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Abstract—The purpose of this article is to present new advances
in music transcription and source separation with a focus on
drum signals. A complete drum transcription system is described,
which combines information from the original music signal and a
drum track enhanced version obtained by source separation. In
addition to efficient fusion strategies to take into account these two
complementary sources of information, the transcription system
integrates a large set of features, optimally selected by feature se-
lection. Concurrently, the problem of drum track extraction from
polyphonic music is tackled both by proposing a novel approach
based on harmonic/noise decomposition and time/frequency
masking and by improving an existing Wiener filtering-based
separation method. The separation and transcription techniques
presented are thoroughly evaluated on a large public database of
music signals. A transcription accuracy between 64.5% and 80.3%
is obtained, depending on the drum instrument, for well-balanced
mixes, and the efficiency of our drum separation algorithms is
illustrated in a comprehensive benchmark.

Index Terms—Drum signals, feature selection, harmonic/noise
decomposition, music transcription, source separation, support
vector machine (SVM), Wiener filtering.

. INTRODUCTION

HE development of the field of music information re-

trieval (MIR) has created a need for indexing systems that
automatically extract semantic descriptions from music signals.
This description would typically include melodic, tonal, timbral,
and rhythmic information. So far, the scientific community has
mostly focused on the extraction of melodic and tonal informa-
tion (multipitch estimation, melody transcription, chords, and
tonality recognition) but also to a lesser extent on the estima-
tion of the main rhythmic structure. However, little effort has
been made to obtain detailed information about the rhythmic
accompaniment played by the drum Kit in polyphonic music,
despite the wide range of interesting applications that can be
derived from its description. For instance, this information can
ease genre identification, since many popular music genres are
characterized by their distinct stereotypical drum patterns [1].
The rhythmic content can also be the basis of user queries, as
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illustrated by query by tapping or beatboxing systems [2], [3].
Finally, the availability of this description suggests new and in-
teresting ways of playing and enjoying music—with applica-
tions such as drum track remixing or automatic DJing.

The problem of drum transcription has been initially ad-
dressed in the case of solo drums signals. Interested readers
can refer to [4] for an extensive introduction to this topic and
a review of existing systems. More recently, a variety of drum
transcription systems have been developed to cope with signals
in which the drums are played along with other instruments. All
these systems follow one of these three approaches: segment
and classify, match and adapt, or separate and detect. The first
of these approaches consists in segmenting the signal into indi-
vidual discrete events, and to classify each event using machine
learning techniques. While this procedure has proved particu-
larly successful on solo drum signals [5], [6], its application to
polyphonic music [7]-[9] is more challenging, as most of the
features used for classification are sensitive to the presence of
background music. Efforts have been made lately by Paulus
[10] to jointly perform the segmentation and the classification,
as a single decoding process of a hidden Markov model. A
second procedure consists in searching for occurrences of a
reference temporal [11] or time—frequency [12] template within
the music signal. A new template can be generated from the
detected occurrences, and the matching/adaptation can subse-
quently be iterated. The last family of approaches relies on the
intuition that the drum transcription process should simultane-
ously gain knowledge on the times at which drum instruments
are played, and on their timbre. A possible way of achieving
this is to decompose a time-frequency representation of the
signal (such as its short-term Fourier transform) into a sum of
independent components described by simple temporal and
spectral profiles. The decomposition is traditionally achieved
with independent subspace analysis (ISA) or nonnegative
matrix factorization (NMF). In order to obtain components
related to meaningful drum events, prior spectral profiles can
be learned on solo drum signals and used to initialize the
decomposition [13]. Alternatively, the decomposition can be
performed with a fixed number of components, and heuristics
[14] or classifiers [15] are used to identify, among the extracted
components, those associated with each drum instrument to be
transcribed. Such approaches highlight the links between music
transcription and source separation, which aims to recover
the signals of each individual musical source (instruments)
from music recordings. Drum transcription could benefit from
source separation techniques that would cancel the contribution
of nonpercussive instruments from the signal. Reversely, the
knowledge of the score could guide source separation.

The purpose of this article is to illustrate the relationships
between transcription and source separation, in the context of
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drum signals. Our main contributions include the development
of acomplete drum transcription system which additionally uses
a drum-enhanced version of the music signal to transcribe, the
introduction of new (or the adaptation of existing) source sepa-
ration techniques for the purpose of drum track extraction, and
finally a thorough evaluation of the transcription and separation
methods introduced by taking advantage of a large and fully an-
notated database of drum signals.

The outline of the paper is as follows. In Section |1, we in-
troduce two methods to enhance the drum track of a music
signal. These methods can be considered as a first step toward a
source separation algorithm. In Section |11, a drum transcription
system taking advantage of the drum-enhanced signal produced
by these methods is presented. Section IV further investigates
the problem of drum track separation. Section VV summarizes
some of our observations and suggests directions for future re-
search. We finally present some conclusions in Section V1.

Il. DRUM TRACK ENHANCEMENT

This section describes two complementary techniques to en-
hance the drum track of polyphonic music signals. Such a pro-
cessing can be included in music transcription systems (as done
in Section I1l), or be considered as an elementary source sepa-
ration algorithm. Both techniques use a similar decomposition
of the signal into eight channels by an octave-band filter bank.!

A. Cancellation of Harmonic Sources From Stereo Signals

Most of the transcription and drum track extraction algo-
rithms we reviewed only consider monophonic (single channel)
signals. However, the recordings of popular music produced in
the last few decades are mostly stereophonic signals. Tradition-
ally, the left and right channels of such recordings are simply av-
eraged before further processing. It would nevertheless be more
optimal to recover as much of the drum signal as possible from
the stereophonic mix.

Our approach, specific to drums, is based on the same
assumptions and motivations as ADRess [17]: First, most
popular music is produced using to the so-called Panoramic
mixing—the left and right channels being linear combinations
of monophonic sources. Second, we observed that some in-
struments in the mix are more predominant in some frequency
bands than others. That is to say, in a narrow frequency band,
the signal can be considered as a mixture of a predominant
instrument, panned at a given position, and remaining compo-
nents spread across the stereo field.

The stereo signal is consequently split into eight subbands, by
means of the filter bank previously described. An independent
component analysis (ICA) is applied to each pair of subband
stereo signals, resulting in the extraction of two pseudosources
and an unmixing matrix per subband. A support vector machine
(SVM) classifier is trained to discriminate, among the extracted
pseudosources, those containing drum sounds, and those con-
taining only harmonic instruments. For this purpose, the ampli-

1Uniform and logarithmic (octave-band) filter banks, followed by harmonic/
noise decomposition, have been compared in [16] for the purpose of note onset
detection. In our case, because discriminating snare drum and bass drum events
requires a higher frequency resolution in the lowest frequency band, the octave-
band filter bank is preferred.

tude envelope of each subband pseudosource is computed,2 and
the temporal features described in [15] are extracted. The sub-
band index is used as an additional feature, since some subbands
are more likely than others to contain percussive pseudosources.
The output signal is synthesized by applying a null gain to all
the subband pseudosources which are identified as containing
no drums.

