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Introduction

The enormous amount of unstructured audio datdadainowadays and the spread of its use
as a data source in many applications are introduciew challenges to researchers in
information and signal processing. The continuogsbwing size of digital audio information
increases the difficulty of its access and managentieus hampering its practical usefulness.
As a consequence, the need for content-based aad# parsing, indexing and retrieval
techniques to make the digital information moredigaavailable to the user is becoming ever
more critical.

The lack of proper indexing and retrieval systemgamiaking de facto useless significant
portions of existing audio information (and obvilyugudiovisual information in general). In
fact, if generating digital content is easy andag)emanaging and structuring it to produce
effective services is clearly not. This appliestihe whole range of content providers and

broadcasters which can amount to terabytes of aamtioaudiovisual data. It also applies to



the audio content gathered in private collectiorligital movies or music files stored in the

hard disks of conventional personal computers.

In summary, the goal of an audio indexing systethtiven be to automatically extract high-
level information from the digital raw audio in @mdto provide new means to navigate and
search in large audio databases. Since it is nssilple to cover all applications of audio
indexing, the basic concepts described in this tragpill be mainly illustrated on the specific

problem of musical instrument recognition.

Background

Audio indexing was historically restricted to wosgotting in spoken documents. Such an
application consists in looking for pre-defined d®i(such as name of a person, topics of the
discussion etc...) in spoken documents by means ¢brAatic Speech Recognition (ASR)
algorithms (see (Rabiner, 1993) for fundamentalsspéech recognition). Although this
application remains of great importance, the varat applications of audio indexing now
clearly goes beyond this initial scope. In factinewous promising applications exist ranging
from automatic broadcast audio streams segmentéRachard & al. 2007) to automatic
music transcription (Klapuri & Davy, 2006). Typicapplications can be classified in three
major categories depending on the potential useontent providers, broadcasters or end-
user consumer). Such applications include:
* intelligent browsing of music samples databasescéonposition (Gillet & Richard,
2005), video scenes retrieval by audio (Gillet & &007) and automatic playlist

production according to user preferences ¢tmrtent providers)



e Automatic podcasting, automatic audio summarizatidteeters & al.,, 2002),
automatic audio title identification and smart tagDJing (forbroadcaster9

e Music genre recognition (Tzanetakis & Cook, 200@)sic search by similarity
(Berenzweig & al., 2004), personal music databasaligent browsing and query by

humming (Dannenberg & al. 2007) (foonsumers.

Main Focus

Depending on the problem tackled different architexs are proposed in the community. For
example, for musical tempo estimation and trackinaglitional architectures will include a
decomposition module which aims at splitting thgnal into separate frequency bands (using
a filterbank) and a periodicity detection moduleichhaims at estimating the periodicity of a
detection function built from the time domain eropd of the signal in each band (Scheirer,
1998)(Alonso & al. 2007). When tempo or beat tragkis necessary, it will be coupled with
onset detection techniques (Bello & al.2006) whaah at locating note onsets in the musical
signal. Note that the knowledge of note onset mostallows for other important applications

such as Audio-to-Audio alignment or Audio-to-Scatignment.

However a number of different audio indexing tasisshare a similar architecture. In fact, a
typical architecture of an audio indexing systertiudes two or three major components: A
feature extraction module sometimes associated witfeature selection module and a
classification or decision module. This typical ¢baf-frames” approach is depicted in the

figure below:
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A typical architecture for a statistical audio indeg system based on a traditional bag-of
frames approach. In a problem of automatic musiesirument recognition, each class
represents an instrument or a family of instruments
These modules are further detailed below.
Feature extraction
The feature extraction modulaims at representing the audio signal using acesiset of
features that well characterize the signal properilhe features proposed in the literature can

be roughly classified in four categories:

» Temporal features These features are directly computed on the tloreain signal.

The advantage of such features is that they arallyssiraightforward to compute.



They include amongst others the crest factor, tealpmentroid, zero-crossing rate
and envelope amplitude modulation.

