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ABSTRACT

We consider in this paper sparse audio coding as an alter-

native to transform audio coding for efficient MIR in the

transform domain. We use an existing audio coder based

on a sparse representation in a union of MDCT bases, and

propose a fast algorithm to compute mid-level representa-

tions for beat tracking and chord recognition, respectively an

onset detection function and a chromagram. The resulting

transform domain system is significantly faster than a com-

parable state-of-the-art system while obtaining close perfor-

mance above 8 kbps.

1 INTRODUCTION

Music recordings are now widely available in coded format.

The reason is that state-of-the-art audio coders such as MP3

[6] or AAC [7] are able to reduce the size of a PCM au-

dio signal more than 10 times, while guaranteeing a near-

transparent quality. Consequently, such technology allows

users to easily exchange and store music on mobile devices

and networks.

On the other hand, state-of-the-art audio indexing algo-

rithms such as beat tracking [8, 2] and chord recognition

[1, 10] are designed to process PCM audio signals. Conse-

quently, to use them with coded audio, one has to decode

to PCM first and then apply the audio indexing algorithm

on the PCM signal (Processing in the time domain, see Fig.

1). To save computational cost, which is often required e.g.

when using such algorithms with mobile devices or on very

large databases, it would be more efficient to design audio

indexing algorithms that work directly with the coded data.

There are two ways to process coded data depending on

which stage of the decoding process we are working on (see

Fig. 1). The first way is to use directly the bitstream, this ap-

proach is called processing in the compressed domain. The

second way is to use the transform representation, this ap-

proach is called processing in the transform domain. The

first approach is faster as we avoid the cost of decoding the

transform representation, however, for certain cases the in-

formation available in the bitstream is not sufficiently ex-

plicit, and it it thus necessary to use the transform domain

representation.

We consider in this paper two audio indexing applica-

tions, beat tracking [8, 2] and chord recognition [1, 10].

Figure 1. Block diagram of a common audio decoder and
three possible audio indexing systems.

Beat tracking has already been investigated using MP3 au-

dio files in the transform domain [13] and in the compressed

domain [14]. However, no work related to chord recogni-

tion using coded data has been found in the literature. This

may be due to the limited frequency resolution of the time-

frequency analysis used in state-of-the-art transform audio

coders such as MP3 [6] and AAC [7].

Due to this limitation of the transform based coders, it is

interesting to consider other kinds of audio coders, such as

parametric coding (e.g. [3]) or sparse representation based

coding (e.g. [12]). We have chosen here to use a new pro-

totype audio coder based on a union of MDCT bases [12],

which has the advantage to provide a sparse representation

which has both precise time and frequency resolution, con-

trary to transform based coders. This coder, available for

testing in open source 1 , has also the interesting property of

fine-grain scalability.

We show in this paper that this new signal representa-

tion approach is not only useful for audio coding, but also

for audio indexing. We propose a fast method to calculate,

in the transform domain, mid-level representations similar

to those used in state-of-the-art systems, namely an onset

1 http://www.emmanuel-ravelli.com/downloads.html
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detection function and a chromagram. The onset detection

function and the chromagram are then used to perform re-

spectively beat tracking and chord recognition using same

machine learning systems as used in state-of-the-art systems

[2, 1].

The remainder of this paper is as follows. In section 2,

we describe the signal representation used in [12]. In section

3, the details of the calculation of the mid-level representa-

tions are given. In section 4, the machine learning systems

we use to perform beat tracking and chord recognition are

briefly described. Finally, section 5 gives the performance

evaluation, section 6 discuss about computation times, and

we conclude in section 7.

2 SIGNAL REPRESENTATION IN A UNION OF
MDCT BASES

In state-of-the-art audio coders such as AAC [7], the Mod-

ified Discrete Cosine Transform (MDCT) is used. While

such coders allow transparent quality at high bitrates, they

give limited performance at low bitrates. In [12], Ravelli

et al proposed a generalization of the transform coding ap-

proach where the signal is decomposed in a union of MDCT

bases with different scales. The results showed that this new

approach allows improved performance at low bitrates. We

briefly present in the following the signal model and the de-

composition algorithm.

