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ABSTRACT

This paper investigates on the behavior of two blind signal decom-

position algorithms, non negative matrix factorization (NMF) and

non negative K-SVD (NKSVD), in a polyphonic music transcription

task. State-of-the-art transcription systems are based on a frame-by-

frame, low-level approach; blind systems could be an alternative to

them. Two raw but effective audio-to-MIDI systems are proposed

and evaluated. Performances are similar, but in favor of NMF, which

is more robust to initialization, choice of the order and computation-

nally less costly.

Index Terms— Automatic transcription, polyphonic music, non

negative matrix factorization, K-SVD.

1. INTRODUCTION

Automatic music transcription consists in deriving a symbolic rep-

resentation (e.g. a MIDI-like file) of the music from an audio file.

Transcribing monodic music is henceforth a well understood prob-

lem; but the case of polyphonic music remains a largely open ques-

tion.

To address this issue, most of the proposed approaches rely on

prior knowledge (e.g. signal models [1] or supervised learning [2, 3])

and/or frame-by-frame low-level analysis. The main weakness of

this kind of methods is their low capacity to adapt to signals that do

not comply with the model. In order to avoid this drawback, a more

recent set of approaches consists in using as few hypotheses as pos-

sible about the audio content and trying to separate the notes blindly.

Among those techniques we find: sparse coding [4], non-negative

matrix factorization (first introduced for image processing in [5]),

blind source separation [6] (e.g. independent component analysis),

and their variants [7]. They rely on few and weak hypotheses, and

show promising results in polyphonic music transcription.

The work presented here investigates further on the efficiency

of this kind of approach for a full audio-to-MIDI transcription. In

particular, two algorithms are studied: non-negative matrix factor-

ization (NMF), proposed in [8], and the non-negative variant of the

k-means singular value decompositions algorithm (NKSVD), suc-

cessfully applied to image processing in [9]. If both provide an ex-

ploitable decomposition, they behave differently with respect to de-

sign choices like initialization, length of the analyzed piece or order

of the model, which will be discussed here as well.

The two studied algorithms are briefly presented in section 2 and

their implementation in an effective transcription system is described

in section 3. We then present in section 4 carried on experiments, and

their results in section 5. Conclusions and directions for future work

are proposed in section 6.

2. BLIND SIGNAL DECOMPOSITIONS

The two algorithms studied in this paper are briefly described be-

low since more details can be found in [10] for NMF and in [9] for

NKSVD. Although they have their own specificities, both algorithms

rely on common hypotheses and principles.

2.1. Common framework

Both algorithms consider the magnitude spectrogram of the data as

a linear combination of r elementary spectra, or atoms, at each time

step; determining a decomposition consists in finding the basis of el-

ementary atoms, and the decomposition of the data on this basis. The

magnitude spectrum is obviously not additive, but this is a relevant

approximation in many cases.

Basically, let us consider a time-frequency representation V of a

musical excerpt. V is in R
m×n
+ where m is the number of frequency

bins and n the number of time frames. We search for two matrices

W ∈ R
m×r
+ and H ∈ R

r×n
+ such that:

V ≈ WH (1)

The approximation is to be understood as a minimization of a

“distance” (which has to be defined) between the original V and

its reconstruction WH . The specific property exploited here is the

non-negativity of all these matrices: they only have zero or positive

coefficients. Columns of W are seen as frequency-domain atoms,

and lines of H are the temporal activities of each of these atoms in

the observed signal. At each time frame j, the spectrum Vj is thus

expressed as a linear combination of several atoms, the coefficients

of the combination being given by the j-th column of H . The re-

covered atoms are interpreted as notes and the matrix H as temporal

activities.

2.2. Non-negative matrix factorization (NMF)

In Non-Negative Matrix Factorization, the non-negativity of the ma-

trices involved is the only constraint used to process the decomposi-

tion. The approximation comes from the constraint r < min(n, m),

so that the factorization is also a rank reduction. Considering a long

enough music piece, containing a certain number of musical events,

the most natural (and, we hope, only) way to represent the signal on

a reduced-sized basis should be to have a basis of notes.

The factorization is processed by iterative minimization of a cost

function (Frobenius distance or I-divergence, see [10]) and leading

to a local minimum; non-negativity is guaranteed by multiplicative

update rules at each iteration.



