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‡ RTL (Ediradio)
22 rue Bayard, 75008 Paris

phone: +33 (0) 1 56 69 42 26
mathieu.ramona@rtl.fr

† Telecom ParisTech / LTCI-CNRS
37 rue Dareau, 75014 Paris

phone: +33 (0) 1 45 81 73 65
gael.richard@telecom-paristech.fr

ABSTRACT
We compare in this paper diverse hierarchical and
multi-class approaches for the speech/music segmenta-
tion task, based on Support Vector Machines, combined
with a median filter post-processing. We show the effi-
ciency of kernel tuning through the novel Kernel Target
Alignment criterion. Quantitative results provide an F-
measure of 96.9%, that represents an error reduction
of about 50% compared to the results gathered by the
French ESTER evaluation campaign. We also show the
relevance of the SVM with very low feature vector di-
mension on this task.

1. INTRODUCTION

Audio segmentation is now becoming a major compo-
nent for numerous audio applications such as broadcast
audio streams transcription [13, 14], music signals struc-
turing/summarization, musical instrument recognition
or audio coding. For instance, speech/music segmenta-
tion is particularly interesting in the context of broad-
cast audio streams transcription, where it appears in-
deed mandatory to first obtain a precise segmentation
into homogeneous segments before applying to those
segments a specific processing (e.g. speaker identifica-
tion for speech segments, audio identification for music
segments,. . . ).

A number of approaches were already proposed in
the past and some of them were extensively tested in a
national collaborative evaluation campaign of broadcast
transcription systems called ESTER [3]. Some of such
systems are based on ergodic Hidden Markov Models
with Gaussian Mixtures modeled observations [5]. Some
straightforward applications of GMM are also found on
very diverse sets of audio features [13] but nevertheless,
Support Vector Machines (SVM) remain rarely used for
this task despite their good discrimination power [7, 8].
Indeed, SVM originally impose a constraint of two-class
discrimination but various solutions have been proposed
to extend the application scope of SVM to multiclass
cases.

In this paper, we propose an extension of a previous
system [12] by first comparing different hierarchical or
multiclass strategies and assessing their robustness to
the feature vector dimension reduction. In particular,
we evaluate the interest of considering multiple music
sub-classes and its impact on the overall performance.

This work was partly realized as part of the Quaero Program,
funded by OSEO, French State agency for innovation.

We therefore consider 4 different learning classes in this
paper: speech only (called speech below), music only
(music), speech with musical background (mix) and mu-
sic with singing voice (singing). Second, we validate on
a large database the Kernel Target Alignment criterion
recently introduced [2] that allows to fine tune the SVM
parameters at a very low complexity compared to the
classical grid search. The different results obtained are
compared, whenever possible, to the results of the best
systems submitted to the national evaluation campaign
ESTER [3] using the exact same protocol and databases.
It is shown that the best taxonomy brings a system-
atic gain compared to the best ESTER system (up to a
+2.7% absolute gain for a feature vector dimension of
50).

The article is structured as follows. The global archi-
tecture, as well as the essential details of our system are
presented in section 2. The experimental protocol and
databases used are then exposed in section 3. Quanti-
tative results are presented and commented in section
4 and some discussion and perspectives will be given in
section 5.

2. CLASSIFICATION SCHEME

2.1 General architecture

Figure 1: Architecture of the proposed system

The system presented here combines SVM discrimi-
nations by comparing multiclass approaches to various
hierarchical approaches. We follow here the classical
scheme in statistical learning based on the classification
of acoustic feature vectors on a collection of overlap-
ping frames covering the audio signal. Each frame is
associated with one of the 3 classes speech/music/mix.
The presence of singing voice on some of the music
segments of the corpus might induce a confusion with
the mix class, considering that singing is somehow sim-



ilar to speech. We have thus introduced a forth class
(singing), used or not, depending on the taxonomy
adopted, during the learning phase, and assimilated to
the music class for the decision. The posterior probabil-
ity sequence is further smoothed by a median filtering,
preceding the class decision and the gathering of labels
within homogeneous temporal segments.