2.1 Signal model

The signal is modeled using a union of 8 MDCT bases,

where the window length ranges from 128 to 16384 samples

(i.e. from 2.9 to 370 ms) in powers of 2. The smallest win-

dows are needed to model very sharp attacks while larger

windows are useful for modeling long stationary compo-

nents. The signal f ∈ R
N is then decomposed as a weighted

sum of functions gγ ∈ R
N plus a residual of negligible en-

ergy r

f =
∑
γ∈Γ

αγgγ + r (1)

where αγ are the weighting coefficients. The set of func-

tions D = {gγ , γ ∈ Γ} is called the dictionary and is a

union of M MDCT bases (called blocks). The functions g,

called atoms are defined as:

gm,p,k(n) = wm(u). (2)√
2

Lm
cos

[
π

Lm

(
u +

1 + Lm

2

)(
k +

1
2

)]
where u = n − pLm − Tm and m is the block index, p is

the frame index, k is the frequency index, Lm is the half of

the analysis window length of block m (defined as power

of two Lm = L02m), Pm is the number of frames of block

m, Tm is a time offset introduced to “align” the windows of

Figure 2. Block diagram of the proposed system for the
calculation of the mid-level representations.

different lengths (Tm = Lm

2 ) and wm(u) is the sine window

defined on u = 0, .., 2Lm − 1.

2.2 Decomposition algorithm

The signal is decomposed using Matching Pursuit (MP). MP

[11] is an iterative algorithm which select at each iteration

the atom in the dictionary that is the most correlated with

the residual; subtracts the selected atom from the residual;

and iterates until a stopping condition (e.g. target SNR) is

met. The decomposition algorithm has been implemented

in the Matching Pursuit ToolKit (MPTK) framework [9],

which is to date the fastest available generic implementation

of Matching Pursuit for audio signals.

3 CALCULATION OF MID-LEVEL
REPRESENTATIONS

The signal representation used in the audio coder of [12]

is based on a union of 8 MDCT bases with analysis win-

dow sizes from 128 to 16384 samples. We have remarked

that high amplitude atoms with small window sizes (128 and

256) are often located around attacks; consequently, we can

build a very cheap onset detection function by filtering the

decomposition such that we keep only small window sizes

atoms, and then sum the absolute value of the coefficients in

temporal bins to construct a downsampled signal with peaks

located at attacks. We have also remarked that strong tonal

components are modeled by the large window sizes atoms

(8192 and 16384) with a precise frequency resolution. Con-

sequently, it is possible to build a very cheap chromagram by
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Figure 3. A 5 seconds signal of rock music; the complex
spectral difference onset detection function of [2]; the pro-
posed onset detection function.

summing the absolute value of the coefficients of the largest

atoms in time/frequency bins. The complete system is in

Fig. 2 and we describe it in more details in the following.

3.1 Onset detection function

The onset detection function Γ is computed on a frame-by-

frame basis. The length of one frame is defined such that the

corresponding time resolution is the same as in [2] and [8]

which is 11.6 ms and it is equivalent to tDF = 512 samples

at 44.1 kHz. The function Γ(q) at frame q is thus defined as

Γ(q) =
∑

m,p,k

|αm,p,k| (3)

where we sum only the atoms satisfying the following two

conditions:

• the window size is 128 or 256 samples

m < 2 (4)

• the center is in the temporal support of the frame q

floor

(
(p + 1)Lm + Tm

tDF

)
= q. (5)
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Figure 4. A 50 seconds signal of rock music; the constant-
Q transform 36-bin chromagram of [1]; the proposed 36-bin
chromagram

Fig. 3 shows the onset detection function obtained with a 5

seconds signal of rock music, and as a reference the onset

detection function of [2].

