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Instrument Recognition in Polyphonic Music
Based on Automatic Taxonomies

Slim Essid, Gaël Richard, Member, IEEE, and Bertrand David

Abstract—We propose a new approach to instrument recog-
nition in the context of real music orchestrations ranging from
solos to quartets. The strength of our approach is that it does not
require prior musical source separation. Thanks to a hierarchical
clustering algorithm exploiting robust probabilistic distances,
we obtain a taxonomy of musical ensembles which is used to
efficiently classify possible combinations of instruments played
simultaneously. Moreover, a wide set of acoustic features is studied
including some new proposals. In particular, signal to mask ratios
are found to be useful features for audio classification. This study
focuses on a single music genre (i.e., jazz) but combines a variety of
instruments among which are percussion and singing voice. Using
a varied database of sound excerpts from commercial recordings,
we show that the segmentation of music with respect to the instru-
ments played can be achieved with an average accuracy of 53%.

Index Terms—Hierarchical taxonomy, instrument recognition,
machine learning, pairwise classification, pairwise feature selec-
tion, polyphonic music, probabilistic distances, support vector ma-
chines.

I. INTRODUCTION

UNDERSTANDING the timbre of musical instruments has
been for a long time an important issue for musical acous-

tics, psychoacoustics, and music cognition specialists [1]–[6].
Not surprisingly, with the recent technology advances and the
necessity of describing automatically floods of multimedia con-
tent [7], machine recognition of musical instruments has also
become an important research direction within the music infor-
mation retrieval (MIR) community. Computers are expected to
perform this task on real-world music with its natural composi-
tion, arrangement, and orchestration complexity, and ultimately
to separate the note streams of the different instruments played.

Nevertheless, the majority of the studies handled the problem
using sound sources consisting in isolated notes [8]–[16]. Fewer
works dealt with musical phrase excerpts from solo performance
recordings [8], [17]–[25], hence, making a stride forward toward
realistic applications.

As for identifying instruments from polyphonic music, in-
volving more than one playing at a time, very few attempts were
made with important restrictions regarding the number of instru-
ments to be recognized, the orchestration, or the musical score
played. Often in those studies, artificially mixed simple musical
elements (such as notes, chords, or melodies) were utilized. Ad-
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ditionally, some proposals related the task of instrument recog-
nition to automatic music transcription or source separation,
requiring the different notes to be known prior to recognition
[26]–[28]. The success of this task is then intimately connected
to the efficiency of the extraction of multiple fundamental fre-
quencies, which is known to be a very difficult problem, espe-
cially for octave-related notes.

Using realistic musical recordings, Eggink and Brown pro-
posed a system based on a missing feature approach [29] ca-
pable of identifying two instruments playing simultaneously.
More recently, the same authors presented a system recognizing
a solo instrument in the presence of musical accompaniment
after extracting the most prominent fundamental frequencies in
the audio signals [30]. It is also worth mentioning a study using
independent subspace analysis to identify two instruments in a
duo excerpt [31].

In this paper, we introduce a multi-instrument recognition
scheme processing real-world music (including percussion and
singing voice), that does not require pitch detection or separa-
tion steps. Our approach exploits a taxonomy of musical ensem-
bles, that is automatically built, to represent every possible com-
bination of instruments likely to be played simultaneously in re-
lation to a given musical genre. We show that it is possible to rec-
ognize many instruments playing concurrently without any prior
knowledge other than musical genre.1 Decisions are taken over
short time horizons enabling the system to perform segmenta-
tion of the music with respect to the instruments played. We
show through experimental work that satisfactory recognition
accuracy can be achieved with up to four instruments playing at
the same time.

We start by an overview of our system architecture (Sec-
tion II). We then describe the acoustic features examined, in-
cluding new proposals, and we detail our approach for selecting
the most relevant features (Section III). Subsequently, a brief
presentation of various machine learning concepts used in our
work is given (Section IV). Finally, we proceed to the experi-
mental validation (Section V) and suggest some conclusions.

II. SYSTEM ARCHITECTURE

The primary idea behind the design of our instrument recog-
nition system is to recognize every combination of instruments
possibly playing simultaneously. Immediately, one gets puz-
zled by the extremely high combinatorics involved. If we con-
sider orchestrations from solos to quartets featuring 10 possible

1Note that the genre of a given piece of music can be easily obtained either
by exploiting the textual metadata accompanying the audio or by using an auto-
matic musical genre recognition system [32], [33] in the framework of a larger
audio indexing system.
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instruments, in theory the number of combinations is already
.2 Obviously, a system that

tests for such a large number of classes to arrive at a decision
could not be amenable to realistic applications. The question is
then: how can a system aiming at recognizing possible instru-
ment combinations be viable?

First, the reduction of the system complexity should mainly
target the test procedure, i.e., the actual decision stage. In fact,
heavy training procedures can be tolerated since they are sup-
posed to be done “once and for all” in laboratories having at
their disposal large processing resources, while testing should
be kept light enough to be supported by end-users’ devices.

Second, although in theory, any combination of instruments
is possible, some of these combinations are particularly rare
in real music. Of course, choosing a specific music orchestra-
tion for a composition is one of the degrees of freedom of a
composer. Nevertheless, though in contemporary music (espe-
cially in classical and jazz) a large variety of orchestrations are
used, it is clear that most trio and quartet compositions use typ-
ical orchestrations traditionally related to some musical genre.
For example, typical jazz trios are composed of piano or guitar,
double bass, and drums, typical quartets involve piano or guitar,
double bass, drums, and a wind instrument or a singer In a
vast majority of musical genres, each instrument, or group of
instruments, has a typical role related to rhythm, harmony, or
melody. Clearly, jazz music pieces involving piano, double bass,
and drums are much more probable than pieces involving violin
and tenor sax without any other accompaniment, or bassoon and
oboe duets. Therefore, such rare combinations could reasonably
be eliminated from the set of possible classes (optionally) or in-
cluded in a “miscellaneous” labeled class.