The SVM is trained on a subset of files unrelated to the eval-
uation database, and gives an estimate of the posterior proba-
bility p(y|x), where y is the class (percussive/nonpercussive)
and x the extracted features. This classifier is likely to commit
two kinds of misclassification errors: nonpercussive instruments
can be classified as drum sources and kept in the mix, and drum
instruments can be classified as nonpercussive sources and sup-
pressed from the mix. The former type of error is more prefer-
able than the latter for the task at hand. Assuming the cost of
not including a percussive source in the mix is twice the cost
of including a nonpercussive source, the optimal decision func-
tion is p(y|x) > (1/3). The ability of this method to separate
the drums from stereo signals is tested in Section IV-C, and has
already shown interesting results. For instance, predominant in-
struments such as electric bass or organ could be removed effi-
ciently from some subbands of the signal. Nevertheless, due to
the bias introduced in the classification, this method left some
of our test signals unchanged.

B. Bandwise Harmonic/Noise Decomposition

The principle of this approach is to decompose each subband
signal into stochastic and harmonic components. Because
unpitched percussive sounds (in particular the hi-hat and
snare drum) have mostly nonharmonic components located
in well-defined subbands, and because the other melodic in-
struments have mostly harmonic components, the extracted
stochastic components essentially contain the contribution of
the drums.

1) Harmonic/Noise Decomposition: This step aims to de-
compose the (real valued) subband signals s into a harmonic
part 2, modeled as a sum of A/ exponentially damped sinusoids
[18], and a noise residual . While traditional Fourier analysis
could be used to detect sinusoidal components, its temporal and
frequency resolution cannot be adjusted independently. More
promising results are achieved by subspace-based methods,
the principle of which is briefly exposed here. Let us consider
the L x L Hankel data matrix formed from a signal window
[s(0),...,s(2L — 2)]

$(0) s(1) s(L—1)
_ s(1) $(2) s(L)
S(L:— 1) S’(L) 5(2L:— 2)

Its eigenvalue decomposition (EVD) yields H = UAU?.
Let us call U, the matrix formed by the 247 columns of U as-
sociated to the eigenvalues with the highest magnitudes. It can
be demonstrated [18] that the harmonic part of the signal, mod-
eled as a sum of M exponentially damped sinusoids, belongs
to the 2M -dimensional space of which U, is a basis. This har-

2This envelope is estimated as |x + jH ()| = h, where H is the Hilbert
transform and /. a 100-ms-long half Hann window.



GILLET AND RICHARD: TRANSCRIPTION AND SEPARATION OF DRUM SIGNALS FROM POLYPHONIC MUSIC 531

Music signal

[ Onset detection J ( Onset detection j
v v

Fusion of onset candidates

Music signal

( Onset detection j [ Onset detection ]

Fusion of onset candidates )

Feature extraction ) ( Feature extraction )4—

Feature extraction } ( Feature extraction )4-
[ Joint features vector J

Feature selection [P} Bass drum classifier Snare drum classifier

Bass drum classifier . Feature selection
Hi hat drum classifier[®] Feature selection

Feature selection

Bass drum classiﬁerw

Feature selection

Feature selection [P]Hi hat drum classifier|

Feature selection Snare drum classifier

Feature selection Hi hat drum classifier|

Feature selection Snare drum classifier

¢

Fusion of classifiers decisions

]

Fig. 1. Overview of the transcription system, illustrating the two fusion methods: early fusion (left), and late fusion (right).

monic part can thus be obtained by projection onto this subspace
according to h = U, U#s, wheres = [5(0), ..., s(L — 1)] and
h = [2(0),...,h(L — 1)]. The noise subspace is defined as the
L — 2M dimensional orthogonal complement to U. The sto-
chastic part is extracted similarly by projection onto the noise
subspace: r = (I — U,U¥)s. The EVD being computation-
ally expensive, the matrix U is updated for each new observa-
tion window using the sequential iteration algorithm [18].

This noise subspace projection is applied to each of the sub-
band signals produced by the filter bank previously described.
This considerably reduces the computational load of the de-
composition. The window size used for the &th subband signal
was max(2%+2,32). This ensured, for the lowest bands, that
L > 2M, while taking into account the fact that each sub-
band has been increasingly decimated. The number of sinusoids
to extract per band has been fixed to, respectively, 2, 4, 6, and
6 in the first four bands, 12 in the remaining bands—except
for the last band which is not processed and considered as en-
tirely stochastic.3 These results can be compared to the observa-
tions reported in [16]—our numbers are slightly lower so as to
avoid overestimation of the number of sinusoids especially in
the lower band where harmonic components of the bass drum
are often present.

2) Usefulness of the Decomposition: The full-band drum-en-
hanced signal is obtained by synthesis from the stochastic com-
ponents of each subband signals. Clearly, nonpercussive instru-
ments are strongly attenuated in this synthesized signal. In fact,
it will be shown in Section 111 that the combination of the stereo
harmonic source cancellation described in Section 1lI-A with
this noise subspace projection is an efficient preprocessing al-
gorithm for drum track transcription. Nevertheless, it should
be underlined that this simple resynthesis is not efficient for
high-quality drum track separation. First, nonpercussive instru-
ments may also have a stochastic component (e.g., breath for
wind instruments, hammer strike for piano) which needs to be
eliminated from the separated signal. Second, the bass drum

30rder estimation techniques (such as [19] for example) can be used to esti-
mate the number of sinusoids per band. However, in our context, it was found
that frequent changes of the model order with time was more detrimental to the
quality than a fixed well chosen order for each band.

and snare drum have harmonic components which should not
be eliminated. An improved synthesis for high-quality source
separation applications will thus be presented in Section 1V.

I11. DRUM TRANSCRIPTION FROM POLYPHONIC MusIC

A. Overview

The drum transcription system described in this article fol-
lows the segment and classify approach: salient events, which
may be drum events, are detected from the music signal. A set
of features is extracted in the neighborhood of each note onset.
The actual recognition of drum events is performed by multiple
binary classifiers, each of them trained to detect the presence of
a target instrument of the drum kit (bass drum, snare drum, etc.).
In this paper, we focus on bass drum (BD), snare drum (SD), and
hi-hat (HH) detection, since the most typical and recognizable
rhythmic patterns used in popular music are played on these in-
struments.

