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a b s t r a c t 

The typical application targeted by this work is the intelligibility improvement of speech messages when 

rendered in car noise environment (radio, message alerts,...). The main idea of this work is to transform 

the original speech to “Lombard” speech or more precisely to simulate some of the strategies followed by 

humans to render their speech clearer when they are surrounded by noise. Three main effects are con- 

sidered in this work, namely non uniform-time scale modification, formant shifting and a combination of 

these modifications along with energy redistribution between speech regions. All effects are studied with 

specific transformations for voiced and unvoiced segments. The proposed modifications are then evalu- 

ated by means of subjective and objective tests. The results of these tests conducted with normal hearing 

and impaired listeners demonstrate the potential of the selected transformations for voice intelligibility 

improvement. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Speech Intelligibility usually refers to a measure of the effec-

iveness of understanding speech. It is used to evaluate telecom-

unications systems performances, to characterize some acoustical

roperties of conference rooms or to evaluate the level of under-

tanding of patients for medical purposes. 

It is well known that intelligibility is affected by the presence

f background noise which can mask crucial portions of the speech

ontent. It is also widely acknowledged that humans succeed to

nhance the audibility of their voice by means of a number of non-

inear effects which are often gathered under the term of Lombard

ffect ( Junqua, 1993; Lombard, 1911; Van Summers et al., 1988 ; Lu

nd Cooke, 2008 ; Cooke et al., 2013 ). In fact, humans do modify

heir speech in the presence of noise in such a way to enhance the

coustic contrasts between their speech and the background noise.

t is for example shown in Garnier and Henrich (2014) that besides

 straightforward strategy of speaking louder, the speakers did al-

er other vocal characteristics such as for example the center fre-

uency of the first formant or the modulation of the fundamental

requency on voiced segments. 

For many applications including speech recognition or tele-

hony in adverse conditions it is necessary to reduce the impact
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f the surrounding noise and to mitigate channel effects. This ex-

lains the vast literature on speech enhancement and dereverbera-

ion Hodoshima et al. (2002) ; Arai et al. (2002) . However, improv-

ng speech quality does not necessarily improve speech intelligibil-

ty ( Kim and Loizou, 2010; Hu and Loizou, 2007 ) and factors ex-

laining why speech quality is not directly linked to speech intel-

igibility are studied but not yet well understood ( Loizou and Kim,

011 ). This may be explained by the fact that speech enhancement

lgorithms maximize a cost function which may not be well corre-

ated with speech intelligibility. 

In this work, we focus on a different application, namely the

mprovement of the intelligibility of a spoken message (possibly

riginally uttered in a quiet environment) when rendered in a

oisy environment. A typical application concerns the intelligibil-

ty improvement of speech messages in the car environment (ra-

io, alert messages, telephony,...). The main idea of this work is to

ransform the original speech to Lombard speech or more precisely

o simulate some of the strategies followed by humans to render

heir speech more audible when they are surrounded by noise. In

uch in-car applications, it is always possible to increase the vol-

me of the speech sources, due to the limitation of the audio sys-

em dynamics and moreover for hearing deficient persons it is not

ecessarily suitable. This justifies to seek appropriate voice trans-

ormations without significantly changing the sound loudness. 

Various acoustic features of Lombard speech could be in-

estigated such as the increase of the fundamental frequencies

n specific phonemes, formant center frequencies shifting, sound

http://dx.doi.org/10.1016/j.specom.2017.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/specom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2017.04.007&domain=pdf
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energy redistribution from voiced to unvoiced sounds or vice-

versa, speech rate modification or spectral tilting ( Lombard, 1911;

Van Summers et al., 1988 ; Lu and Cooke, 2008 ; Cooke et al., 2013 ).

However, to keep the perceptual study tractable, we have only con-

sidered three of these effects in this work, namely formant shifting,

time-scale modification and energy redistribution (ER) with spe-

cific transformations for voiced and unvoiced segments. The pro-

posed modifications have been evaluated by means of subjective

and objective tests. The results of these tests conducted with nor-

mal hearing and impaired listeners demonstrate the potential of

the selected transformations for voice intelligibility improvement. 