Even if we consider only the most probable orchestrations,
the number of possible combinations is still high. The key idea
is to define classes from instruments or groups of instruments
(possibly playing simultaneously at certain parts of a musical
piece) that can be reduced by building super-classes consisting
in unions of classes having similar acoustic features. These
super-classes constitute the top level of a hierarchical classi-
fication scheme (such as the one depicted in Fig. 3). These
super-classes may be divided into classes (final decisions) or
other super-classes. The classification is performed hierarchi-
cally in the sense that a given test segment is first classified
among the top-level super-classes, then it is determined more
precisely (when needed) in lower levels. For example, if a test
segment involves piano and trumpet, then it is first identified
as PnM (where Pn is piano and M is voice or trumpet) and
subsequently as PnTr (where Tr is trumpet).

Such a taxonomy is expected to result in good classification
performance and possibly to “make sense” so that the maximum
number of super-classes can be associated with labels easily un-
derstandable by humans. Thus, a “coarse” classification (stop-
ping at the high levels) is still useful.

A block diagram of the proposed system is given in Fig. 1. In
the training stage, the system goes through the following steps:

2 is the binomial coefficient (the number of combinations of p elements
among q).

1) Building a hierarchical taxonomy:
a) A large set of candidate features are extracted (Sec-

tion III-A).
b) The dimensionality of the feature space is reduced by

principal component analysis (PCA) yielding a smaller
set of transformed features (Section III-B) to be used
for inferring a hierarchical taxonomy.

c) A hierarchical clustering algorithm (Section IV-A)
(exploiting robust probabilistic distances between
possible classes) is used to generate the targeted tax-
onomy.

2) Learning classifiers based on the taxonomy:
a) The original set of candidate features (obtained at step

1a) is processed by a pairwise feature selection algo-
rithm (Section III-B) yielding an optimal subset of fea-
tures for each possible pair of classes at every node of
the taxonomy found at step 1.

b) Support Vector Machines (SVM) classifiers (Sec-
tion IV-B) are trained for every node of the taxonomy
on a “one versus one” basis using features selected at
step 2a.

For testing (gray-filled blocks), only selected features are ex-
tracted and used to classify the unknown sounds based on the
taxonomy and SVM models obtained at the training stage.

III. FEATURE EXTRACTION AND SELECTION

A. Feature Extraction

Unlike speech and speaker recognition problems, there exists
no consensual set of features such as mel frequency cepstrum
coefficients (MFCC) enabling successful instrument recogni-
tion. Numerous proposals have been made in various work on
audio classification [8], [13], [18], [19], [25], [34], [35] and
many have been compiled within the MPEG-7 standardization
effort [7] (see [36] and [37] for an overview). Our approach con-
sists in examining a wide selection of potentially useful features
to select the most relevant ones thanks to a feature selection
algorithm (FSA). We focus on low-level features that can be
extracted robustly from polyphonic musical phrases. Moreover,
we use the so-called “instantaneous descriptors,” i.e., computed
locally in sliding overlapping analysis windows (frames) with
an overlap of 50%. Three different window sizes are used, stan-
dard 32-ms windows for the extraction of most features (used
by default) and longer 64-ms and 960-ms windows for specific
features when needed. Feature values measured over each long
window are then assigned to each 32-ms frame corresponding to
the same time segment. To avoid multipitch estimation and at-
tack transient detection, features specifically describing the har-
monic structure and attack characteristics of musical notes are
not considered. The following temporal, cepstral, spectral, and
perceptual features are extracted.

1) Temporal Features: They consist of the following.

• Autocorrelation Coefficients (AC) (reported to be useful
by Brown [35]) which represent the “signal spectral dis-
tribution in the time domain.”

• Zero Crossing Rates, computed over short windows (ZCR)
and long windows (lZCR); they can discriminate periodic
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Fig. 1. Block diagram of the hierarchical recognition system. Testing stage blocks are gray-filled.

signals (small ZCR values) from noisy signals (high ZCR
values).

• Local temporal waveform moments, including the first
four statistical moments, respectively denoted by Tc, Tw,
Ta, and Tk when measured over short 32-ms windows
(this will be referred to as short-term moments) and
lTc, lTw, lTa, and lTk when measured over long 960-ms
windows (long-term moments). The first and second
time derivatives of these features are also taken to follow
their variation over successive windows. Also, the same
moments are computed from the waveform amplitude
envelope over 960-ms windows (eTc, eTw, eTa, and eTk).
To obtain the amplitude envelope, we first compute the
modulus of the complex envelope of the signal, then
filter it with a 10-ms length lowpass filter (which is the
decreasing branch of a Hanning window).

• Amplitude Modulation features (AM), meant to describe
the “tremolo” when measured in the frequency range 4–8
Hz, and the “graininess” or “roughness” of the played
notes if the focus is put in the range of 10–40 Hz [13]. A
set of six coefficients is extracted as described in Eronen’s
work [13], namely, AM frequency, AM strength, and AM
heuristic strength (for the two frequency ranges). Two co-
efficients are appended to the previous to cope with the fact
that an AM frequency is measured systematically (even
when there is no actual modulation in the signal). They are
the product of tremolo frequency and tremolo strength, as
well as the product of graininess frequency and graininess
strength.