Cepstral featuresSuch features are widely used in speech recognitiospeaker

recognition due to a clear consensus on their gpiteness for these applications.
This is duly justified by the fact that such feasiallow to estimate the contribution of
the filter (or vocal tract) in a source-filter moad speech production. They are also
often used in audio indexing applications since yreundio sources also obey a source
filter model. The usual features include the Medguency Cepstral Coefficients

(MFCC), and the Linear-Predictive Cepstral Coedints (LPCC).

Spectral featuresthese features are usually computed on the spe¢magnitude of

the Fourier Transform) of the time domain signdiey include the first four spectral
statistical moments, namely the spectral centrthé, spectral width, the spectral
asymmetry defined from the spectral skewness, hadspectral kurtosis describing
the peakedness/flatness of the spectrum. A numbepectral features were also
defined in the framework of MPEG-7 such as for epkemthe MPEG-7 Audio
Spectrum Flatness and Spectral Crest Factors varelprocessed over a number of
frequency bands (ISO, 2001). Other features praposdude the Spectral slope, the
the spectral variation and the frequency cutofim8cspecific parameters were also
introduced by (Essid & al. 2006a) for music instamhrecognition to capture in a
rough manner the power distribution of the différearmonics of a musical sound
without recurring to pitch-detection techniquese t@ctave Band Signal Intensities
and Octave Band Signal Intensities Ratios.

Perceptual features Typical features of this class include the iekatspecific

loudness representing a sort of equalization cofvéhe sound, the sharpness - as a

perceptual alternative to the spectral centroideasn specific loudness measures-



and the spread, being the distance between theslasgecific loudness and the total

loudness.

For all these features, it is also rather commonadiesider their variation over time through

their first and second derivatives.

It is also worth to mention that due to their diffiet dynamic it is often necessary to
normalize each feature. A commonly used transfaonacheme consists in applying a linear
transformation to each computed feature to obtaimtered and unit variance features. This
normalization scheme is known to be more robusiutliers than a mapping of the feature
dynamic range to a predefined interval such as 1J1 More details on most of these common

features can be found in (Peeters, 2004) and isidE3005).

Features selection

As mentioned above, when a large number of feaiareBosen, it becomes necessary to use
feature selection techniqués reduce the size of the feature set (Guyon &deglif, 2003).
Feature selection techniques will consist in seigctthe features that are the most
discriminative for separating the different class&gopular scheme is based on the Fisher
Information Criterion which is expressed as therat the inter-class spread to the intra-class
spread. As such, a high value of the criterion dogiven feature corresponds to a high
separability of the class. The appropriate feateeestherefore be chosen by selecting those

with the highest ratios.

Classification



Theclassification modul@aims at classifying or labelling a given audioreegt. This module
usually needs a training step where the charatitarisf each class are learned. Popular
supervised classification approaches for this taskude K-nearest neighbours, Gaussian
Mixture Models, Support Vector Machines (SVM) anddd#en Markov models (Burges,

1998), (Duda & al., 2000).

For example, in a problem of automatic musicalrimeent recognition (Essid & al., 2006a), a
state of the art system will compute a large numifefeatures (over 500), use feature
selection and combine multiple binary SVM classfieVhen a large number of instruments
is considered (or when polyphonic music involvingrenthan one instrument playing at a
time, as in (Eggink and Brown, 2004)), hierarchigaproaches aiming first at recognising an

instrument family (or group of instruments) are dramg very efficient (Essid & al. 2006b).

Future trends

Future trends in audio indexing are targeting rolausl automatic extraction of high level
semantic information in polyphonic music signalsicls information for a given piece of
music could include the main melody line; the malkamotions carried by the musical piece,
its genre or tonality; the number and type of maisinstruments that are active. All these
tasks which have already interesting solutionsdolo music (e.g. for mono-instrumental
music) become patrticularly difficult to solve inetltontext of real recordings of polyphonic
and multi-instrumental music. Amongst the interggtidirections, a promising path is
provided by methods that try to go beyond the tiawial "bag-of-frames" approach described

above. In particular, sparse representation appesathat rely on a signal model (Leveau &



al. 2008) or techniques based on mathematical deasition such as Non-Negative Matrix
factorization (Bertin & al. 2007) have already obé&a very promising results in Audio-to-

Score transcription tasks.