A specificity of our work is that the original music signal is
processed by the drum enhancement algorithm described above,
which aims to amplify or extract the drum track. Then, onset
detection and feature extraction are simultaneously performed
on the original and drum-enhanced signals. This choice is mo-
tivated by the following observation: On the one hand, some of
the features extracted from the original music signal are very
sensitive to the presence of the other instruments in the mix
(for example, the spectral centroid might be shifted toward the
higher frequencies when a high-pitched note is played along
with a bass-drum hit). On the other hand, the features extracted
from the drum-enhanced signal are noisier due to the artifacts
introduced by the drum enhancement process. Thus, our ap-
proach aims to combine both feature sets to gain robustness.
This combination can be achieved either by early fusion, where
features extracted from each signal are merged into a single fea-
ture vector which is then processed by a set of classifiers; or
late fusion, where a different set of classifiers and features is
used for both signals, and where the decisions of these classi-
fiers are aggregated to yield the final transcription. The overall
transcription process is described for both cases in Fig. 1, and
each component is presented in detail below.
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It is worth mentioning that the segment and classify approach
is suitable for near real-time applications as it is nearly causal (a
200-ms lookahead is required for feature extraction) and com-
putationally inexpensive since onset detection, feature extrac-
tion and classification can be performed in less than real-time
on common personal computers. The harmonic/noise decom-
position presented in Section I1-B introduces an additional algo-
rithmic delay of 277 ms. In contrast, the preprocessing of stereo
signals introduced in Section II-A is not causal, though compu-
tationally inexpensive.

B. Onset Detection

The detection of salient events is performed by means of the
note onset detection algorithm described in [20]. This algorithm
splits the signal into 512 frequency channels using a short-term
Fourier transform (STFT), yielding the spectrogram X (m, k).
In each frequency band k, the signal | X (., k)| is low-pass fil-
tered, and its dynamic range is compressed to produce a per-
ceptually plausible power envelope. Then, its derivative is com-
puted by applying an optimal finite-impule response (FIR) dif-
ferentiation filter, resulting in the spectral energy flux. A detec-
tion function d(m), which exhibits sharp peaks at the onset of
notes or drum hits, is obtained by summing the spectral energy
flux across all frequency bins. A median filter is applied to the
detection function to define a dynamic threshold function 7(m),
and a note onset is detected whenever d(m) > a7(m).

In our work, the detection functions are separately computed
for the original and for the drum-enhanced signal. The two de-
tection functions are then summed to obtain a common set of
onsets which will subsequently be used for feature extraction.4

The parameters of the onset detector are adjusted to favor a
high recall rate (at the cost of a lower precision rate). In fact,
detecting onsets associated to other instruments is not trouble-
some, since such events can be discarded later at the classifica-
tion stage.

C. Feature Extraction

There is no consensus on the most relevant feature set for
discriminating several classes of unpitched drum instruments.
A large variety of descriptors are used in the different studies,
sometimes associated with statistical feature selection (see, for
example, [6] and [21]). It is not clear if these choices are still
relevant for the classification of unpitched drum instruments in
the presence of background music. More recently, Tanghe et al.
have described a classification system in [7] which uses com-
putationally inexpensive temporal and spectral features, along
with Mel frequency cepstral coefficients (MFCCs). Though it
is not exactly a feature selection process, the parameters of the
MFCCs extractor have been optimized by means of simulated
annealing in [22]. Some of these features have a direct per-
ceptual or acoustical interpretation (for instance, MFCCs cap-
ture the shape of the spectral envelope) which justifies their use
for the task at hand. While some other features might not have

4Different methods and operators (such as product, minimum or maximum)
were tested for combining the detection functions. The results obtained were all
very similar which may be due to the fact that our drum-enhancement method
preserves transients from nonpercussive instruments well, and that more gener-
ally, the selected onset detection algorithm performs particularly well on sharp,
impulsive signals, such as drum hits.

such interpretations, they can have a significant discriminative
power. In this paper, we decided to emphasize on the classifi-
cation efficiency of features rather than on their perceptual or
acoustic meaning. We consequently examine a large subset of
candidate features and select the most relevant ones using ma-
chine learning techniques. This approach, which trades inter-
pretability for classification efficiency, was successfully applied
to musical instrument recognition by Essid et al. in [23].

Similarly, the duration of the observation windows on which
the features are computed greatly varies amongst studies.
It ranges from fixed 80-ms-long windows starting at each
observed onset [7] to windows defined between two tatum®
grid points [5]. In [6], we used the entire interval between two
consecutive strokes as an observation window. This choice
makes the feature extraction process more robust—since, for
example, the estimation of the spectrum or amplitude envelope
benefits from the large number of available samples—but in-
troduces variability, as the same feature might be computed on
only the attack of a stroke, or on its entire duration. To ensure
the robustness of the extracted features, while minimizing the
variability of the extracted features, we decided to use as many
samples as possible, within a 200-ms time frame. Hence, the
features associated to the onset ¢; are computed on the window
[t;, min(t; + 0.2,%;41)].

The 147 features considered in this work are shortly presented

here.

» Temporal features (6): These features include the
crest factor, temporal centroid, and the zero-crossing
rate—computed in both its standard and noise-robust
version [7]. Additionally, an exponential decay Ac 5" is
fitted to the amplitude envelope of the signal (see note 2),
the parameters A and B being used as features.

» Energy distribution features (25), which include the fol-
lowing.

— Overall signal energy computed as the logarithm of the
root mean square (IRMS) of the signal across the entire
observation window.

— Energy of the output of matched filters computed as
the IRMS of the output of three filters adapted to the fre-
quency content of the bass drum, snare drum, and hi-hat
signals [7]. Additionally, the IRMS difference between
adjacent frequency bands, as well as the difference be-
tween the IRMS in each band and the IRMS of the orig-
inal signal is measured.

— Energy in drum-specific filter bank obtained as the
IRMS of the signal in each band of the filter bank de-
scribed in [6].

— Energy ratio in an octave-band filter bank obtained
as the difference of IRMS between adjacent bands of a
bank of overlapping octave-band filters (see [23]).

» Spectral features (12): They include the four spectral mo-
ments, the spectral rolloff and flatness (see [24]), and the
first six linear prediction coefficients, which are a rough es-
timate of the spectral envelope.

» Cepstral features (78): They consist of the average and
standard deviation of the 13 first MFCCs, AMFCCs, and
AZMFCCs across the observation window.

5The tatum is a subdivision of the main tempo and refers to the smallest
common rhythmic pulse.
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« Perceptual features (26): The relative specific loudness,
sharpness, and spread (Sp) are computed, according to
their description given in [24].

To obtain centered and unit variance features, a linear trans-
formation is applied to each computed feature. This normaliza-
tion scheme is more robust to outliers than a mapping of each
feature’s dynamic range to [—1, 1].

D. Feature Selection

Training a classifier on the large feature set extracted above
is intractable, as some of the extracted features can be noisy, re-
dundant with others, or unable to discriminate the target classes.
The goal of feature selection is to avoid such problems by se-
lecting the subset of the most efficient d features. This issue has
been addressed extensively in the machine learning community
(see [25] for an introduction to the topic). Features can be
selected according to three categories of algorithms. Wrapper
algorithms [26] assess the usefulness of a candidate feature set
by evaluating its performance for the subsequent classification
step. The resulting feature set consequently depends on the
machine learning algorithm selected for the classification step,
making it prone to overfitting [27]. Oppositely, filter algorithms
do not require the choice of a classification method. Such
methods measure the relevancy of each feature according to
two criteria: redundancy of this feature with respect to the
others, by means of similarity measures [28], and discrimina-
tive power of the feature with respect to the known class labels.
Finally, embedded algorithms consider the decision function
produced by a classifier to gain knowledge on the weight or
relevance of each feature [29]. In this paper, we evaluated both
a filter and an embedded feature selection strategy.