2) Cepstral Features: Mel-frequency cepstral coefficients
(MFCC) are considered as well as their first and second time
derivatives [38]. MFCCs tend to represent the spectral envelope
over the first few coefficients.

3) Spectral Features: These consist of the following.

• The first two coefficients (except the constant 1) from an
auto-regressive (AR) analysis of the signal, as an alter-

native description of the spectral envelope (which can be
roughly approximated as the frequency response of this
AR filter).

• A subset of features obtained from the first four statistical
moments, namely the spectral centroid (Sc), the spectral
width (Sw), the spectral asymmetry (Sa) defined from
the spectral skewness, and the spectral kurtosis (Sk)
describing the “peakedness/flatness” of the spectrum.
These features have proven to be successful for drum
loop transcription [39] and for musical instrument recog-
nition [24]. Their first and second time derivatives are
also computed in order to provide an insight into spectral
shape variation over time.

• A precise description of the spectrum flatness, namely
MPEG-7 Audio Spectrum Flatness (ASF) (successfully
used for instrument recognition [24]) and Spectral Crest
Factors (SCF) which are processed over a number of fre-
quency bands [7].

• Spectral slope (Ss), obtained as the slope of a line seg-
ment fit to the magnitude spectrum [37], spectral decrease
(Sd) describing the “decreasing of the spectral amplitude”
[37], spectral variation (Sv) representing the variation of
the spectrum over time [37], frequency cutoff (Fc) (fre-
quency rolloff in some studies [37]) computed as the fre-
quency below which 99% of the total spectrum energy is
accounted, and an alternative description of the spectrum
flatness (So) computed over the whole frequency band
[37].

• Frequency derivative of the constant-Q coefficients (Si),
describing spectral “irregularity” or “smoothness” and re-
ported to be successful by Brown [19].

• Octave Band Signal Intensities, to capture in a rough
manner the power distribution of the different harmonics
of a musical sound without recurring to pitch-detection
techniques. Using a filterbank of overlapping octave band
filters, the log energy of each subband (OBSI) and also
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the logarithm of the energy ratio of each subband to the
previous (OBSIR) are measured [25].

4) Perceptual Features: Relative specific loudness (Ld) rep-
resenting “a sort of equalization curve of the sound,” sharpness
(Sh) as a perceptual alternative to the spectral centroid based on
specific loudness measures, and spread (Sp), being the distance
between the largest specific loudness and the total loudness [37]
and their variation over time, are extracted.

Additionally, a subset of features new to audio classification
is examined, namely, signal to mask ratios (SMRs) [40]. The
idea behind this is to check whether the masking behavior of
different sound sources can be used to classify them. We merely
use an MPEG-AAC implementation for the computation of the
SMR [41]. The computation procedure is briefly described here-
after.

An estimation of the signal power spectral density is obtained
and mapped from the linear frequency domain to a partition do-
main, where a partition provides a resolution of almost 1/3 of
a critical band. The spectral data is then convolved by a fre-
quency-dependent spreading function yielding a partitioned en-
ergy spectrum. A measure of the tonality of the spectral com-
ponents is then obtained and used to determine an attenuation
factor. This attenuation is applied to the partitioned energy spec-
trum to find the masking threshold at a specific partition. Fi-
nally, the signal to mask ratios are computed for a number of fre-
quency bands (covering the whole frequency range) as the ratio
of the spectral energy to the linear-frequency masking threshold
at each subband.

B. Feature Selection and Transformation

When examining a large set of redundant features for a classi-
fication task, feature selection or transformation techniques are
essential both to reduce the complexity of the problem (by re-
ducing its dimensionality) and to retain only the information that
is relevant in discriminating the possible classes, hence, yielding
a better classification performance. To reach this goal, two alter-
natives exist: either use an orthogonal transform such as PCA or
an FSA. In both cases, a set of features (possibly transformed)
are kept from an original set of candidates ( in gen-
eral).

In PCA, the most relevant information is concentrated in the
first few components of the transformed feature vectors which
correspond to directions of maximum energy [42]. The trans-
formation is performed as follows. The covariance matrix of all
training feature vectors is computed and its singular value de-
composition (SVD) processed yielding

where is the covariance matrix, and are, respectively,
the left and the right singular vector matrices, and is the sin-
gular value matrix.3 The PCA transform matrix is then taken to
be and transformed feature vectors are obtained by
truncating the vectors to dimension , where are
the original training feature vectors.

A major inconvenience of this approach is that all features
must be extracted at the testing stage before the same transform

3We assume that the singular values are sorted in descending order in D so
that the top values correspond to the greatest values.

matrix (computed during training) is applied to them.
The fact is using PCA can be very useful in various analysis
to be performed at the training stage where all features are
extracted, yet for testing, computing such a large number of
features cannot be tolerated due to the extraction complexity.
This is why feature selection techniques are often preferred to
transform techniques, since only the subset of selected features
(which is much smaller than the original set of candidate
features) needs then to be extracted for testing.

An efficient FSA is expected to yield the subset of the most
relevant and nonredundant features. Feature selection has
been extensively addressed in the statistical machine learning
community [43]–[45]. Several strategies have been proposed
to tackle the problem that can be classified into two major
categories: the “filter” algorithms which use the initial set
of features intrinsically, and the “wrapper” algorithms which
relate the FSA to the performance of the classifiers to be used.
The latter are more efficient than the former, but more complex.
We choose to exploit a simple and intuitive “filter” approach
called inertia ratio maximization using feature space projection
(IRMFSP) which has proven to be efficient for musical instru-
ment recognition [15], [25]. The algorithm can be summarized
as follows.