The remainder of the paper is organized as follows. A brief re-

view of the Lombard effect and voice transformation techniques

is given in Section 2 . We then describe in Section 3 the pro-

posed phonetically-dependant time scale modification. We explain

in Section 4 the process for achieving high quality formant shift-

ing for voiced segments and the integration of the different trans-

formations into a single system (duration scaling, formant shifting

and energy redistribution) is described in Section 5 . Section 6 is

dedicated to performance evaluation. A brief conclusion and some

perspectives are then suggested in Section 7 . 

2. Lombard speech and voice transformation 

There exists a rich literature on finding acoustic-phonetic corre-

lates of intelligibility. For example, it was found that female voices

have a higher intelligibility ( Hazan and Markham, 2004; Barker

and Cooke, 2007 ), that intelligibility is increased when the formant

vocalic triangle is enlarged Bond and Moore (1994) ; Ferguson and

Kewley-Port (2002) or when, in presence of noise, the energy ra-

tio between consonant and vowels is stronger Hazan and Simp-

son (1998) . Other studies aimed at understanding the non-linear

effects of Lombard speech and what are the differences with nor-

mal speech. These studies have shown that speech uttered in the

presence of background noise compared to normal speech may ex-

hibit a lower speech rate, an increase of its fundamental frequency,

a spectral flattening (or increase of the higher frequency or some

frequency regions such as around 3kHz), ( Lu and Cooke, 2008 ;

Steeneken and Hansen, 1999 ; Garnier and Henrich, 2014 ). Never-

theless, some results remain controversial and for example the role

of the increase of fundamental frequency in Lombard speech is not

consensual ( Lu and Cooke, 2009 ). 

The emergence of efficient voice transformation techniques

would permit to transform natural speech into Lombard speech

if all factors were well understood. Indeed, voice transformation

is an active field of research which has witnessed a large num-

ber of novel approaches especially in the last decade ( Stylianou,

2009; Machado and Queiroz, 2010 ). The methods may follow a

speech production model and directly alter the model parameters

(vocal tract and glottal source parameters). At the opposite, they

may rely on a signal model as in Harmonic plus Noise models or

parametric spectral estimation ( Vincent et al., 2010 ). There also ex-

ist a number of hybrid methods exploiting some aspects of speech

production and signal modelling including linear predictive models

( Rao and Yegnanarayana, 2006 ), cepstral analysis or the STRAIGHT

model ( Kawahara, 1997 ). 

For example, efficient algorithms exist for speech rate or pitch

contour modification ( Moulines and Laroche, 1995; Laures and

Bunton, 2003 ). Similarly, a number of voice transformation ap-

proaches have been introduced to change the spectral content or

spectral envelope. Such approaches are typically based on a con-

ventionally learning phase for finding the statistical differences be-

tween the parameters of two voices using Hidden Markov Mod-

els, Gaussian Mixture Model or neural networks ( Nurminen et al.,

2006; Desai et al., 2009 ) or for learning a transformation function
weighted linear interpolations and bilinear models ( Zhang et al.,

008 )). 

However, less work is done in the context of improving speech

ntelligibility in noise environment by synthesizing some aspects of

he Lombard effect. For example, in Skowronski and Harris (2006) ,

nergy redistribution between voiced and unvoiced segments is

mplemented by moving signal energy to targeted regions of rel-

tively high information content which are important for intelligi-

ility. The boosted regions are originally of low energy and there-

ore redistributing the energies to such regions will increase the

ntelligibility. In another work, speech energy is redistributed over

ime and frequency according to a perceptual distortion measure

which is based on a spectro-temporal auditory model) under noise

nvironment ( Taal et al., 2014 ). In Taal and Jensen (2013) , a linear

ime-invariant filter is designed in order to improve speech un-

erstanding in noise by maximizing the speech intelligibility index

SII) under the constraint that the speech energy is held constant.

owever, the noise used in the aforementioned methods was ei-

her white noise or speech shaped noise. 