Conclusion

Nowadays, there is a continuously growing intecdshe community for audio indexing and
Music Information Retrieval (MIR). If a large numbef applications already exist, this field
is still in its infancy and a lot of effort is dtiteeded to bridge the “semantic gap” between a
low-level representation that a machine can ob#d the high level interpretation that a

human can achieve.

KEY TERMS AND THEIR DEFINITIONS

Support Vector Machines: Support Vector Machines (SVM) are powerful clagsgiarising
from Structural Risk Minimization Theory that haygoven to be efficient for various
classification tasks, including speaker identifi@ai text categorization and musical

instrument recognition.

Features: features aimed at capturing one or several charsiite of the incoming signal.

Typical features include the energy, the Mel-fregpyecepstral coefficients, ...

Spectral Centroid: Spectral centroid is the first statistical momeinth@ magnitude spectrum

components (obtained from the magnitude of the iEotnansform of a signal segment).



Spectral Slope is obtained as the slope of a line segment fihéomagnitude spectrum.

Spectral variation: represents the variation of the magnitude spettuer time.

Frequency cutoff (or Roll-off): is computed as the frequency below which 99% eftthal

spectrum energy is concentrated.

Mel-Frequency Cepstral Coefficients (MFCC): are very common features in audio
indexing and speech recognition applications. kasy common to keep only the first few

coefficients (typically 13) so that they mostly regent the spectral envelope of the signal.

Semantic gap:refers to the gap between the low-level informatibat can be easily
extracted from a raw signal and the high level sgmanformation carried by the signal that

a human can easily interpret.

Octave Band Signal IntensitiesThese features are computed as the log-energye Gighal

in overlapping octave bands.

Octave Band Signal Intensities ratiosThese features are computed as the logarithm of the

energy ratio of each subband to the previous l@wger) subband.

Musical instrument recognition: is the task to automatically identify from a musignal

which instruments are playing. We often distinguish situation where a single instrument is



playing with the more complex but more realistiolgem of recognizing all instruments of

real recordings of polyphonic music.

Non-Negative Matrix factorization: This technique permits to represent the data (aey
magnitude spectrogram) as a linear combinationleshentary spectra, or atoms and to find
from the data both the decomposition and the atohthis decomposition (see [Lee & al.,

2001] for more details).

Sparse representation based on a signal modebuch methods aim at representing the
signal as an explicit linear combination of soundrses, which can be adapted to better fit
the analyzed signal. This decomposition of the aigran be done using elementary sound

templates of musical instruments.

References

M. Alonso, G. Richard and B. David (2007) “Accwatempo estimation based on
harmonic+noise decompositiorEURASIP Journal on Advances in Signal Processud

2007, Article ID 82795, 14 pages. 2007.

J. Bello, L. Daudet, S. Abdallah, C. Duxbury, M.Mies, and M. Sandler, (2005) “A tutorial
on onset detection in musical signallEEE Trans. Speech and Audio Processvig. 13,

no. 5, pp. 1035-1047. 2005



A. Berenzweig, B. Logan, D. Ellis, B. Whitman (2004 large-scale evaluation of acoustic
and subjective music-similarity measur€mputer Music Journal28(2), pp. 63-76, June

2004.

N. Bertin, R. Badeau and G. Richard, (2007) "Blsignal decompositions for automatic
transcription of polyphonic music: NMF and K-SVD tre benchmark'|EEE International
Conference on Acoustics, Speech, and Signal PrioggskCASSP'07 Honolulu, Hawaii,

USA, 15-20 april 2007.

C. J. Burges, (1998) “A tutorial on support veataachines for pattern recognitionjdburnal

of Data Mining and knowledge Discovempl. 2, no. 2, pp. 1-43, 1998.