2.2 Pairs discrimination

2.2.1 Classification taxonomies
Since the classification method employed here is fun-
damentally discriminative, different strategies (tax-
onomies), presented in figure 2, are proposed in this
study to extend the scope of SVM to more than 2 classes.
Binary tree nodes consist in successive discrimination
(a/b being the class union of a and b). Non-binary tree
nodes are based on the combination of the discrimina-
tions of all pairs of classes involved (the combination
scheme is further presented in section 2.3).

We propose here 2 main schemes A and B with vari-
ants according to the use of the singing class : nosing
when the class is not used for training, mixsing when it
is first grouped with the mix class, and musing when it
is grouped with the music class.

Thus, for exemple in Anosing the singing class is not
included in the learning process, whereas in Amixsing it
is first classified with the mix class and then seperated
to be identified as music in the end. The A scheme con-
sists basically in a multiclass level based on pair com-
binations, whereas the B scheme consists in a hierar-
chical tree seperating pure music from speech (with an
eventual music background), and then separating pure
speech from mix. Scheme C is a less intuitive vari-
ant of the hierarchical approach and scheme D adds the
singing class to the multiclass classification of scheme
A. Please note that the taxonomy selection presented
here is obviously not exhaustive.

Figure 2: Taxonomies selected for our classification in
4 classes. Two labels for a single node or leaf indicate
that the two classes were grouped in the learning phase
(e.g. music/singing)

Obviously, a large number of pairs are common to
several trees. These taxonomies gather a total of 14

distincts pairs (that can imply unions of classes) ; for
each of them a SVM classifier is tuned and trained.

2.2.2 Acoustic features

Our system uses a large collection of about 600 features
of various types (temporal, spectral, cepstral and per-
ceptual1). Most of these features are computed on short-
term frames of 32ms (16ms overlap) and some of them
on large-term frames of 1s (0.5s overlap). The short-
term features are replaced by their mean and variance
over each long-term frame and then associated with the
long-term features in a common feature vector. Each
feature is mean-centered and normalized by its standard
deviation evaluated on the whole training set.

Then for each class pair the most relevant features
are selected by using the IRMFSP algorithm, introduced
in [9]. Each classification taxonomy has been evalated
with a common feature vector dimension for all pairs,
varying between 2 and 50.

2.2.3 Discrimination with Support Vector Machines

The classification scheme used in this study is based
on Support Vector Machines, which apply a non-linear
transform (through a kernel function κ, which is the
inner product on two transformed vectors) on d dimen-
sion vectors into a higher dimension space where the two
classes are linearly separated under the margin maxi-
mization constraint. The kernels used here are Radial
Basis Gaussian kernels :

κ (x,y) = exp

(
−‖x− y‖2

dσ2

)
Empirical studies have not shown any significant ad-
vantage with other classical kernels (polynomial, sig-
moidal...).

The σ parameter must be tuned carefully to optimize
the kernel by reaching the best compromise between ef-
ficiency and generalization. We have used here a recent
method, called Kernel Target Alignment (section 2.2.4),
to automatically determine the optimal value for any
kernel parameter without any previous SVM learning
and thus no grid-search or need for a validation set.

The output value of the decision function is un-
bounded, though, and thus does not represent a proba-
bilistic value. The sigmoid bijection proposed by Platt
in [10] is used here to get a probabilistic output from
SVM.