Inertia Ratio Maximization Using Feature Space Projection
(IRMFSP):

In the context of a binary classification problem, let N+ and
N~ be the number of positive and negative examples, N =
N7 + N~ the total number of training examples, x; (resp.
x,, ) the kth feature vector from the positive (resp. negative)
class, and m™ (resp. m~) the means of feature vectors from
the positive (resp. negative) class. The Fisher criterion can be
defined as

[uE - _
o Xfw omf X m —m
N—

LM .
v 2 [ —mt |+ 5= 3 [ —me]
k=1 k=1

Intuitively, it measures the ratio between the inter-class and
intra-class scatter, a large value of + ensuring a good discrimi-
nation between classes. Thus, the IRMFSP algorithm [30] iter-
atively builds a feature set X,, according to two steps.

1) Relevancy maximization: The feature maximizing the
Fisher discriminant »;., is selected and appended to X,,,
yielding a new subset X, ;1.

2) Redundancy elimination by orthogonalization: The re-
maining features are obtained by subtraction of their
projection on the space spanned by the already selected
features.

To obtain a ranking of the features, this process is continued
until » reaches the total number of features.

Recursive Feature Elimination With Support Vector Machines
(RFE-SVM):

The RFE-SVM algorithm [29] iteratively removes from the
entire feature set those features whose contribution to the deci-
sion function of a linear SVM is minimal.

1) A linear SVM is trained on the surviving feature set X,,,
yielding a decision function y,,(x) = Z;’Ll OpX - Xk,
where the «; are Lagrange multipliers, and x,; the
training examples, using only the features selected in X,.

2) The weight of the jth feature is computed as w(j) =

N

2
(Z;\:l ajxnk(;j)) where x,,;(7) is the jth component
of x,.%.
3) The feature(s) with the smallest weight is(are) removed,
yielding a new surviving feature set X,,11.

Since training the SVM can be computationally expensive,
a large number of features can simultaneously be eliminated
during the first iterations. In the following experiments, 25% of
the surviving features are eliminated at each iteration, until less
than 32 features remain. Afterward, the features are eliminated
one by one.

Both algorithms were used to obtain a ranking of
the most relevant features. The final number of fea-
tures retained was selected by a grid search from the set
D(d) = {4,8,16,32,64,96}. We found that RFE-SVM per-
formed better than IRMFSP except for small feature sets (less
than eight features). Thus, in the rest of this paper, IRMFSP is
used for feature selection when d € {4,8}, and RFE-SVM is
used in the other cases.

E. Classification

We aim to assign the set of instruments of the drum kit
played at #; to each feature vector x; extracted at time ¢;.
Considering a subset of K instruments of the kit (in our case,
K = {bass drum, snare drum, hi-hat}), 2/ combinations of
instruments are possible, including the combination # where no
rhythmic instrument is played. Such a classification problem
can be solved by either a 2!%!-class classifier or by | K| binary
classifiers—each of them detecting the presence or absence
of a target instrument in K. The former strategy leads to
homogenous classes in unbalanced proportions. The latter
solution, which is used for the rest of this paper, yields less
homogenous classes (for example, the positive examples for
the bass drum detector will include both bass drum strokes
and bass drum + snare drum combinations), but the number of
positive and negative training examples is more balanced for
each classifier. Refer to [6] for an experimental comparison of
the two strategies.

The classifiers selected for this task are C-support vector
machines (C-SVM), whose generalization properties and
discriminative power have been proved on a wide range of
tasks, and for which efficient software implementations are
available. Interested readers can refer to [31] or to [32] for
a more theoretical presentation of the underlying structural
risk minimization theory. A normalized Gaussian kernel
K(x,y) = exp (||x — y||*/2dc?) (where d is the number of
features) is chosen to allow for nonlinear decision boundaries.
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A grid search was used to determine the parameters ¢ and
C, both expressing the tradeoff between misclassification and
generalization errors—the candidate values of these parameters
being D(o) = {(1/2),1,2,4} and D(C) = {2,16,128,1024}.
Finally, a sigmoid functlon is fit to the decision functlon of
the SVM, according to the method described by Platt in [33],
to obtain posterior probabilities of class membership rather
than “hard” decisions from the classifiers—this allows for
the adjustment of a decision threshold, to reach an acceptable
precision/recall tradeoff, or for further information fusion.

F. Information Fusion

As described in Section I11-A, two fusion schemes are con-
sidered to take into account the original and drum enhanced sig-
nals in the classification. Early fusion consists in joining the two
feature vectors obtained from both sources and applying the fea-
ture selection and classification process to this large vector. Late
fusion employs two different sets of classifiers for each feature
set, and then aggregates the posterior probabilities given by each
classifier. A variety of aggregation operators were considered,
such as the product, sum, maximum, minimum, weighted norms
[34], and a “most confident” operator defined as

p1, if[p1 — 0.5 > |ps — 0.5]
Fp1.p2) = { pe, otherwise.
Best classification results are obtained with the sum and max-
imum operators.

G. Evaluation Protocol

1) Experimental Database: Our experiments were con-
ducted on the minus one sequences of the ENST-drums
database [35]. These sequences are based on 17 instrumental
songs without drums, of an average length of 71 s, for which
three different drummers performed a drum accompaniment.
An interesting characteristic of this material is that the mixing
between the drums and the musical accompaniment can be
freely adjusted in order to assess the robustness of the tran-
scription algorithm in the presence of background music. The
experiments described in Section I11-G2 are repeated on four
mixes, in which the background accompaniment is respectively
suppressed, attenuated by 6 dB, balanced with the drum, and
amplified by 6 dB. This database can be considered difficult
as far as the drum playing style is concerned: some of the
sequences are played with brushes or mallets; some others em-
phasize on a rich and natural drum playing style. In particular,
ghost notes, which are de-emphasized strokes used to give a
feeling of “groove,” are included in the annotation and are
particularly challenging to detect.

2) Protocol: In the evaluation, care has been taken to avoid
overfitting and excessive fine-tuning of classification parame-
ters. To this purpose, the 17 songs of the database are divided
into three groups (one group contains the five longest songs, the
two other groups contain six songs each). Let .S;; be the subset
of the database containing the songs from the zth group played
by drummer j. Our evaluation protocol is a nested cross-vali-
dation described by the pseudocode in 111-G2 and illustrated in
Fig. 2.
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Fig. 2. Nested cross-validation protocol.

