positive peaks whose amplitude is proportional to the energy and
rate of change of the new components. In a similar way, when fre-
quency components disappear from x(n), the SEF exhibits nega-
tive peaks, marking the offset of a musical event. Since we are only
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Fig. 3. The smoothing effect of the energy integration function
emphasizes signal attacks but masks rapid modulations.

interested in onsets, we apply a half-wave rectification (HWR) to
E(l,k), i.e., only positive values are taken into account. To find a
global stationarity profile v(l), also called detection function, con-
tributions from all channels are integrated across frequency

v(l) = ∑
k

E(l,k)>0

E(l,k) (12)

v(l) displays sharp maxima at transients and note onsets, i.e., those
instants where the positive energy flux is large. Figure 4 shows an
example for a trumpet signal. The top figure is the time–frequency
representation, in the middle the SEF E(l,k) and in the bottom the
detection function.

2.2. Thresholding and peak-picking

The shape of the detection function bears a great importance. In an
ideal case, at those time instants where phenomenal accent occur
the detection function would display well-localized narrow peaks
whose magnitudes are proportional to the intensity change. A sim-
ple peak-picking above a fixed threshold would be enough to find
onset locations. In practice, the detection function tends to be
noisy for a number of reasons. In addition, its dynamics tend to
vary considerably over the range of real world signals and in many
cases, within short segments of signals there may be a range of
different types of onsets. For these reasons, prior to peak-picking,
noise removal and dynamic thresholding operations are required.
Under the risk of blurring the attacks and losing time resolution,
a careful low-pass filtering can be used to remove noise compo-
nents. For the ease of convenience, we decided to use the above
mentioned solution of filtering using the exponential decay func-
tion s(m)

v̂(l) = ∑
m

v(m)s(l−m). (13)

The dynamic threshold was computed using the method sug-
gested by Bello [2] and previously employed for detecting impul-
sive noise in audio signals. The basic principle is to find the me-
dian of a signal within a sliding analysis window, above which
all peaks are selected to pass to the peak-processing stage of the
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Fig. 4. From top to bottom: time–frequency representation for a
trumpet signal, the corresponding SEF and the detection function
with its respective adaptive threshold. The SEF image displays
sharp vertical edges at those instants where the frequency content
of the signal exhibits rapid variations.

algorithm. Each value of the dynamic threshold θ(l) is given by

θ(l) = C · median(gm) (14)

where gm = {v̂m−P, . . . , v̂m, . . . , v̂m+P} and C is a predefined
scaling factor to artificially rise the threshold curve slightly above
the steady state level of the detection function. To ensure accurate
detection, the length of the median filter 2∗P+1 must be longer
than the average width of the detection function peaks. The bottom
part of Figure 4 shows the adaptive threshold calculated for the
above mentioned trumpet signal.

A peak-processing stage selects onsets candidate peaks above
the adaptive threshold and discards those being too small in a
50 ms range around a larger peak. Finally, peak-picking is car-
ried out.

3. PERFORMANCE ANALYSIS

The performance of the presented onset detection system was eval-
uated using a public database of 670 hand-labeled onsets cross-
validated by three different annotators [8]. The signals were se-
lected to comprise a large variety of musical instruments including
drums and vocals, a wide dynamic and a wide pitch range. The
algorithm parameters, such as: FFT size, differentiator filter order
and median filter length, were globally set using a trial-and-error
method to search in the space of possible values the ones that max-
imize a global score. The proposed system was compared to the
spectral difference proposed in [4], that is

d̂(l) = ∑
k

H(|X̃(l,k)|)−H(|X̃(l−1,k)|) (15)

where H(x) = arcsinh(x). In addition, d̂(l) is the half-wave rec-
tified version of the signal, d(l) = HWR(d̂(l)). The procedure
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Fig. 5. ROC curves obtained by variating the adaptive threshold
scaling factor. Percentage of good detections vs. percentage of
false detections for the SEF and the plain spectral difference.

described in section 2.2 of smoothing, adaptive thresholding and
peak processing was also applied to this algorithm.

The performance analysis for both methods are presented in
the form of ROC (Receiver Operating Characteristic) curves in
Figure 5. Results are shown as percentages of good detections vs.
false detections for each algorithm. For the analysis, onset candi-
dates found by any of the algorithms were marked as correct if the
difference between the candidate and a real onset is shorter than
50 ms, otherwise they were marked incorrect.