Let be the number of classes considered, the number
of feature vectors accounting for the training data from class
and . Let be the th feature vector (of
dimension ) from class , and be, respectively,
the mean of the vectors of class and the
mean of all training vectors . The
algorithm proceeds iteratively, selecting at each step , a subset

of features, which is built by appending an additional fea-
ture to the previously selected subset . At each iteration

• the ratio

is maximized yielding a new feature subset ,
• the feature space spanned by all observations is made or-

thogonal to .
The algorithm stops when equals the required number of fea-
tures ( features).

In our particular approach, we proceed to class pairwise fea-
ture selection. A different subset of relevant features is found
for each pair of classes in the perspective of “a one versus one”
classification scheme. Therefore, the output of our FSA is
selected subsets for the classes considered
at the node Nn, where is the subset of features which is op-
timal in discriminating the pair . This has proven to be
more efficient than classic -class feature selection [25], [46].
In this paper, we use the PCA in the process of building the tax-
onomy and prefer pairwise IRMFSP for the classification task.

IV. THEORETICAL BACKGROUND ON MACHINE LEARNING

A. Hierarchical Clustering

Our goal is to obtain a taxonomy of musical ensembles and
instruments. In other words, one wishes to group together a
number of classes into a number of clusters ,
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Fig. 2. Example of a dendrogram.

, within levels of a hierarchical taxonomy to be de-
termined.

To this end, we exploit the family of hierarchical clustering
algorithms producing “a hierarchy of nested clusterings” [47].
The agglomerative version of such algorithms starts with as
many clusters as original classes ( at iteration 1), mea-
suring the proximities between all pairs of clusters
and grouping together the closest pairs into new clusters to pro-
duce new ones at iteration , until all classes lie in a single
cluster (at iteration ).

A convenient way to understand the result of such a proce-
dure is to represent it as a graph (called dendrogram) which de-
picts the relations and proximities between the nested clusters
obtained. An example is given in Fig. 2. Clusters linked together
into new ones at higher levels are linked with U-shaped lines.
Original cluster indices are given along the vertical axis, while
the values along the horizontal axis represent the distances be-
tween clusters. The distance between two clusters and is
measured as the average distance between all pairs of classes in

and . For example, the given dendrogram tells us that the
original classes and are linked together into a new cluster
which is linked to the class .

The relevance of the cluster tree obtained can be measured
by the cophenetic correlation coefficient. This coefficient cor-
relates the distances between any two initial clusters (i.e.,
original classes) and to the cophenetic distances , i.e.,
the distances between the two clusters and containing
these two classes and linked together at some level of the hier-
archy. For example, the cophenetic distance between and
is the distance between clusters and , where is the
cluster containing and . The cophenetic correlation coef-
ficient is defined as

(1)

where and are, respectively, the means of and ,
. The closer the cophenetic coefficient is to 1,

the more relevantly the cluster tree reflects the structure of the
data.

Clustering is then obtained by cutting the dendrogram at a
certain level or certain value of the horizontal axis. For example,
the vertical dotted line shown in Fig. 2 produces five clusters.
Thus, one can obtain the number of desired clusters merely by
adjusting the position of this vertical line.

The choice of the “closeness” criterion, i.e., the distance ,
to be used for clustering is critical. One needs a robust distance
which is expected to reduce the effect of noisy features. Also,
such a distance needs to be related to the classification perfor-
mance. A convenient and robust means to measure the “close-
ness” or separability of data classes is to use probabilistic dis-
tance measures, i.e., distances between the probability distribu-
tions of the classes [47], [48]. This is an interesting alternative to
classic Euclidean distance between feature vectors known to be
suboptimal for sound source classification. Many such distances
have been defined in various research areas [49]. We choose to
consider the Bhattacharryya and divergence distances for our
study to obtain two different interpretations. This choice is also
guided by the resulting simplification in the computations.

The divergence distance between two probability densi-
ties and is defined as

(2)

The Bhattacharryya distance is defined as

(3)

If the class data can be considered as Gaussian, the above
distances admit analytical expressions and can be computed ac-
cording to

(4)

and

(5)

where and are the mean vectors and the
covariance matrices of the multivariate Gaussian densities de-
scribing, respectively, class 1 and class 2 in . Nevertheless,
it would be highly suboptimal, in our case, to assume that the
original class observations follow Gaussian distributions since
we deal with data with a nonlinear structure. Moreover, if the
class probability densities are not Gaussian, computing such
distances is unfortunately a difficult problem since it requires
heavy numerical integrations.
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In order to alleviate this problem, we follow Zhou’s and
Chellapa’s approach [49] which exploits kernel methods [50].
Their idea is to map the data from the original space to a
transformed nonlinear space called reproducing kernel Hilbert
space (RKHS), where the probability distributions of the data
can be assumed to be Gaussian. A robust estimation of the
probabilistic distances needed can then be derived using ex-
pressions (4) and (5) provided that a proper estimation of the
means and covariance matrices in the RKHS can be obtained.