Algorithm 1 Evaluation protocol

Input: Database split in 9 groups S;;, extracted features
for all (4g, jo) € {1,2,3}% do
for all Binary instrument classification problem do
Rank the features in the subset U,z ;. 5i;
forall (C,o,d)eD(C)xD(c)xD(d) do
error «— 0
for all 2 ;é i(),jl 75 j[) do
Train a C-SVM using parameters ',
o and d best features, on S, ;,
Test this classifier on S, ;,, where
iz & {io, i1}, 72 ¢ {Jo.J1}
error «— error + classification error
end for
end for
Train a C-SVM using the parameters C*, ¢*
and d* best features on S, ;,, where C*, ¢*
and d* minimize the generalization error
end for
Use the binary classifiers to label the data from
S’iojo
end for
Output: An automatic transcription for each sequence
of the entire database

This protocol ensures that the selected parameters for C, o,
and the number of features d provide good generalization prop-
erties—since in the inner loop of our protocol, the training and
testing sets correspond to both different songs and drummers.
Overfitting is prevented by ensuring that the data on which the
classifiers will ultimately be tested have nothing in common
with the data on which the features and the classification pa-
rameters are optimized.

3) Evaluation Metrics: The accuracy of the automatic tran-
scription is evaluated by standard precision and recall scores,
computed for each target instrument class &, and by the F-mea-
sure, which summarizes the tradeoff between precision and re-
call. Let NV, be the total number of strokes of instrument % de-
tected by the system, N.. the number of correct strokes detected
by the system (a deviation of up to 50 ms being allowed between
actual and detected drum events), and N the actual number of

Classification
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TABLE |
DRUM TRANSCRIPTION ACCURACY FOR VARIOUS BACKGROUND MusSIC LEVELS, ON ALL THE MINUS ONE SEQUENCES OF THE ENST-DRUMS DATABASE
Original signal only Drum-enhanced signal Early fusion Late fusion
Instrument || Recall Prec. | F meas. || Recall Prec. [ F meas. | Recall Prec. | F meas. || Recall Prec. | F
Accompaniment F+ dB
BD 66.4% 67.8% 67.1% || 60.4% 75.2% 67.0% 62.8% 62.7% 62.8% || 65.6% 80.5% | 72.3%
SD 52.4% 80.1% 63.3% || 57.0% 70.1% 62.9% 51.1% 78.3% 61.8% || 58.5% T75.7% | 66.0%
HH 81.3% 76.8% 79.0% || 82.5% 78.6% 80.5% 86.5%  76.6% 81.3% || 85.2% 79.2% | 82.1%
Accompaniment 6 dB
BD 65.7% T72.1% 68.7% || 54.3% 69.3% 60.9% 63.7% 61.5% 62.6% || 64.6% 179.2% 71.1%
SD 54.7% 72.4% 62.3% || 57.3% 69.0% 62.6% 56.6% 75.1% 64.5% || 57.7% 73.2% 64.5%
HH 81.2% 75.8% 78.4% || 79.5% 78.4% 79.0% 80.5%  77.3% 78.9% || 82.4% 78.2% | 80.3%
Accompaniment +0 dB
BD 61.7% 58.4% 60.0% || 54.1% 65.8% 59.4% 61.1% 61.0% 61.1% || 62.0% 70.2% | 65.8%
SD 46.4% 66.7% 54.7% || 50.6% 66.1% 57.4% 52.0% 69.5% 59.5% || 50.6% 70.7% | 59.0%
HH 80.8% 70.6% 75.4% || 79.5% 73.3% 76.3% 78.9%  74.9% 76.8% || 83.1% 73.0% | 7T7.7%
Accompaniment +6 dB
BD 60.0% 54.3% 57.0% || 55.1% 58.5% 56.8% 55.5%  54.9% 55.2% || 60.9% 62.6% 61.7%
SD 37.6% 54.7% 44.6% || 41.3% 56.5% 47.7% | 48.0% 58.7% | 52.8% 42.8%  60.4% 50.1%
HH 76.7% 65.6% 70.6% || 74.7% 68.4% 71.4% 4.7%  67.7% 71.1% || 78.0% 68.0% | 72.6%
TABLE 11
DRUM TRANSCRIPTION ACCURACY ON THE MINUS ONE SEQUENCES OF THE PUBLIC SUBSET OF THE ENST-DRUMS DATABASE
Original signal only Drum-enh anced signal Early fusion Late fusion
Instrument || Recall  Prec. [ F meas. || Recall  Prec. | F meas. || Recall  Prec. [ F meas. Recall Prec. | F meas.
Accompaniment dB
BD 65.0% 65.0% 65.0% 63.4% 76.9% 69.5% 61.7%  56.0% 58.7% 70.0% 79.8% 74.6%
SD 55.6%  77.6% 64.8% 61.6% 66.7% 64.1% 51.5%  75.2% 61.1% || 64.2% 71.0% 67.4%
HH 81.4% 74.3% 7M. 7% || 80.8%  75.0% 77.8% || 82.9%  78.5% 78.7% || 86.5% 73.6% 79.5%
Accompaniment 6 dB
BD 63.3%  70.0% 66.5% 55.8%  63.9% 59.6% 66.5% 75.6% 70.7% || 66.3% 78.8% 72.1%
SD 46.7%  70.0% 56.0% || 53.4% 66.7% 59.3% || 52.0%  66.6% 58.4% || 56.3% 68.2% 61.7%
HH 78.2%  69.6% 73.7% 4.2%  72.9% 73.6% BT%  14.1% 74.9% || 82.0% 71.3% 76.3%
Accompaniment +0 dB
BD 61.7%  59.5% 60.6% 53.7%  61.5% 57.4% 61.3% 67.0% 64.1% || 656.3% 74.4% 69.5%
SD 48.0% 61.7% 54.0% 49.1%  60.8% 54.3% 8.9% 65.7% 56.1% 55.2% 61.9% 58.3%
HH 4.5%  68.2% 71.2% 73.9% T1.4% 72.7% 76.1% T1.6% 73.8% || 81.8% 70.2% 75.5%
Accompaniment +6 dB
BD 61.0% 59.1% 60.0% 53.3% 57.1% 55.1% 61.6% 55.4% 58.3% || 656.0% 64.3% 64.6%
SD 39.9% 49.1% 4.0% 46.3%  53.4% 49.6% “4.4% 54.™% 49.0% || 51.6% 51.1% 51.3%
HH 69.6% 63.9% 66.6% || 61.3%  65.3% 63.2% || 67.6% 67.7% 67.7% || 73.5% 64.6% 68.7%

strokes of instrument % to be detected. Precision, recall, and
F-measure for the instrument & are

N, N, 2PR
P=— R=— F-measure = .
Ny N = PrR
H. Results

1) Classification Results: Classification results are given in
Table | for all the minus one sequences of the ENST-drums
corpus, and in Table 11 for its publicly available subset. Results
are truncated before the first nonsignificant digit, i.e., the 95%
confidence interval has an amplitude smaller than 0.1%.