2.3. Non-negative K-SVD (NKSVD)

K-SVD and its non-negative variant, implemented here, is a sparse-

coding-like algorithm, developed for image coding and denoising

purpose. In typical algorithms, sparse coding (determination of the

decomposition of a signal in a given basis) and dictionary design

(determination of the basis in which signals will be decomposed)

are are often conducted separately. K-SVD was proposed, as a gen-

eralization of the k-means algorithm, in order to simultaneously get

(and in an unsupervised way) both basis and decomposition.

Sparsity is the property of having few non-zero entries. In music,

the intuitive interpretation is that among all possible notes (the 88

keys of the piano for instance), only a few of them can be played si-

multaneously by a human musician. It is used in addition to the non-

negativity constraint to compute the decomposition. In this model,

W is considered as a dictionary, and is generally searched overcom-

plete, that is r >> m. Two quantities have to be minimized dur-

ing the calculation: the reconstruction error (taken as the Frobenius

norm of V − WH) and the l0-norm of H , which conveys the no-

tion of sparsity. This is performed iteratively, with two steps at each

iteration: pursuit (W being fixed, find the best and sparsest H) and

dictionary update (refine W , using singular value decompositions

(SVD)).

2.4. Main differences

The main difference between the two algorithms is a matter of “phi-

losophy”, in particular as far as the order of the model is concerned.

NMF aims at reducing rank, in order to let emerge a meaningful

representation; whereas NKSVD, which is in first intention a cod-

ing algorithm, aims only at finding an economical representation

(through sparsity), with an overcomplete dictionary. Another dif-

ference is related to complexity: NKSVD is much more costly than

NMF (about 10 times more CPU time), because of the performed

singular value decompositions and because the dictionary is sup-

posed to be overcomplete. Eventually, NKSVD allows to control

the degree of sparsity of the decomposition; in NMF, sparsity comes

as an uncontrolled side effect.

3. THE AUTOMATIC TRANSCRIPTION SYSTEM

The audio-to-MIDI system consists of three steps: processing of a

time-frequency representation, its factorization by one of the previ-

ously presented algorithms, post-processing of the factors to get a

MIDI representation.

3.1. Pre-processing

The short-time Fourier transform of the signal is computed, using a

64 ms Hanning window1 (2822 samples at 44.1 kHz) with a 50%

overlap, and its module is taken to get the non-negative matrix V .

There are 4096 frequency bins, negative frequencies being then dis-

carded, leading to 2048-line matrices.

3.2. Factorization

Non-negative matrix factorization (NMF) and the non-negative vari-

ant of the K-SVD (NKSVD) are then performed iteratively on V

1This is obviously a long window, made necessary by frequency resolu-
tion considerations; the choice of the Fourier transform is a well-known limit
in this domain, and improvements are bound to find a smarter time-frequency
representation, not searched here.

until convergence is reached. Initialization is either random, as pro-

posed in the original papers, or set to the spectrum of isolated real

piano notes. We implement the most common version of NMF, de-

scribed in [10]; in NKSVD, the pursuit stage is performed by Match-

ing Pursuit, with a number of retained coefficients set to 10 (i.e. at

each frame, at most 10 atoms are active simultaneously).

3.3. Post-processing

The post-processing step consists in interpreting the factors W and

H as respectively, pitched atoms and temporal activities. Each col-

umn of W is considered as a note spectrum. Its pitch is estimated by

the maximum of the sum of the log-spectra (rather than the spectral

product, in order to avoid numerical errors). Lines of H associ-

ated with atoms of the same pitch are summed. We then determine

notes onsets and offsets by thresholding the lines of H: the atom j
is turned on at time k when hjk exceeds a threshold and turned off

when it is below this threshold. The threshold is fixed empirically as

the sum of the mean and standard deviation of the line. Velocity was

not treated, and arbitrarily set to a constant value. Finally, compo-

nents without identified pitch and too short events are discarded. A

note event is thus described by a pitch, an onset time and a duration.