The strength of such an approach is that there is no need for
knowing explicitly either the structure of the original probability
densities or the nonlinear mapping to be used. In fact, it is shown
that all computations can be made using the so-called kernel
trick. This means that the function which maps the original

-dimensional feature space to a -dimensional transformed
feature space does not need to be known as long as one knows
the kernel function which returns the dot product of the trans-
formed feature vectors, according to

In order to obtain expressions of the required distances (4)
and (5) in RKHS, Zhou and Chellappa exploit the maximum
likelihood estimates of the means and covariances in based
on given observed feature vectors

(6)

(7)

The main difficulty arise from the fact that the covariance
matrix needs to be inverted while it is rank-deficient since

. Thus, the authors have obtained a proper invertible ap-
proximation of and expressions of the distances which can be
computed using only the knowledge of the kernel . The com-
putation procedure of these distances is given in the Appendix.

B. Support Vector Machines

Support vector machines (SVMs) are powerful classifiers
arising from structural risk minimization theory [51] that have
proven to be efficient for various classification tasks, including
speaker identification, text categorization, face recognition,
and, recently, musical instrument recognition [23], [24], [52].
These classifiers present the advantage of being discriminative
by contrast to generative approaches (such as Gaussian mixture
models) assuming a particular form for the data probability
density (often not consistent) and have very interesting gener-
alization properties [53].

SVMs are by essence binary classifiers which aim at finding
the hyperplane that separates the features related to each class

with the maximum margin. Formally, the algorithm searches
for the hyperplane that separates the training
samples which are assigned labels

so that

(8)

under the constraint that the distance between the hyper-
plane and the closest sample is maximal. Vectors for which the
equality in (8) holds are called support vectors.

In order to enable nonlinear decision surfaces, SVMs map
the -dimensional input feature space into a higher dimension
space where the two classes become linearly separable, using a
kernel function. A test vector is then classified with respect to
the sign of the function

where are the support vectors, are Lagrange multipliers,
and is the number of support vectors. Interested readers are
referred to Schölkopf’s and Smola’s book [50] or Burges’ tuto-
rial [53] for further details.

SVMs can be used to perform -class classification using
either the “one versus one” or “one versus all” strategies. In this
paper, a “one versus one” strategy (or class pairwise strategy)
is adopted. This means that as many binary classifiers as pos-
sible class pairs are trained (i.e., clas-
sifiers). A given test segment is then classified by every binary
classifier, and the decision is generally taken by means of a “ma-
jority-vote” procedure applied over all possible pairs. Such a
decision strategy presents the drawback that any postprocessing
is limited, as no class membership probabilities are obtained,
in addition to the fact that when some classes receive the same
greatest number of votes, the winning class is indeterminate. In
order to remedy these shortcomings, we adopt Platt’s approach
[54] which derives posterior class probabilities after the SVM.
The first step consists in fitting sigmoid models to the posteriors

according to

(9)

where and are parameters to be determined. Platt discusses
the appropriateness of this model and proposes a model-trust
minimization algorithm to determine optimal values of the two
parameters.

Once this is done for every pair of classes, one is con-
fronted with the problem of coupling the pairwise decisions
so as to get class membership probabilities. This issue was
addressed by Hastie and Tibshirani [55] who formalized a
method to perform optimal coupling. Assuming the model

, with , for the proba-
bility estimated for each pair

at a given observation , an estimate of
the probability vector
is deduced by means of a gradient approach using the average
Kullback–Leibler distance between and as a closeness
criterion. Classification can then be made using the usual
maximum a posteriori probability (MAP) decision rule [48].

V. EXPERIMENTAL VALIDATION OF THE

PROPOSED ARCHITECTURE

We choose to test our system with jazz music ensembles from
duets to quartets. This choice is motivated by the diversity found
in this music genre which is thought to be representative of a
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TABLE I
SOUND DATABASE USED. “TRAIN SOURCES” AND “TEST SOURCES” ARE,

RESPECTIVELY, THE NUMBER OF DIFFERENT SOURCES (DIFFERENT MUSIC

ALBUMS) USED (0.5 MEANS THAT THE SAME SOURCE WAS USED IN THE

TRAIN AND TEST SETS), “TRAIN” AND “TEST” ARE, RESPECTIVELY, THE

TOTAL LENGTHS (IN SECONDS) OF THE TRAIN AND TEST SETS. SEE

TABLE II FOR THE INSTRUMENT CODES

large variety of musical compositions. It is believed that the
same approach could be easily followed for any other genre
(provided that the timbre of the instruments has not been seri-
ously modified by audio engineering effects/equalization). Par-
ticularly, we consider ensembles involving any of the following
instruments: double bass, drums, piano, percussion, trumpet,
tenor sax, electroacoustic guitar, and Spanish guitar. Also, fe-
male and male singing voices are considered as possible “in-
struments.”

A. Sound Database

A major difficulty in assembling a sound database for the en-
visaged architecture is having to manually annotate the musical
segments, each with a different combination of instruments. In
fact, in a double bass, piano, and drums trio, for example, some
segments may involve only piano, only drums, or only double
bass and drums. A critical aspect of such annotations is related
to the precision with which the human annotators perform the
segmentation. Clearly, it is not possible to segment the music at
the frame rate (the signal analysis is 32-ms frame based); hence,
it is necessary to decide which minimal time horizon should be
considered for the segmentation. In order to make a compromise
between time precision and annotation tractability, a minimum
length of 2 s is imposed to the segments to be annotated, in the
sense that a new segment is created if it involves a change in the
orchestration that lasts at least 2 s.

Table I sums up the instrument combinations for which suffi-
cient data could be collected (these are the classes to be recog-
nized, see Table II for the instrument codes). A part of the sounds
was excerpted from both live and studio commercial recordings
(mono-encoded either in PCM or 64 kb/s mp3 formats). Another
part was obtained from the RWC jazz music database [56].