First, it can be observed that the drum-enhancement only
slightly improves (or even degrades, in the case of the bass
drum) the result of the classification. The largest performance
gains are observed when the accompaniment is louder on the
snare drum and hi-hat classes. A more thorough analysis of the
classification results reveals that for a fraction of the database,
the detection of the bass drum hits from the separated drum
signal is less accurate (A difference of up to 7% of the F-mea-
sure). For the remaining set, the bass drum detection is more

accurate on the drum-enhanced signal. This can be accounted
by a difference in the bass drum used between the two sets of
sequences. Most sequences are played on a standard rock kit, as
commonly used in popular music, whose bass drum produces a
very low harmonic component. The only harmonic component
in the lowest range of the spectrum is the contribution of the
bass drum, which is thus eliminated by the noise subspace pro-
jection. Some other sequences are played with a specific Latin
drum Kit with a smaller bass drum than usual which produces
a higher-pitched harmonic component, in the same range as the
fundamental frequency of the bass. This component is conse-
quently preserved by the noise subspace projection (the louder
harmonic components in this frequency range being those of
the bass). The difficulty of generalizing from this specific case
to the other ones explains the slightly lower results. This issue
can only be avoided with a larger and more diverse (in terms of
drum Kkits) training database.

The fusion algorithms proved to be very successful inde-
pendently of the accompaniment level. For all instruments, the
F-measure scores of the late fusion method is larger than the
best scores of the two methods employing only one signal. This
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TABLE Il
FEATURE SELECTION RESULTS FOR EACH CATEGORY (T=TEMPORAL,
E=ENERGY, S=SPECTRAL, C=CEPSTRAL, AND P=PERCEPTUAL)

Original signal Drum-enhanced signal

T E S C P|Total || T E S C P | Total
Accompaniment —oco dB

BD|1 5 0 1 1 82 0 0 0 O 2

SD 11 1 1 1 50100 2 1 1 1 5

HH|O0 2 0 0 1 30113 1 1 7
Accompaniment —6 dB

BD(|1 3 0 1 1 61 1 0 2 0 4

SD 2 1 0 1 0 41910 3 0 3 0 6

HH|2 0 0 0 2 49101 0 3 1 1 6
Accompaniment +0 dB

BD||O 2 0 0 0 241 4 0 3 0 8

sD{|2 2 0 0 0 412 1 0 3 0 6

HH|f1 0 0 0 0 1 I 1 5 1 1 9
Accompaniment +6 dB

BD|O 4 0 0 O 4101 4 0 1 O 6

SD 2 1 0 0 3112 3 0 2 7

HH|2 0 0 0 O 21 0 4 0 3 8

suggests that the information extracted from the original and the
drum-enhanced signal is complementary.

We tested the publicly available system of Tanghe et al. [7]
on our dataset. Without prior training, it achieved performances
similar to those of our system when the drums were predom-
inant, but its performances drastically degraded when the ac-
companiment music was louder. Since a subset of our database
is publicly available (Refer to [35] for more information about
its distribution), we encourage other researchers in the field to
test their algorithms on this data.

2) Feature Selection Results: To emphasize on the comple-
mentarity of features and the validity of the fusion approach, we
selected the ten most relevant features among the features ex-
tracted from both the original and drum-enhanced signals. The
SVM-RFE algorithm was used for this task. The number of se-
lected features in each category was counted. The results are
given in Table 11l

It can be seen that the number of features extracted from the
drum-enhanced signal increases with the level of the accom-
paniment music. The hi-hat and share drum benefit the most
from the features extracted from the drum-enhanced signal. In-
terestingly, spectral and cepstral features are of little interest
when extracted from the original signal. However, they are more
frequently selected, when extracted from the drum-enhanced
signal. This underlines their lack of robustness to the addition of
background accompaniment. On the whole, the most commonly
selected features are those related to the energy in typical fre-
quency bands—which are both robust, and specifically designed
for the problem of drum transcription. Detailed feature selection
results are available online at http://www.tsi.enst.fr/~gillet/pdf/
details.pdf.

IV. DRUM TRACK EXTRACTION FROM POLYPHONIC MusIC

A wide range of methods have been proposed for the separa-
tion of audio sources, some of them dedicated to stereo signals
(a representative selection of such algorithms are described and
evaluated in [36]) some others to monophonic signals. In this
case, the separation can be achieved by using a prior model of
the sources to be separated (HMMs in [37], Bayesian models
in [38], or bags of typical frames in [39]). Other unsupervised
methods use psychoacoustic criteria to group related partials
[40] or aim to compactly describe the spectrogram as a sum
of a few components by means of methods such as ISA [41],
NMF [42], or Sparse Coding [43]. Furthermore, several solu-
tions to the specific problem of drum track extraction or resyn-
thesis from polyphonic music have already been proposed (see,
for example, [11], [15], and [44]).

In this section, we present several novel approaches that
target high-quality remixing applications. First, an extension of
our previous method [46] is proposed in Section I1\V-A. Second,
an alternative approach based on time-varying Wiener filtering,
along with specific enhancements to the drum separation task,
is exposed in Section IV-B. Finally, a comparative evaluation
involving state of the art algorithms is provided in Section IV-C.

A. Time/Frequency/Subspace Masking

As seen in Section II-B, a signal can be analyzed in sub-
band harmonic/noise components. Let xj; and z,.; be the har-
monic and stochastic components of the 4th subband signal, re-
spectively. Since a multirate implementation of the filter bank
was used, let £, and Z,... be their full-band versions (after ex-
pansion and application of the synthesis filter). Directly recon-
structing a signal from the noise components Zizl I Pro-
duces a drum-enhanced signal good enough for transcription ap-
plications, but whose quality is insufficient for separation and
remixing purposes. In order to improve the quality of the re-
construction, we propose to apply different time-varying gains
to each of the subband harmonic and stochastic signals: s =
>k QnreTak + e ®er. These gains must ensure that only noise
and harmonic components associated to drum instruments are
present in the reconstruction. For this purpose, we define, for
each drum instrument, frequency/subspace temporal envelopes
that reflect the distribution of energy in the harmonic and sto-
chastic component of each subband.

1) Extraction of the Frequency/Subspace Temporal En-
velopes: The analysis described in Section I1-B is performed
on a N sample long solo hit of each category 7 of drum instru-
ments to be considered (bass drum, snare drum, and hi-hat).
Let 2%, and %7, be the resulting harmonic and noise subband
signals. The amplitude envelope of each of these signals is fitted
with exponentially decaying envelopes, resulting in envelopes
et and e, . This step can be performed on several solo hits
for each class of instruments—in which case the corresponding
envelopes are averaged.