3.2 Chromagram

The chromagram is computed on a frame-by-frame basis

too. In [1], the time resolution is 92.9 ms, while in [10]

the time resolution is the double 185.8 ms. We decide to use

here a time resolution of 185.8 ms as this is the hop size of

the MDCT with largest window size. This is equivalent to a

frame size of tCH = 8192 samples at 44.1 kHz. The Chro-

magram CH(q, b) at frame q and frequency bin b is thus

defined as

CH(q, b) =
∑

m,p,k

|αm,p,k| (6)

where we sum only the atoms satisfying the following three

conditions:

• the window size is 8192 or 16384 samples

m ≥ 6 (7)
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• the center is in the temporal support of the frame q

floor

(
(p + 1)Lm + Tm

tCH

)
= q. (8)

• the frequency value k maps to the frequency bin b of

the chromagram

mod

(
round

(
B log2

(
22050 k/Lm

fmin

))
, B

)
= b

(9)

with B = 36 the number of bins per octave and fmin

is the minimum frequency.

Fig. 4 shows the chromagram obtained with a 50 seconds

signal of rock music, and as a reference the chromagram of

[1].

4 MACHINE LEARNING SYSTEMS

After calculation of the mid-level representation, it is passed

into a machine learning system to produce a symbolic repre-

sentation. The onset detection function produces a sequence

of beats (frame index of the detected beats) and the chroma-

gram produces a sequence of chords (one detected chord per

frame). We use the same machine learning as in other works

in order to compare only the mid-level representations in the

evaluation of the final system. We describe briefly in the fol-

lowing the machine learning systems.

4.1 Beat tracking

The same system as in [2] is used. The onset detection func-

tion is first post-processed using an adaptive moving average

threshold. Then the onset detection function is partitioned

into overlapping frames to allow variable tempo. In each

frame, the unbiased autocorrelation function of the onset

detection function is calculated. The autocorrelation func-

tion is then passed into a shift-invariant context-dependant

comb filterbank in order to estimate the tempo of the current

frame. Finally, a beat train at the estimated tempo is built

and aligned with the current frame by passing the detection

function into a tuned context-dependant comb filterbank.

4.2 Chord recognition

The same system as in [1] is used: the 36-bin chromagram

is first circularly shifted according to the estimated tuning

of the piece, low-pass filtered, and mapped to a 12-bin chro-

magram by simply summing within semitones. Then, the

Expectation Maximization (EM) algorithm is used to train

the initial states probabilities and the transition matrix of

an Hidden Markov Model (HMM). Finally, the sequence

of chords is estimated using the Viterbi algorithm with the

chromagram and the trained HMM.

5 EVALUATION

We evaluate in the following the performance of our pro-

posed system, in comparison with the reference systems [2,

1]. As the coding/decoding process is lossy, we also study

the influence of the codec bitrate on the system performance.

The audio files are coded with the coder described in [12],

using the standard matching pursuit with a target SNR of

60 dB, and the bitplane encoder with a bitrate of 128 kbps.

As we use an embedded coding method, the decoder simply

truncates the bitstream to obtain lower bitrates.

5.1 Beat tracking

We compare the performance of our system with the sys-

tem of Davies et al [2] on the same database provided by S.

Hainsworth [4]. There are 222 files of several music genres.

As we use the same beat tracking system, this evaluation

compares only the detection function used in the system.

Davies et al. use a complex spectral difference onset de-

tection function, which is sensitive not only for percussive

sounds but also for soft tonal onsets (contrary to our detec-

tion function). Results are in Fig. 5. We give four measures

of beat accuracy, as proposed in [8] and used also in [2]:

correct metrical level with continuity required (CML cont);

correct metrical level with continuity not required (CML to-

tal); allowed metrical levels with continuity required (AML

cont); allowed metrical levels with continuity not required

(AML total). The performance of our system is close to the

performance of the reference system at high bitrates (5-12%

less) and even at 8 kbps, with a very bad quality of the syn-

thesized audio, the performance is still high.