R. Dannenberg, W. Birmingham, B. Pardo, N. Hu, Gzekl and G. Tzanetakis, (2007) “A
comparative evaluation of search techniques forygly humming using the MUSART
testbed.”Journal of the American Society for Informationeébcie and Technolod8, 3, Feb.

2007.

R. Duda, P. Hart and D. Stork, (20@®gttern Classification,Wiley-Interscience. John Wiley

and Sons, (2nd Edition) 2000.

J. Eggink and G. J. Brown, (2004) “Instrument ragbgn in accompanied sonatas and
concertos”,. INIEEE International Conference on Acoustics, Spemuth Signal Processing

(ICASSPR, Montreal, Canada, May 2004, pp. 217.220.



S. Essid, G. Richard and B. David, (2006) “Musit@trument Recognition by pairwise
classification strategies’EEE Transactions on Speech, Audio and Languaged3sing

Volume 14, Issue 4, July 2006 Page(s):1401 - 1412

S. Essid, G. Richard and B. David, (2006), "Instemtrecognition in polyphonic music
based on automatic taxonomiesEEE Transactions on Audio, Speech, and Language

ProcessingyVol. 14, N. 1, pp. 68-80

S. Essid, (2005Automatic Classification of Audio Signals: MachiRecognition of Musical

InstrumentsPhD thesis ,Université Pierre et Marie Curie. &gber 2005 (In French)

O. Gillet, S. Essid and G. Richard, (2007) “On @warelation of Automatic Audio and Visual
Segmentations of Music VideosTEEE Transaction On Circuit and Systems for Video

TechnologyVol. 17, N. 3, March 2007.

O. Gillet and G. Richard, (2005) “Drum loops retaé from spoken queries’Journal of
Intelligent Information Systems - Special issuelm@rlligent Multimedia Applicationsvol.

24, n° 2/3, pp. 159-177, March 2005.

|. Guyon and A. Elisseeff, (2003) An introductianfeature and variable selectiodournal

of Machine Learning Researchol. 3, pp. 1157.1182, 2003.

ISO, (2001). Information technology - multimediantent description interface - part 4:

Audio,. ISO/IEC, International Standard ISO/IEC BO15938-4:2001(E), jun 2001.



A. Klapuri and M. Davy, editors. (2006%ignal Processing methods for the automatic

transcription of musicSpringer, New-York, 2006.

D.D. Lee and H.S. Seung, (2001) Algorithms for magative matrix factorizatio®dvances

in Neural Information Processing Systemwal. 13, pp. 556-562, 2001.

P. Leveau, E. Vincent, G. Richard, L. Daudet. (20@8trument-specific harmonic atoms for
midlevel music representatiomo appear in IEEE Trans. on Audio, Speech and Laggu

Processing2008.

G. Peeters, A. La Burthe, X. Rodet, (2002) Towandtofnatic Music Audio Summary
Generation from Signal Analysis, Proceedings of the International Conference of Musi

Information Retrieval (ISMIRR002.

G. Peeters, (2004) “A large set of audio featuimssound description (similarity and

classification) in the cuidado projectRCAM, Technical Repqr2004.

L. R. Rabiner, (1993)Fundamentals of Speech Processirsgr. Prentice Hall Signal

Processing Series. PTR Prentice-Hall, Inc., 1993.

G. Richard, M. Ramona and S. Essid, (2007) “Combiseapervised and unsupervised
approaches for automatic segmentation of radioghaundio streamsn IEEE International

Conference on Acoustics, Speech and Signal Praced§ASSP)Honolulu, Hawaii, 2007.



E. D. Scheirer. (1998) Tempo and Beat Analysis ebustic Music SignalsJournal of

Acoustical Society of America)3 :588-601, janvier 1998.

G. Tzanetakis and P. Cook, (2002) Musical genrasdiaation of audio signals]JEEE

Transactions on Speech and Audio Processing 10, no. 5, July 2002.