Although the SEF enhancement largely outperformed the plain
spectral difference approach, the proposed system is still far from
being optimal. In general, the detection function v(l) estimated by
the algorithm was considered very effective. The main drawback
of the system lies on the adaptive thresholding method employed.
In fact, the same approach is used for all types of music signals. It
may be more appropriate to develop signal specific approaches to
better take into account the large variety of music signals. Under
the current system, obtaining additional information from the tar-
get application (pitch tracking for example) prior to thresholding
should make onset detection more robust.

In a more detailed analysis, the algorithm displayed good per-
formance for the wind instruments (flute, sax and trumpet), al-
though the false detection rate was the highest among all cate-
gories. It’s interesting to notice that, in many cases, these false
detections were related to the finger movement pressing the in-
strument keys, sometimes inaudible but still detectable. For the
bowed-string instruments (violin, cello), soft attacks are hard to
detect, since the appearance of new frequency components is very
gradual resulting in widespread and small peaks. For the percus-
sive music, most of the false detections were due to artifacts in
the detection function caused by vocals. The system also proved
to lose efficiency when processing signals with large reverberation
levels.

The global complexity of the algorithm per each analysis frame
is O(N log2(N)) for an FFT of size 2N plus 3N + N · 2L multipli-
cations, 3N + N · (2L− 1) + N− 1 additions and N divisions for
smoothing with the decaying exponential window s(m) and using

a differentiator filter h(m) of order 2L. The storage requirement is
of 2L−1 FFTs. Even if the system is slightly more complex than
the plain spectral difference, the proposed algorithm can easily run
in real time, demanding access to only a few tenths of milliseconds
ahead. The implementation under Matlab c© is available for free
under request to the first author. In addition, specific examples of
the algorithm described can be consulted by internet at the address
www.tsi.enst.fr/∼malonso/icme05.

4. CONCLUSIONS

In this paper, we have proposed an automatic onset detection sys-
tem that can be used as a front-end for a large number of computer
music applications. The presented algorithm is an enhancement
to a previously existing scheme. To find the onsets, a perceptu-
ally plausible power envelope is calculated in a band-wise fashion.
Then its derivative is computed using an efficient differentiator fil-
ter. Contributions from all bands are integrated in frequency to
obtain a function that bears onset locations as peaks. The perfor-
mance displayed by the algorithm is considered satisfactory for
a wide range of music signals and attacks. The determination of
a better discriminating threshold should considerably improve the
algorithm performance. Peak-picking is a high risk operation, di-
rect processing of the detection function combined to target appli-
cation information should substantially decrease false detections
and give place to a more robust system. Real time implemen-
tations are possible, requiring only a few milliseconds of future
information.

5. REFERENCES

[1] F. Lerdahl and R. Jackendoff, A generative theory of tonal mu-
sic. MIT Press, Cambridge, Massachusetts, 1983.

[2] J. P. Bello, “Towards the automated analysis of simple poly-
phonic music: A knowledge based approach,” Ph.D. disserta-
tion, Queen Mary University of London, 2003.

[3] A. P. Klapuri, “Sound onset detection by applying psychoa-
coustic knowledge,” in Proc. IEEE ICASSP, 1999.

[4] J. Laroche, “Efficient tempo and beat tracking in audio record-
ings,” Audio Eng. Soc., vol. 51, no. 4, 2004.

[5] M. Dvornikov, “Formulae of numerical differentiation,”
math.NA/0306092, 2003.

[6] R. Meddis, “Simulation of auditory-neural transduc-
tion:Further studies,” J. Acoust. Soc. Am., vol. 83, no. 3, pp.
1056–1063, March 1988.

[7] B. C. Moore, Ed., Hearing, 2nd ed. Academic Press, 1995.

[8] P. Leveau, L. Daudet, and G. Richard, “Methodology and tools
for the evaluation of automatic onset detection algorithms in
music,” in Proc. of the ISMIR, 2004.

6. ACKNOWLEDGEMENTS

The authors would like to thank Pierre Leveau and Laurent Daudet
for their valuable comments and for making available some of their
code for testing purposes.