In Nathwani et al. (2016) , we aimed at improving speech intel-

igibility in car environment by applying formant modifications. It

as, in particular, shown that shifting the central frequency of the

ower formants away from the region of noise resulted in higher

ntelligibility despite the audible degradation of the speech quality.

ne of the outcome of this preliminary study was that the tested

oice transformation was promising but limited. It was also found

hat the artifacts introduced by the voice transformation were par-

icularly detrimental for intelligibility. 

In this paper, we propose an extension of this preliminary work

y incorporating three main effects such as non uniform-time scale

odification, smoothed shifting of formants for voiced segments,

nd a combination of these modifications along with energy re-

istribution. As highlighted in the literature, we have designed

ifferent modifications for voiced and unvoiced segments. Time

caling modification is applied with a different scaling factor for

oiced and unvoiced segments. Formant shifting is only applied on

oiced segments and is dynamically smoothed to limit the pitfalls

f the previous approach. Finally, the third modification includes

he combination of non uniform time scaling, smoothed shifting

f formants for voiced parts and energy redistribution between

oiced and unvoiced segments to synthesize the Lombard speech.

hese different modifications are further described in the following

ections. 

. Speech rate modification 

Slowing down the recorded speech helps transcribing recorded

otes and practicing spoken languages, and blind people with de-

eloped hearing sense may prefer accelerated speech when listen-

ng to recorded audio books to save time. Speech rate is obviously

n important parameter in speech intelligibility. In this work we

xplore the potential impact of lowering the speech rate with dif-

erent scaling factor for voiced and unvoiced segments Kupryjanow

nd Czyzewski (2012) , Erogul and Karagoz (1998) , Yang et al.

2008) . 

.1. Algorithm for non uniform-Time scaling modification (NU-TSM) 

The motivation for using different scaling factor comes

rom the fact that lengthening of the vowels, consonants and

hone-transitions have different impact on speech intelligibility

 Kupryjanow and Czyzewski, 2012; Erogul and Karagoz, 1998 ) com-

ared to the uniform time scaling. In Kupryjanow and Czyzewski

2012) , it is in particular shown that time scaling the vowel by a

igher factor than for the consonants, while keeping the phone-

ransitions unchanged improves intelligibility. 
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Fig. 1. Flow diagram for the proposed non uniform-time scale modification. 
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Fig. 1 shows the flow diagram for the non uniform - time scale

odification based on different scaling factor for voiced and un-

oiced segments. The clean speech signal is first segmented into

uccessive overlapping frames. Thereafter, the voiced and unvoiced

V/UV) decision is made framewise. The V/UV knowledge is then

sed to obtain the analysis pitch marks ( t a ) from the clean speech

ignal. The synthesis pitch marks ( t s ) are then obtained from the

nalysis pitch marks by using different scaling factor for V/UV seg-

ents. Finally short time analysis signals are then combined based

n streams of synthesis pitch marks using the pitch synchronous

verlap and add (PSOLA) method to obtain time scaled signal. 

The algorithmic steps involved in time scale modification with

on uniform scaling factor for voiced and unvoiced segments are

s follows. 

1. Input : Clean Speech Signal, α (unvoiced scaling factor) and β
(voiced scaling factor). 

2. Framing : The clean speech signal is segmented into frames by

using 25 ms Hanning window. 

3. Voiced and Unvoiced (V/UV) detection : The segmented speech

frame is then passed to V/UV segment detector. In this work,

the yet another algorithm for pitch tracking (YAAPT) algorithm

( Zahorian and Hu, 2008 ) which uses the combination of spec-

tral and temporal information to track the best candidate for

fundamental frequencies, is used for V/UV decision. However,

the normalized low frequency energy ratio (NLFER) is used as

initial V/UV detector for pitch tracking in YAAPT as detailed in

Zahorian and Hu (2008) . 