There is always a complete separation of training and test data
sets (different excerpts are used in each set) and also a complete

TABLE II
INSTRUMENT CODES

separation, in most cases, between the sources4 providing the
training data and those providing the test data. Almost 2/3 of
the sounds were included in the training set and the remaining
1/3 in the test set whenever this was consistent with the con-
straint that train and test sources be distinct (when more than
one source was available). When only two sources were avail-
able, the longest source was used for training and the shortest
for testing. Thus, important variability is introduced in the data
to test for the generalization ability of the system.

Note that, given the annotation procedure, one should expect
a great number of outliers among different sets. Typically, many
segments annotated as double bass, drums, piano, and tenor sax
(BsDrPnTs), surely contain many frames of the class double
bass, drums, and piano (BsDrPn).

B. Signal Processing

The input signal is down-sampled to a 32-kHz sampling rate.
The mean of each signal is estimated (over the total signal dura-
tion) and subtracted from it. Its amplitude is normalized with re-
spect to its maximum value. All spectra are computed with a fast
Fourier transform after Hamming windowing. Silence frames
are detected automatically thanks to a heuristic approach based
on power thresholding then discarded from both train and test
data sets.

C. Computer-Generated Taxonomy

Since building the taxonomy is an operation that is done
“once and for all” at the training stage, one can use all the
candidate features and exploit PCA to reduce the dimension of
the feature space (see Section III-B). A dimension of 30 was
considered as sufficient (94% of the total variance was thus
retained).

Computing the probabilistic distances in RKHS (to be
used for clustering) requires an Eigen value decomposition
(EVD) of Gram matrices, where is the number
of training feature vectors of class (see Appendix). Such
an operation is computationally expensive since

is quite large. Hence, the training sets are divided into
smaller sets of 1500 observations and the desired distances
are obtained by averaging the distances estimated using all
these sets. To measure these distances, one needs to choose a

4A source is a music recording such that different sources constitute different
music albums featuring different artists.
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Fig. 3. Taxonomy obtained with hierarchical clustering using probabilistic distances in RKHS.

kernel function. We use the radial basis function (RBF) kernel
, with .

As mentioned in Section IV-A, the relevancy of the hierar-
chical clustering output can be evaluated using the cophenetic
correlation coefficient which is expected to be close to 1. In our
experiments, it was found that greater cophenetic correlation
coefficients could be obtained, i.e., more relevant clustering,
if the “solo” classes (piano, drums, and double bass) were not
considered in the process of hierarchical clustering of ensem-
bles. Hence, clustering was performed on all classes except solo
piano, solo drums, and solo double bass, using both the Bhat-
tacharryya and the divergence distances in RKHS. The value of
the cophenetic correlation coefficient obtained with the Bhat-
tacharryya distance is 0.85 against 0.97 with the divergence.
Therefore, it can be deduced that efficient hierarchical clustering
of the ensembles was achieved using the divergence distance.

We then varied the number of clusters from 4 to 16 with a step
of 2 by applying different cuts to the dendrogram. The levels of
the hierarchical taxonomy are to be deduced from these alterna-
tive clusterings in such a way that the high levels are deduced
from “coarse” clustering (low number of clusters) while the low
levels are deduced from “finer” clustering (higher number of
clusters). The choice of relevant levels is guided by “readability”
considerations so that clusters are associated with labels that can
be easily formulated by humans. Also, the maximum number
of levels in the hierarchy is constrained to three to reduce the
system complexity.

Taking these considerations into account, the levels deduced
from clustering with 6, 12, and 16 clusters were retained re-
sulting in the taxonomy depicted in Fig. 3 where solos were
merely put into three supplementary clusters at the highest level.
Preliminary testing showed that better classification of BsDr
was achieved if it was associated with the first cluster (BsDrPn-
BsDrPnM-BsDrW). This was considered as acceptable since the
label of the new cluster (BsDr-BsDrPn-BsDrPnM-BsDrW) be-
came more convenient as it could be easily described as “music
involving at least double bass and drums.” In fact, all the clus-
ters obtained carry convenient labels that can be formulated in-
tuitively.

D. Features Selected

As mentioned earlier, feature selection is preferred to PCA
for classification to reduce the computational load at the test
stage. Consequently, only the most relevant features (selected by

the FSA) are extracted during testing phase, hence, useless ones
(not selected by the FSA) among all the candidates considered
at the training phase are not computed.

Pairwise IRMFSP feature selection is performed at each
node of the taxonomy yielding subsets of selected features
specifically adapted to the context (see Section III-A).
Note that, at each node, a different subset of features
is selected for each pair of classes. For example, at the
node (BsPn-BsPnM), three optimal sets are fetched for the
three biclass problems (BsPn)/(BsEgPn), (BsPn)/(BsPnVm),
and (BsEgPn)/(BsPnVm). Similarly, ten optimal subsets
are selected at the node (BsDr-BsDrPnV-BsDrPn-Bs-
DrPnW-BsDrW) (targeting the ten binary combinations of
these classes) and 28 subsets at the highest level. The total
number of subsets optimized over all the nodes of the taxonomy
is, thus, 47.

Table III lists all the features extracted (described in Sec-
tion III-A). They are organized in “feature packets.” The number
of feature coefficients for each feature packet is given in column
two. It is worth mentioning that no distinction between “feature”
and “feature coefficient” is made. For example, the third MFCC
coefficient MC3 is a feature and so is Fc. The total number of
candidate features is then 355. Fifty of them are selected using
the IRMFSP algorithm for each pair of classes. The more fre-
quently some features are selected the more useful they are.
Column three of Table III indicates, among each packet, the fea-
tures that were the most frequently selected over the 47 pairwise
optimized subsets.