2.2.4 Kernel Target Alignment

In [2], Cristianini et al. describe a new criterion to es-
timate the efficiency of a kernel, that is only based on
its Gram matrix K computed from a set of n examples
x = [xi]. Defining the ideal target matrix as K∗ = yyt,
where y = [yi] ∈ {1;−1}n represents the class labels cor-
responding to the examples xi, Cristianini et al. propose
to quantify the relevance of K as follows, thus defining

1For an extensive list, please consult [12] ; the estimated pitch
f0 and aperiodicity measure estimated with YIN [1] have been
added as well.



the Kernel Target Alignment (KTA) :

A(K,K∗) =
〈K,K∗〉F
||K||F ||K∗||F

where 〈A,B〉F =
∑
i

∑
j aijbij is the Frobenius inner

product of two matrices, and ||A||F the corresponding
norm. This criterion constitutes an estimation of the
similarity between the Gram matrix of a Kernel and the
target matrix, and thus allows the tuning of the kernels
parameters (such as σ for the Gaussian kernel), without
any training of the SVM.

Pothin and Richard have later observed in [11] that
the KTA of a kernel Kθ can easily be differenciated with
respect to the kernel parameter θ. Indeed, if we define
the matrix ∂θKθ = [∂θκθ(xi, xj)], then

∂θ 〈Kθ,K
∗〉F = 〈∂θKθ,K

∗〉F
∂θ||Kθ||F = 〈∂θKθ,Kθ〉F / ||Kθ||F

The derivative of the alignment with respect to θ is then
expressed as follows

∂θA(Kθ,K
∗) =

〈∂θKθ,K
∗〉F

||Kθ||F ||K∗||F

−
〈Kθ,K

∗〉F 〈Kθ, ∂θKθ〉F
||Kθ||3F ||K∗||F

We have thus tuned the σ parameter of our kernels
through a gradient ascent on the KTA. The latter has
a Gaussian-like shape with respect to log(σ). We have
thus fixed an initial value of 0.1 for σ since the steep is
more pronounced from this side. The ascent stops when
the gain of the KTA is inferior to a threshold ε = 10−3.
The gradient step has been determined empirically and
results in an average of 5 iterations to reach convergence.

Using this method, the σ parameter is tuned for
each SVM prior to any training. This results in a very
significant reduction of the overall training time. We
will see in section 4.1 that the performances reached
with this technique are comparable to the grid-search
approach and even better for some of the taxonomies.

The SVMlight2 package has been used in this exper-
iment to train the Support Vector Machines.

2.3 Posterior probabilities

Two structure types are present in the classification tax-
onomies trees presented in figure 2 :

Multi-class decision : schemes A and D. In this
case each class pair is discriminated by the correspond-
ing SVM. The algorithm proposed by Hastie and Tibshi-
rani in [4] is used to estimate the posterior probabilities
of the classes, from the results of all pairs.

Hierarchical decision : schemes B and C. The
nodes are processed sequentially, any father node being
processed before its children. Each node discriminates
one of the classes (source class) within two new classes.
The posterior probabilities of the other classes are un-
changed. Those of the two new classes are the result
of the discrimination, weighted by the posterior proba-
bility of the source class. Thus the sum of the classes’
probabilities remains equal to one.

2http://svmlight.joachims.org/

2.4 Smoothing by median filtering

In order to smoothen the posterior probabilities com-
puted on the frame sequence, a median filtering is ap-
plied for each class. The window size has been em-
pirically tuned to 9 frames, which approximately cor-
responds to a 5s window.

Then, for each frame, the class maximizing the pos-
terior probability is elected. Homogeneous adjacent
frames are gathered within temporal segments.

3. EXPERIMENT

3.1 ESTER Corpus

This experiment is based on the corpus of the evalua-
tion campaign ESTER, complying the SES task of sound
event segmentation. We have updated the whole learn-
ing set annotation by differentiating the music only and
singing music segments. The ressources are divided be-
tween a 77h learning set and a 12h30 development set
that respects the distribution of the different radios in
the audio files. The test set annotations have been kept
intact, in order to keep our results relevant with those
of the evaluation campaign.