5.2 Chord recognition

We compare the performance of our system with the system

of Bello et al [2]. We use the same evaluation database as in

[1]. It consists of 2 albums of the Beatles: Please Please Me

(14 songs) and Beatles for Sale (14 songs). The database has

been annotated by C. Harte et al [5]. Only the chromagram

calculation is different, the machine learning system is ex-

actly the same. To calculate the 36-bin chromagram, Bello

et al use a constant-Q transform on a downsampled PCM

audio signal at 11.25 kHz, with a analysis window length of

8192 samples (32768 at 44.1 kHz, twice as ours). To obtain

a relevant comparison, we have modified the time resolution

of the Bello system such that it is the same as our system:

185.8 ms. Recognition rates (percentage of well detected

frames) for both Beatles CD are in Fig. 6. The performance

of our system is close to the performance of the reference

system at high bitrates (5-7% less) and even at 4 kbps, with

a very bad quality of the synthesized audio, the performance

is still high.
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Figure 5. Performance of the proposed beat tracking system
in function of the decoding bitrate. The dotted line corre-
sponds to the performance of the reference system (with the
complex spectral difference onset detection function) on the
original PCM audio.
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Figure 6. Performance of the proposed chord recogni-
tion system in function of the decoding bitrate. The dotted
line corresponds to the performance of the reference system
(with the constant-Q transform chromagram) on the origi-
nal PCM audio.
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Figure 7. Computation times of the different stages: bit-
stream decoding; signal synthesis; reference mid-level rep-
resentations. The computation times for the proposed mid-
level representations are not given as they are negligible in
comparison with the bitstream decoding

6 COMPUTATION TIME

As stated in the previous section, the performance of our

transform domain systems is slightly lower than the one of

the reference systems. However, working in the transform

domain allows a huge gain in computation times.

As we are working with coded audio, there are two pos-

sibilities for a user to calculate mid-level representations

from the coded audio. The first possibility is to decode

the bitstream, synthesize the decoded transform represen-

tation, and calculate state-of-the-art mid-level representa-

tions on the synthesized PCM audio. This is the best ap-

proach in terms of performance. However, it requires sev-

eral operations with a non negligible computational cost:

the bitstream decoding; the transform representation synthe-

sis, which requires 8 IMDCT; the mid-level representation,

which requires a time-frequency analysis (FFT) plus addi-

tional computations. The second possibility is to compute

mid-level representations from the transform representation

as explained in the previous sections. This approach is a

bit less efficient in terms of performance but it requires less

operations that the first approach and thus is faster. Only

two operations are required: the bitstream decoding; and the

mid-level representation calculation, which involves only

histogram-like calculations and has thus small computation

cost as compared to the bitstream decoding cost.

Fig. 7 shows the computation times of the different oper-

ations: the bitstream decoding; the synthesis; the reference

chromagram from PCM audio; and the reference onset de-

tection function from PCM audio. The proposed mid-level
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representations cost is not given as it is very small in com-

parison with the bitstream decoding. Results show that the

computation of the proposed transform-domain mid-level

representations is from 3 times (CH at high bitrates) to 24
times (DF at low bitrate) faster than the computation of the

reference mid-level representations.

7 CONCLUSION

We have considered in this paper an alternative approach

for audio indexing in the transform domain. While common

approach use standard transform based coders, we show that

using sparse representation allows to go beyond the limita-

tions of the time-frequency resolution of the transform ap-

proach. We have chosen in this paper the audio coder of

[12], which is based on a union of MDCT bases and we

show that MIR in the sparse transform domain allows user

to trade performance and computational complexity.

We have considered in this paper two applications, beat

tracking and chord recognition. And we have proposed the

calculation of two mid-level representations for these appli-

cations; an onset detection function and a chromagram. We

have showed that the performance of the resulting systems

are close to the performance of the reference systems above

8kbps. We have also shown that the computation time of the

proposed systems depend mainly on the bitstream decoding

module, as the cost of the proposed mid-level representa-

tions is small in comparison. Moreover, the saving of the

synthesis and the time-frequency analysis allows a gain in

the computation time from 3 to 24 times.

Given the results of this work, it would be interesting

to consider in the future other audio indexing applications,

such as e.g. musical genre classification, by using equivalent

low level features such as e.g. MFCC. It would be also in-

teresting to try other signal representations, such as MDCT

with greater window sizes, or union of MCLT, and study the

influence of such representations on the audio coding and

audio indexing systems.
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