The most successful features are SMR coefficients (24 of
them were selected on average over the 47 subsets). These fea-
tures which have not been used in previous work on audio clas-
sification turn out to be useful. Though interpreting this result
is not very intuitive, it can be deduced that the masking effects
of different sound sources seem to be specific enough to enable
their discrimination. The other efficient perceptual features are
the relative specific loudness, particularly in the high frequency
Bark bands and the sharpness.

As far as spectral features are concerned, those deduced from
the spectral moments (spectral centroid (Sc), width (Sw), asym-
metry (Sa), and kurtosis (Sk)) as well as spectral decrease (Sd)
and full-band spectral flatness (So) are found to be more useful
than the others.

Both long-term and short-term temporal moments are found
to be efficient. Moreover, the variation of the temporal kurtosis



76 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2006

TABLE III
FEATURE PACKETS AND FEATURES MOST FREQUENTLY SELECTED AMONG EACH PACKET. THE FRACTIONS IN PARENTHESES INDICATE THE

NUMBER OF CLASS PAIRS (AMONG ALL POSSIBLE) FOR WHICH THE GIVEN FEATURES WERE SELECTED

TABLE IV
CONFUSION MATRIX AT THE FIRST LEVEL (TOP LEVEL)

over successive frames is frequently selected to describe the
variation of the transients of the audio signal, which is not sur-
prising when dealing with sounds involving percussive instru-
ments.

Finally, only a few cepstral coefficients (or none for some
pairs) were selected in the presence of the other features, which
confirms that it is possible to circumvent this popular set for
sound recognition tasks. The remaining features were selected
marginally for specific class pairs where they could improve the
separability.

The subsets of selected features for each pair of classes were
posted on the web5 for interested readers to look into it in depth.

E. Classification

Classification is performed using a “one versus one” SVM
scheme with the RBF kernel and based on the pairwise selected
features (described in V-D). Recognition success is evaluated
over a number of decision windows. Each decision window
combines elementary decisions taken over consecutive short

5[Online]. Available: http://www.tsi.enst.fr/%7Eessid/pub/ieee-sa-fsa.html

analysis windows. The recognition success rate is then, for
each class, the percentage of successful decisions over the total
number of available decision windows. In our experiment, we
use corresponding to 2-s decisions.

Since short-time decisions can be taken ( 2 s), the proposed
system can be easily employed for the segmentation of musical
ensembles (duos, trios, and quartets). By combining the deci-
sions given over 2-s windows, it is easy to define the segments
where each instrument or group of instruments is played.

We present the confusion matrices obtained with our system
in Tables IV–VI, respectively, for the first (highest), second,
and third (bottom) levels of the hierarchical taxonomy described
earlier. The rates presented in parentheses are the ones corre-
sponding to the absolute accuracy (from top to bottom) found
by multiplying the recognition accuracy at the current node by
the recognition accuracies of the parent nodes which are crossed
following the path from the root of the tree to the current node.
This path is found by crossing at each level the most probable
node.

Some results should be considered as preliminary since we,
unfortunately, lacked enough test material for some classes.
Consequently, the results for classes for which test data size
was less than 200 s are given in italic characters to warn about
their statistical validity.6

Starting with the first level, the results obtained can be con-
sidered as very encouraging given the short decision lengths and
the high variability in the recordings. The average accuracy is
65%. For the class C1 (BsDr-BsDrPn-BsDrPnM-BsDrW), 91%
accuracy is achieved, while the class C7 (drums) is successfully
identified only 34% of the time. The drums were classified as
C1 61% of the time. Alternative features should be introduced
to improve the discrimination of these two classes. For example,
features describing the absence of harmonicity could be efficient
in this case since percussive sounds like drums do not present a

6Work has been undertaken to assemble more data for further statistical vali-
dation.
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TABLE V
CONFUSION MATRIX AT THE SECOND LEVEL, USING TWO DIFFERENT DECISION STRATEGIES AT THE NODES N1 AND N2.

TOP-TO-BOTTOM ABSOLUTE ACCURACY IN PARENTHESES

TABLE VI
CONFUSION MATRIX AT THE THIRD LEVEL (BOTTOM LEVEL). TOP-TO-BOTTOM ABSOLUTE ACCURACY IN PARENTHESES

strong harmonicity. In general, most classes were mainly con-
fused with C1 except the class C6 (piano). This is an interesting
result: it is easy to discriminate the piano played solo and the
piano played with accompaniment (83% for the piano versus
91% for C1). The piano was more often confused with the class
C5 (PnTr-PnV)- 15% of the time- than with C1.

At the second level, poor results are found at the node N1
when using the traditional MAP decision rule (column labeled
MAP). In fact, BsDrPnW is successfully classified only 8% of
the time, and BsDrPnV 35% of the time, as they are very fre-
quently confused with BsDrPn, respectively, 92% of the time
and 50% of the time. Similarly, BsDrW is confused with BsDr
51% of the time. This is not surprising given the sound data-
base annotation constraints mentioned in Section V-A. In fact,
many BsDrPn frames necessarily slipped into BsDrPnV and Bs-
DrPnW training and test data. Also, many BsDrW segments
contain BsDr. Fortunately, by exploiting a heuristic to modify
the decision rule, one can easily remedy these deficiencies. The
fact is that for the pairs BsDr versus BsDrW, BsDrPn versus
BsDrPnW, and BsDrPn versus BsDrPnV, the optimal decision

surfaces are biased due to the presence of outliers both in the
training and test sets. As an alternative to outlier removal tech-
niques [57], which can be inefficient in our context due to the
presence of a very high number of outliers, we use a biased deci-
sion threshold in this case. Every time a test segment is classified
as BsDr using the MAP criterion, if the second most probable
class is BsDrW, we review the decision by considering only the
output of the BsDr/BsDrW classifier. Then following two ac-
tions are taken.