This post-processing provides a raw, yet useful transcription, for

we can listen to the result (by re-synthesis from the MIDI) and com-

pare it to a reference. As our purpose was to focus on the previous

(factorization) step, we chose coarse methods for this last part, be-

ing aware of their weakness and the necessity to refine them in the

future.

4. EXPERIMENTS

4.1. Database

Six pieces from the classical piano repertoire, described in [11], are

used for tests. They were recorded on a Disklavier mechanically

playing the MIDI file in input. Thus, we have a MIDI reference for

each test piece, allowing quantitative comparison with the processed

transcription. Each piece was then re-synthetized from the MIDI

in order to compare the system performances on real and synthetic

audio. In addition, the system was also tested on La Campanella by

Liszt from the RWC database [12], to evaluate the system in more

realistic conditions.

4.2. Parameters

Each piece, in real and synthetized versions, was then systematically

analyzed with different values of the model order r. Initialization

was either random or fixed to real piano spectra from the RWC data-

base [12].

4.3. Performance evaluation

Music transcription system performance evaluation is a challeng-

ing issue, which has not yet reached a consensus in the community.

Possible metrics are overviewed in [13]: frame-level metrics (preci-

sion/recall and scores agregated from them), note-level metrics, note

onset detection error rates. In order to avoid penalizing the whole

system because of the coarseness of the back-end (especially tempo-

ral) and the slight misalignments in the reference (due to technical

constraints of MIDI acquisition), we chose to measure the note onset

detection error, with a tolerance of one window (64ms) before and

after the reference onset time.



True positive (TP ) is the number of correctly detected notes,

false positive (FP ) is the number of wrong notes detected and false

negative (FN ) the number of missing notes. Precision rate is the

ratio TP/(TP +FP ), recall rate is the ratio TP/(TP +FN), and

overall accuracy is defined according to [13] as the ratio TP/(TP +
FP + FN).

5. RESULTS

5.1. Preliminary tests

As [8] suggests that notes have to be played alone at least once in

the piece in order to get a proper separation, we analyzed this simple

example:

Fig. 1. A simple example.

This excerpt was generated by a MIDI synthetizer (with a piano

timbre) and analyzed by NMF, with the number of components set to

r = 4 (4 different notes are heard). Figure 2 shows the visualization

of the result: the 4 columns of W on the left, the corresponding lines

of H on the right. This way, each left-right pair of graphs shows the

frequency content of one component and its temporal occurrences in

the analyzed piece.
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Fig. 2. NMF result of the analysis of Figure 1.

This case is rather ideal: the synthetic sounds make two notes of

the same pitch strictly identical, and every possible combination of

2 notes among 4 is played. However, we can also notice that no note

is being played alone, yet the algorithm succeeds in separating them.

This suggests that NMF can efficiently separate a polyphony even if

the notes are never isolated, provided enough various combinations

are heard.

5.2. Main experiments: general observations

Though the pieces are rather difficult to transcribe, performed tran-

scriptions are good enough to easily recognize the piece when the

audio signal is synthetized from the transcribed MIDI file. Most

errors are typical of the difficulty of the task: octave-related pitch

errors (substitution, insertion or deletion of a note having the same

chroma2 as the target), note detection errors (notes late or too short,

2Chroma is the modulus-12 pitch.

or spurious notes, depending on the choice of the threshold), bad rep-

resentation of low-pitched notes, missing notes in chords of 4 notes

or more. Performances follow the same trends when analyzing either

synthetic or real sounds. This suggests that it would not be unreason-

able to test transcription algorithms on databases containing mainly

synthetic sounds.

Table 1 shows the mean results of the analysis of the six pieces

by NMF and NKSVD, in their synthetic and real versions. r was set

to 88.

Table 1. Transcription results (r=88).

Algorithm NMF NKSVD

Initialization no yes no yes

Precision (%) 52.4 51.4 36.7 44.9

Synth. audio Recall (%) 49.3 54.4 35.9 40.2

Accuracy (%) 34.5 36.1 22.4 25.6

Precision (%) 51.5 45.5 47.0 47.8

Real audio Recall (%) 55.1 56.1 38.1 41.2

Accuracy (%) 36.4 33.6 27.2 29.2

As a reference, for similar analyzed data and identical metrics,

accuracies from 30% to 60% are obtained in [13]. Transcription of

the Liszt piece showed similar trends, but with lower accuracy, cer-

tainly due to the use of the pedal and the fact that the piece is played

by a real musician. On this piece, a significative difference was ob-

served between NKSVD with and without structured initialization,

in favour of the former.