2) Detection of Drum Events: The next step consists in
detecting occurrences of bass drum, snare drum or hi-hat hits
from the music signal. Though any transcription method (see
Section 111) can be used for this task, the frequency/subspace
representation and the extracted envelopes can be directly used
for this purpose (with suboptimal performances). Actually,
a simple drum detection scheme bearing similarity to the
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template matching procedure introduced in [12] consists of
detecting a hit of the instrument  at the note onset ny whenever
the quantity D*(ng) > 7;, where 7; is a threshold and D?(ny)
is defined as

Di(ng)

L

2
i

L

[ezk(n)gf;hk(no +n)+ eik(n)i‘rk(no + n)] ?

k= 0

—_

n

3) Remasking: Let I’(n) be a function equal to 1 if » is the
onset of a note played by the drum instrument ¢, O otherwise.
The time-varying gains are computed as

Oéhk:(n) = max (I]Z *eak) ('n)
7

ap(n) = max (I' x el ) (n)
K

where * denotes convolution. Intuitively, these time-varying
gains recreate in each subband and subspace the temporal
envelope that the signal would have if it only contained the
drum events described by 1¢(n). The use of max to estimate the
spectrum or temporal envelope of a mixture from the spectra
and envelopes of individual components has been discussed in
[37]. It is also worth noting that the algorithm presented in [46]
can be described using the same formalism, with empirically
defined binary masks used as ¢?, and ¢, = 0.

B. Separation With Wiener Filtering

1) Overview: In this section, we evaluate and extend a
separation technique based on Wiener filtering presented by
Benaroya et al. in [47], whose principle is briefly recalled
here. Considering two stationary Gaussian sources s; and
5o of power spectral density (PSD) ¢7(f) and o3(f), the
optimal estimate of s; from the mixture s; + s» can be
obtained by filtering the mixture with a filter of frequency
response (oZ(f)/o%(f)+ o3(f)). However, audio sources
can only be considered as locally stationary, and cannot be
described by a single PSD. To take into account these two phe-
nomena, the sources are assumed to be mixtures of stationary
Gaussian processes, with slowly time-varying coefficients:
si(n) = Ygex, @i(n)bx(n), where a;(n) > 0 is slowly
varying, b(n) is a Gaussian process of PSD o3, and K; is a
set of indices. The o7 will further be referred to as spectral
templates. In this case, the estimation process consists of the
following.[48]:

Step 1) Obtaining a time-frequency representation Sz(1, m)
of = by means of the STFT—where [ is the fre-
quency bin index, and m. a frame index.

Step 2) Decomposing for every time frame . the observed
power spectra as a sum of the spectral templates
Sa(l,m) = Ypex, ux, ek(m)og(l). A sparsity
constraint may be imposed on ay,.

Step 3) Estimating the time—frequency representation of the
source s; as

> ar(m)og(l)

kC K;

> amoi(l)

keEK UK,

Ss;(l,m) =

Sz(l,m).

The decomposition at Step 2 can be performed by a mul-
tiplicative update, similar to the one used in NMF algorithms
[48].

2) Spectral Templates: This approach requires the estima-
tion of spectral templates for the two sources to be separated. In
the case of drum track extraction, a set of spectral templates has
to be learnt for the drums, and another set for the background
music. It is suggested in [48] to use a clustering algorithm to
extract a set of typical PSD from the time—frequency represen-
tation of solo signals of each instrument to be separated. In this
study, we used || = 16 spectral templates for the drums and
| K2| = 128 spectral templates for the background music.

3) Optimization for Drum Separation: We observed that the
set of PSD extracted from the drum signals using the corre-
lation-based clustering algorithm presented in [48] contained
mixtures, in various proportions, of the snare drum, hi-hat, and
bass drum. Such mixtures are redundant, as they can be obtained
from more elementary PSD containing solo instruments. We
consequently followed another approach, which consisted of ex-
tracting the 16 PSD from the training drum signals by NMF.
Note that this decomposition is not applied to the background
music since it yields too specific spectral components, often re-
duced to a single frequency peak.

A second improvement is brought about by integrating a
simple adaptation procedure. It consists of extending, during
the decomposition step, the set of drum spectral templates with
the PSD of the stochastic component of x observed for frame
m. This choice is motivated by the fact that this additional
template is a good estimate of the PSD of the drums and allows
in particular to better represent the stochastic part, which is not
well taken into account in the main 16 spectral templates.

The third improvement concerns the choice of the window
size used to compute the STFT representation. While small win-
dows are efficient for segments containing drum onsets, they
imply a low-frequency resolution. Moreover, fast variations of
the coefficients a;(m) between adjacent short windows may
produce audible artifacts. Reversely, while longer windows are
efficient for segments in which the sustained parts of nonper-
cussive instruments are predominant, they may induce pre-echo
artifacts or smooth the transients in the reconstructed signal.
To cope with these limitations, we introduced a window size
switching scheme for the time—frequency decomposition. Such
schemes are common in audio coders to deal with pre-echo
artifacts [49]. Two window sizes are used, L; = 1024 and
Lo = 128. Two dictionaries of spectral templates are learned
for these two window sizes. The signal, sampled at 22.05 kHz,
is processed by blocks of 1024 samples with a 50% overlap.
If the examined block contains a note onset (as detected in
Section 111-B), it is processed as eight 128-sample long win-
dows, otherwise as a single 1024-sample long window. To
ensure a perfect reconstruction, transition windows are applied
when switching from one size to the other. Sine windows are
used for both the analysis and synthesis steps.

C. Evaluation of Drum Track Separation

The objective evaluation of the drum track separation
methods presented here is conducted on the minus one se-
quences included in the public subset of the ENST-drums
database (see Section I11-G1). The performance metrics used
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TABLE IV
SIGNAL-TO-DISTORTION, INTERFERENCE, AND ARTIFACT RATIOS (DECIBELS) FOR THE DRUM SEPARATION ALGORITHMS

Accompaniment —6 dB || Accompaniment +0 dB || Accompaniment +6 dB
Method SDR  SIR SAR || SDR  SIR SAR || SDR SIR SAR
Variable gain 3.9 112 6.1 1.2 5.2 4.9 -3.5 -1.2 3.7
NMF+SVM 52 144 6.2 2.2 10.7 3.5 -14 6.9 0.2
Spectral modulation 0.7 138 1.3 -0.8 8.0 0.9 -39 21 0.0
Sub-band ICA from stereo signal 57 10.0 9.7 0.1 4.9 59| -6.3 -2.2 2.6
Noise subspace projection 8.3 10.2 14.5 3.0 4.3 11.5 2.7 -1.6 8.9
TFS masking 7.6 14.0 9.6 3.4 6.8 7.7 -24 -0.6 6.3
Score-informed TFS masking 7.5 15.9 8.7 4.6  10.0 7.1 04 4.1 4.7
Wiener filter 8.6 104 14.8 3.1 9.4 5.1 -04 48 2.9
Wiener filter, enhanced 10.1  15.7 12.2 5.5 10.7 8.0 0.2 5.1 3.9

are those defined in [50]. Let s; and s, be, respectively, the
original drum and accompaniment signals. The estimate of the
drum track $; obtained by the separation methods described
above can be projected onto the original drum and accompani-
ment signals

Sa = (84, 84)8d + (84, 82)5a + €arcit

where €,,+; IS the residual of the projection. The signal-to-dis-
tortion ratio (SDR) is a global measure of the separation quality,
while the signal-to-interference (SIR) and signal-to-artifacts
(SAR) ratios, respectively, measure the amount of accompani-
ment music and separation/reconstruction artifacts remaining
in the separated signal. They are defined as follows:

5 2
SDR :1010g10 ||<5d75d>.9d||

1{(34; $a)Sa + €artit]|?
{3 sa)sall”
SIR =101log —
B10 (G, sasall?
S, o81%8 §4. 9a)8all?
SAR = 1010g,, {34, 8a) 84 + (84, Sa)Sall

”Eartif”2

The results® are given in Table IV. Variable gain consists of
using the drum transcription system presented in Section Il to
detect the onsets of drum events, and applying a fast decaying
exponential envelope with a 100-ms time constant at each drum
onset. NMF + SVM is our implementation of the algorithm de-
scribed in [15]. Spectral Modulation is described in [45]. Sub-
band ICA from stereo signal is the preprocessing for stereo sig-
nals detailed in Section Il-A, with no further processing. Noise
subspace projection is the band-wise noise subspace projection
used in Section 11-B, without the subsequent masking. The four
other methods were presented in depth in the previous sections.