• First, we classify single frames as BsDr only if
Prob BsDr BsDr or BsDrW , instead of using
usual Bayes’ threshold of 0.5.

• Second, we count the number of frames classified as BsDr
within the decision window (120 consecutive frames) and
decide for this class only if 2/3 of the frames involved in
the decision window carry this label, otherwise the current
2-s segment is classified as BsDrW.

The same is done for the pairs involving BsDrPn, as well as for
BsPn versus BsEgPn at the node N2. As a result, on average,
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more successful classification is achieved in these contexts as
can be seen in columns labeled “Heurist” of Table V.

Finally, successful recognition of four instruments playing
concurrently can be achieved as can be seen in Table VI.
Since the excerpts used in our experiments translate signif-
icantly different recording conditions (both live and studio
music was included) and since some of these excerpts were
mp3-compressed (which can be considered as imperfect signals
corrupted by quantization noise and with bandwidth limitation),
we feel confident about the applicability of our approach to
other musical genres. The system seems to be able to cope
with varying balance in the mix as it is able, for example, to
successfully recognize the BsDrPn mixture both over piano
solo passages (piano louder than double bass and drums) and
over double bass solo passages (double bass louder than piano
and drums).

A baseline “flat” (i.e., one level, nonhierarchical) system has
been built to assess the consistency of the proposed classifica-
tion scheme. Let us, however, emphasize that such a baseline
system is not generalizable to more realistic situations where
many more instruments; hence, a very high number of instru-
ment-combinations are found (see Section II). It is also impor-
tant to note that our goal is not to prove that hierarchical clas-
sification performs better than flat classification,7 but rather to
propose a whole framework enabling to tackle the classification
of a potentially very high number of arbitrary instrument mix-
tures.

20-class IRMFSP feature selection was used for the baseline
system yielding 50 selected features. For classification, classic
Gaussian mixture models (GMM) [48] were exploited with 16
component densities per class. The classification results found
with this system are presented in column two of Table VII
against the performance of our proposal (column three). The
latter achieves better individual classification performance in
most cases and the average accuracy is also higher ( 6%). Note
that better hierarchical classification results could be obtained
at the intermediate and leaf nodes using a more elaborate
hierarchical classification strategy than choosing at each level
the most probable node. This causes the recognition accuracy
to be the product of the recognition accuracy at each node from
the top level to the lowest level, and, hence, can be suboptimal
since it is then impossible to recover from errors made at the
roots. Alternative techniques such as beam search can highly
improve the final classification performance [60].

VI. CONCLUSION

We presented a new approach to instrument recognition in
the context of polyphonic music where several instruments play
concurrently. We showed that recognizing classes consisting of
combinations of instruments played simultaneously can be suc-
cessful using a hierarchical classification scheme and exploiting
realistic musical hypotheses related to genre and orchestration.

The hierarchical taxonomy used can be considered efficient
since

7This issue has been addressed in previous works on music classification, and
the fact that hierarchical systems are more efficient than flat systems tends to be
acknowledged [15], [58], [59].

TABLE VII
PERFORMANCE OF PROPOSED SYSTEM VERSUS THE REFERENCE SYSTEM

• it was found automatically thanks to a clustering approach
based on robust probabilistic distances;

• it can be interpreted easily by humans in the sense that all
nodes carry musically meaningful labels enabling useful
intermediate classification.

A major strength of the chosen approach is that it frees one
from the burden of performing multipitch estimation or source
separation. On the contrary, our system may help addressing
these issues as efficient segmentation of the music can be
achieved with respect to the instruments played. It may also
be used to identify the number of playing sources. This may
provide source separation systems with an insight into which
pitches to look for.

Additionally, we studied the usefulness of a wide selection of
features for such a classification task, including new proposals.
An interesting result is that perceptual features, especially signal
to mask ratios are efficient candidates.

More successful recognition could be achieved using longer
decision windows. It is believed that our proposal is amenable
to many useful applications accepting realistic MIR user queries
since it can potentially process any musical content regardless of
the orchestration (possibly involving drums and singing voice).
In particular, our approach could be very efficient in recognizing
more coarsely the orchestrations of musical pieces without nec-
essarily being accurate about the variation of the instruments
played within the same piece. In fact, decision rules could be
adapted very easily to give the right orchestration label for the
whole piece as will be discussed in future work.

APPENDIX

Computation of Probabilistic Distances in RKHS

Let be the number of observations for class , let
, with , let be a -length column

vector such that , with a vector of ones, let
( is called a Gram matrix and can be computed using

the kernel trick), let , and
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. The top eigenpairs of the matrix are denoted
by , and is the
diagonal matrix whose diagonal elements are
( and are to be chosen and are such that ,

was found to be a good choice on our data).
Let (can be computed using the kernel trick),

and

(10)

then the approximation of the divergence distance in RKHS is
expressed as

(11)

where

(12)

(13)

and

(14)

Let ,

(15)

(16)

and . The Bhattacharrya distance approximation
in RKHS is given by

(17)

where

(18)
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