Original and transcription audio examples are available at

http://www.enst.fr/˜nbertin/icassp2007.

5.3. Parameters influence

Besides the previous general remarks, we can make some additional

observations about the behaviors of the system with respect to dif-

ferent parameters and design choices.

5.3.1. Order of the model

Following the original goal of the algorithms, a natural choice for

the order r of the model would be: the theoretical r for NMF (i.e.

the number of different pitches in the MIDI reference), and a largely

overestimated r for NKSVD-based transcription. We chose however

the same order values for both to keep them comparable. Results are

relatively stable with regard to the chosen r, as shown on figure 3.

NMF is slightly more sensitive to it, which was rather unexpected.
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Fig. 3. Accuracy w.r.t. the ratio between r and the number of differ-

ent pitches in the reference MIDI file (denoted by rth).

At any order r, we frequently observe that several atoms have

the same pitch, corresponding to the most frequent notes appearing

in the piece: it is a better strategy for the algorithms to represent



more accurately notes frequently occurring, and the variability be-

tween notes of the same pitch increases the need for several atoms to

represent each note. This suggests that overestimation of the order

is preferable. This is confirmed by figure 3.

5.3.2. Duration of the transcribed piece

Classical, frame-by-frame approaches are indeed not sensitive to the

length of the analyzed piece. On the contrary, we expect differ-

ent performances of NMF and NKSVD-based transcriptions with

respect to this length. Indeed, preliminary tests showed that the

variety of chords (notes belonging to different chords) could help

a lot to separate notes. We analyzed the first 30 seconds of each

test piece separately, and compared the transcription performance

with the results we get for the same 30 seconds analyzed within the

whole piece. Accuracy is between 5% and 8% higher for the whole

piece analysis. It is however difficult to claim without precaution

that performance is all the better as the piece is long. The piece must

remain somewhat homogeneous along time to benefit from notes re-

dundancy.

5.3.3. Initialization

As both algorithms converge to local minima, the initialization of

W and H may influence the results. We compared the results of a

random initialization of W vs. a chosen one. Columns of W were

then initialized with Fourier magnitude spectra of real piano notes.

As we are not supposed to know neither the number of pitches in the

piece, nor their values, we fixed r = 88 and initialized W with the

88 notes of the piano.

As shown on table 1, NMF and NKSVD did not show a particu-

lar sensitivity to initialization (except that convergence was reached

in twice less iterations). Random and determined initialization lead

to very similar results, except for NKSVD analysis of the Liszt piece

(accuracy is 8% higher with non-random initialization). This obser-

vations could be explained by the match or mismatch between ini-

tialization spectra and the actual signals.

6. CONCLUSIONS AND FUTURE WORK

The goal of this preliminary work was to assess the potential of two

promising approaches for music transcription. The first conclusion

is that blind signal decomposition methods may be an alternative

to frame-by-frame approach to build efficient transcription systems.

Clearly, such methods provide an interesting mid-level representa-

tion that could lead, with an efficient post-processing of the decom-

position, to a very accurate transcription.

The comparison between NMF and NKSVD does not highlight a

clear superiority of one of them upon the other. NMF seems prefer-

able for its lower computational cost. NKSVD with initialization

was however better on the only real music test piece which suggests

further investigation on a larger database.

There are a lot of remaining questions and possible improve-

ments. First, an efficient model order estimation method is needed.

Second, the problem of complexity and computational cost remains

the main handicap of NKSVD. The choice of the pursuit algorithm

and of the desired degree of sparsity are other questions to raise.

Both methods still need a better back-end (pitch detection in atoms

and onset detection in temporal envelopes). For both, the time-

frequency representation remains unsatisfactory (because of the well

known resolution trade-off of Fourier transform). Eventually, the

limitation of the methods to stable spectral profiles (along one note)

is a strong constraint, unrealistic in music (for instance in notes

played vibrato). This has to be overtaken, for instance by taking

into account the temporal evolution of the note spectrum.
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