3.2 Scoring

Figure 3: Conversion from non-overlapping classes to
the ESTER classes

The scoring is done following the protocol of the ES-
TER campaign. The 3 non-overlapping classes consid-
ered for classification (speech, mix and music) are con-
verted into 2, possibly overlapping, classes (speech and
music), as shown in figure 3. On each of these classes,
and on their union, the Recall (R) and Precision (P) are
measured. These are defined as the ratio of the cumu-
lated duration where the class is correctly detected on
the cumulated duration where the class is, respectively,
really present (Recall) and detected (Precision). The
F-measure (F) is the harmonic mean between these two
measures (i.e. F = 2RP

R+P ). The false alarm (fa) and false
reject (fr) rates are also considered here

We use the trackeval tool, provided as part of the
ESTER corpus, to compute these criterions.

4. RESULTS

4.1 Evaluation of the kernel tuning

Choosing an arbitrary dimension of d = 20, we have
tuned each SVM with both σ values determined through
a classical grid-search and the KTA maximization.

The grid-search is done within a set of 12 values
locarithmically spread between 0.2 and 1.5 (indeed,
thanks to the d normalization factor in the kernel de-
nominator, the optimal σ is always in this interval). An
SVM is trained on the learning set for each σ value ; the
value maximizing the performances of the SVM on the
validation set is picked.



The KTA maximisation is performed over 5000
frames from the learning set for each class, when
available.

Figure 4 shows the global F-measure computed for
each of the 8 taxonomies with both tuning approaches.
The pink bars are for the grid-search and the light blue
ones for KTA. It is clear here that the grid-search sur-
passes the KTA for determining the optimal σ value.
Nevertheless, once the median post-processing is applied
(red and dark blue bars), KTA provides a better result is
most cases. This is explained by the fact that KTA has
provided a better tuning for some of the discriminators.
The median post-processing corrects accidental errors
(on one or two adjacent frames) very efficiently and is
thus able to cancel the slight disadvantage of KTA.

The KTA maximization, proposed here for this ap-
plication, thus provides comparable performances with-
out any validation set and with a unique SVM training.
The computation of the KTA being based on the Gram
matrix of the Kernel, is it a little less than quadratic in
complexity (since the Gram matrix is symmetric) with
regard to the number of samples, which is about the
same than a SVM training phase with SVMlight [6].
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Figure 4: Comparison of the different taxonomies per-
formances with grid-search and KTA kernel tuning.

4.2 Evaluation of the different taxonomies

Figure 5 shows the evolution of the F-measure, for each
of the 8 taxonomies, with the dimension d of the feature
vector.

As expected, the main schemes A and B frankly ex-
ceed the performances of the C and D variants, at al-
most any dimension. The C scheme is indeed counter-
intuitive and the D scheme does not have enough train-
ing samples for the class singing to be relevant. These
two taxonomies still are only about 1% below the best
result, which shows that the chosen taxonomy is not
crucial to the system performances. Nevertheless, a 1%
increase over F = 96% means an error rate decrease
of about 25%, thus justifying the choice of an optimal
scheme if possible.
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Figure 5: Results on the ESTER corpus test set

There is no significant gap between the A and B
schemes except at low dimension (d < 20) where the
multi-class approach (A) provides better results than
the hierarchical one. Moreover, the influence of the
singing class use in very similar in both cases. At high
dimensions (d > 15) the system performs best when no
singing samples are used for training and the union
of the singing and mix samples is less efficient than
the more intuitive singing/music union. However, at
very low dimensions (d < 7) the first union performs
best with both schemes, probably because the diversity
brought by the singing samples partly compensates the
lack of characteristics expressed with a low dimensional
feature vector.

The scores increase with the feature vector dimen-
sion, asymptotically approaching a 97% F-measure. All
the taxonomies overcome the best score reached during
the ESTER campaign [3] (94.2%, see Table 1 for more
details) above d = 7. This shows the efficiency of the
proposed system. Interestingly, some of them (Amixsing
and Bmixsing) even keep a good behavior for a very low
dimension (d = 5), with F-measures around 94.5%.