For mixtures where the drums are predominant or balanced
with the accompaniment, best results are achieved with the
modified Wiener filtering method. In all cases, our improve-
ments to this method result in better separation performances.
This method also produces good results when the background
music is predominant. Comparable results are achieved by
the score-informed time/frequency/subspace (TFS) masking.
Overall, TFS masking performs better when prior knowledge
of the score is available. The improvement brought about by

6Note that the original signals s, and s, (before mixing) of the ENST-drums
database were also used for the methods that require a training step. Even if this
may favor the model-based methods, we believe that the coarseness of the model
built and the size of the database should considerably limit this bias. Comple-
mentary experiments using the nested cross-validation protocol are under way.

this method over a simple noise subspace projection can be
shown by increased SDR and SIR. Nonetheless, noise subspace
projection tends to be a “conservative” method in the sense that
it introduces fewer artifacts in the extracted signals.

It should also be mentioned that the NMF + SVM system
proposed in [15] obtained a high SIR—illustrating the ability
of this algorithm to strongly discriminate drum components.
However, it obtains, along with spectral modulation, rather low
SAR underlining the drawback of methods which reconstruct
a drum track from a synthetic time—frequency representation
rather than filtering the original signal. They are particularly
very sensitive to the problem of phase reconstruction from the
STFT. Sound examples for all methods are provided online at
http://www.tsi.enst.fr/~gillet/ENST-drums/separation/.

V. DISCUSSION AND FUTURE WORK

Similarly to other audio indexing tasks such as melody detec-
tion or musical instrument recognition, drum transcription aims
to extract high level information related to a single part of a
polyphonic signal. Should it be solved by a prior source sep-
aration step to isolate the desired part, or should the signal be
globally processed? We argue that both approaches should be
followed in parallel, and that in spite of the availability of effi-
cient source separation algorithms, a global approach is still rel-
evant. There is so far no way to model the artifacts introduced by
source separation algorithms. As a consequence, the robustness
of well-known audio features, when extracted on the output of
an elaborate processing—such as source separation—remains
unknown. Likewise, while the perceptual interpretation and va-
lidity of these features in the case of single instrument signals
is well understood, their meaning in the polyphonic case is less
obvious. In our work, information fusion and feature selection
proved to be an efficient way to compensate for this lack of
knowledge. There is nevertheless a need for an in-depth eval-
uation of the robustness of common audio features to the degra-
dations typically produced by source separation algorithms and
to the addition of other music parts.

Our experiments show that obtaining the transcription is
easier when the isolated signal is available, and vice versa. This
situation bears similarity with estimation problems with hidden
variables, in which the set of parameters to estimate (in our
case, the drum transcription) and the set of latent variables (in
this case, a separated signal, or a model of each drum instru-
ment used in the music piece) are difficult to optimize jointly,
but easy with respect to each other. This justifies approaches
like [12], and also opens the path for future iterative schemes
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where the transcription and separation steps will be performed
in sequence (using a source separation process informed by
the score obtained in the previous step) and will then be it-
erated until convergence. Concurrently, there is an interest to
investigate efficient ways to jointly estimate the source and
the transcription. This is the philosophy followed by NMF or
ISA-based methods, in which the spectral and temporal profiles
play the role of simpler intermediate representations for which
the joint optimization is easy. However, further processing is
needed to accurately recover the source and the transcription
from this representation. An interesting direction to follow
would be to devise a higher level intermediate representation,
closer to the source and the transcription, for which a joint
optimization procedure could still be found—an example of
such representations being NMF-2D [51].

As for source separation, our results showed that methods
which aim to filter or modulate the original signal outperformed
those requiring a resynthesis step. Thus, a possible improvement
for the NMF-based method [15] could be to use the temporal
and spectral profiles to build a time-varying filter applied to the
original signal, or equivalently to use the reconstructed spec-
trogram as a mask applied to the original spectrogram as de-
scribed in [51]. The two methods that gave the best separation
results—TFS masking and Wiener filtering rely on a training
step to estimate the spectral templates of the sources to sepa-
rate. This justifies their good performances, but is also a draw-
back as it makes them sensitive to the generality of the training
set used. For some applications (e.g., a drum level control in-
cluded in a music player) the separation will be expected to
work on a very large range of drum signals, including electronic
drums. Interesting directions for further improvements of the
Wiener-based approach include the use of more sophisticated
adaptation schemes (such as the one proposed in [52] for singing
voice separation), perceptually motivated time/frequency rep-
resentations, or a differentiated processing of the harmonic and
stochastic components.

Finally, our work highlighted some inadequacies in the per-
formance measures that should be addressed. Especially, drum
source separation is very sensitive to the ability of the separation
method to restore and preserve the characteristics of the tran-
sients in the original signal. It would thus be very relevant to
compare how each method performs on the steady and transient
segments of the original signal. Meanwhile, subjective listening
tests should be conducted to evaluate the separation quality for
real-world applications, such as drum track remixing.

VI. CONCLUSION

The problems of drum track transcription and separation from
polyphonic music signals have been addressed in this article. A
complete and accurate drum transcription system integrating a
large set of features, optimally selected by feature selection ap-
proaches has been built. One of the essential specificities of this
novel system relies on the combined use of classification and
source separation principles. It is in fact shown that improved
performances are attained by fusing the transcription results ob-
tained on the original music signal and on a drum-enhanced ver-
sion estimated by source separation. The complementarity of the
information contained in the original and drum-enhanced signal

has been further highlighted by analyzing the results of the fea-
ture selection process.

Novel approaches for drum track extraction from polyphonic
music were also introduced. The results obtained are very en-
couraging and already allow very high quality remixing capa-
bilities, especially to modify the drum track level by +3 dB. It is
worth noting that all proposed algorithms are of relatively low
complexity and can run in near real time on standard personal
computers.

The approaches proposed also open the path for a number
of future incremental improvements including the use of model
adaptation for both transcription and source separation, or an
iterative analysis scheme that would iteratively transcribe and
separate until convergence.
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