Finally, for a very reasonable complexity (d = 10),
our best and worse system (Anosing and C) provides re-
spective absolute gains of 2% and 1.3% over the best
ESTER score. All the systems proposed by the ES-
TER participants where based on classical MFCC vec-
tors with first and second derivatives, thus using be-
tween 33 and 40 features. We show here better perfor-
mances with lower feature vector dimensions.

Further analysis of this system performances are
given in the following section.

4.3 Detailed performances assessment

Table 1 gathers the performances of the 3 best ESTER
contestants, compared to our best system (Anosing) at
different feature vector dimensions. Even at very low di-
mension d = 2, our system surpasses the 2nd contestant,
which tends to show the relevance of the first features
selected by the IRMFSP algorithm, and the efficiency
of the SVM, applied to this problem. The most signifi-
cant gain, though, lies in the music class recognition, for



general speech music
Systems F %fa %fr F %fa %fr F %fa %fr
d = 50 96.9 2.0 4.5 99.4 13.0 0.5 78.8 1.5 29.6
d = 10 96.0 3.0 5.4 99.2 20.2 0.7 73.6 2.1 34.9
d = 2 93.3 11.9 4.1 98.9 16.2 1.5 64.8 11.6 20.3
ESTER 1st 94.2 2.1 9.5 98.8 30.1 1.5 52.7 1.2 61.7
ESTER 2nd 93.1 1.3 12.1 98.9 9.7 1.9 33.7 1.0 78.5
ESTER 3rd 92.7 11.7 5.7 99.2 36.6 0.7 54.8 10.9 38.7

Table 1: Performances of the Anosing taxonomy at various dimensions compared to the best ESTER results

which our system provides increases of F-measure rang-
ing from 12 to 26%, due mostly to a false rejection rate
much lower than other systems, that have generally been
designed to maximize speech regions recognition (since
all the other tasks of the campaign deal with speech
processing).

The confusion matrix is given in Table 2 for the case
d = 50. To better identify the sources of errors, each
global class (e.g. music, mix and speech) was further
subdivided in two subclasses for which data was man-
ually annotated. Scores in bold are the global class re-
sults. Column prop indicates the proportion of the class
in the test set, and the last column shows its contribu-
tion to the global error rate of 6.5% (i.e. weighted by
its proportion). The confusion between speech and pure
music is expectedly very low. Indeed the main cause of
error is, by far, the confusion of mix for speech (4.6% in
the global error). Singing is better identified than pure
music and we notice a confusion of noisy speech for mix
(8.8%) that is much higher than that of pure speech
(0.8%), but is tempered by its weak proportion in its
contribution to the global error. The system reaches a
correct classification rate of 93%.

Class prop mix music speech err
mix 12.5% 63.0 3.5 33.5 4.6
music 3.0% 16.6 77.3 6.1 0.7
music 2.6% 19.7 74.8 6.1 0.6
singing 0.4% 1.4 92.2 6.4 0.1
speech 84.5% 1.2 0.2 98.6 1.2
speech 80.3% 0.8 0.1 99.1 0.7
sp+noise 4.2% 8.8 1.9 89.3 0.4

Table 2: Confusion matrix for the best configuration

5. CONCLUSION

We have shown here the relevance of SVM for the prob-
lem of speech/music segmentation, even at very low di-
mension. Indeed, the results for 10 selected features are
higher than the best score of the ESTER campaign, with
all the taxonomies proposed. Higher dimensions almost
reach a 97% F-measure, i.e. a reduction of nearly 50%
of the segmentation error.

A comparison of the different approaches shows a
slight advantage of the approaches with no singing
training material, but no major difference is observed
between the hierarchical and multi-class schemes, ex-
cept at low dimension. Most of the error is shown to
come from a confusion between speech with music and
pure speech. Future work will be focused on that specific
problem, as well as on noisy speech misclassification.
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