4. Analysis Pitch Mark (APM) selection : The analysis pitch marks

for voiced segments are then estimated using the pitch val-

ues obtained from the previous step. The procedure to obtain

pitch marks is based on the PRAAT pitch marking algorithm

( Kotnik et al., 2006; Hagmüller and Kubin, 2006 ). PRAAT al-

gorithm is based on the auto-correlation method to perform

acoustic periodicity detection. The implementation for comput-

ing the analysis pitch marks using PRAAT is as follows. The first

pitch mark is obtained as the maximum in the interval t 0 − T 
2 

to t 0 + 

T 
2 . Here, t 0 corresponds to the middle of the speech ex-

cerpt and T is the pitch period at t 0 . The previous (resp. next)

pitch mark of t 0 is searched in the interval t 0 − 1 . 2 T to t 0 − 0 . 8 T 

(resp. t 0 + 0 . 8 T to t 0 + 1 . 2 T ). The exact locations are given by

the maximum in this interval. This process is repeated until

all pitch marks are found. For unvoiced segments, the analy-

sis marks are equally spaced according to the analysis window

length. 

5. Synthesis Pitch Mark selection : Next step is to obtain synthe-

sis pitch marks with different scaling factors for voiced and un-

voiced regions. The first synthesis pitch mark is taken equal to

the first analysis pitch mark. If the next frame is unvoiced, t s 
for the current frame (( m ) th ) is obtained as 

t s (m ) = t s (m − 1) + α(t a (m ) − t a (m − 1)) (1)

On the other hand, if the frame is voiced, t s for the current

frame (( m ) th ) is obtained as 
t s (m ) = t s (m − 1) + β(t a (m ) − t a (m − 1)) (2) T  
6. Synthesis : Finally, the non uniform-time scaled signal is ob-

tained by combining the analysis waveforms synchronized on

the stream of synthesis pitch marks using the PSOLA method. 

7. Normalization : The variance of the synthesized signal is finally

normalized to the original signal. 

8. Output : Non uniform time scaled signal. 

. Formant shifting 

The formant shifting procedure described in Nathwani et al.

2016) improved the intelligibility for a majority of listeners in

igh speed car noise but with however a high standard deviation

n the statistical performance. This variability in the results can

e explained by artifacts introduced by the voice transformation

lgorithm. If at very low SNRs, these artifacts are inaudible (e.g.

hey are masked by the background noise), they become annoy-

ng and detrimental to intelligibility at high SNRs. However, it may

e noted that the formant shift method ( Nathwani et al., 2016 )

emain rather small limiting the possibilities of vowel changes.

urthermore, it was noticed that artifacts due to sound trans-

ormation was the most detrimental factor for intelligibility de-

rease. Additionally, It should also be noted that the HINT protocol

 Vaillancourt et al., 2005 ) (used in this work for subjective evalu-

tion) using whole sentences is probably less sensitive to localised

potential) vowel changes than other types of intelligibility tests

ased on short meaningless phonetic sequences. 

Hence, we propose in this work two extensions to our pre-

iminary study. First, we here apply formant shifting to voiced

egments only. Indeed, the concept of formant shifting does not

eem to be effective for unvoiced sounds and leaving the unvoiced

omponent unaltered helps to better preserve naturalness of the

ransformed speech ( Amano-Kusumoto and Hosom, 2011; Moon

nd Lindblom, 1994 ). Second, we have observed that artifacts are

ostly due to sudden changes in formant trajectories. We then in-

roduce a smoothing step which softens the altered formant trajec-

ories and therefore limits the pitfalls of the previous approach. 

.1. Algorithm for smoothed shifting of formants for voiced segments 

SSFV) 

The formant shifting procedure described in Nathwani et al.

2016) is optimized for a typical car noise and is not adaptive to

ariable noise characteristics. However, the formant shifting pro-

edure could lead to audible artifacts when applied too aggres-

ively. The smoothing technique has been added to avoid abrupt

umps in formant shifts from a frame to another and thus to lessen

hose artifacts. Fig. 2 shows the block diagram for smoothed shift-

ng of formants for voiced segments based voice transformation

echnique. The clean speech signal is first segmented into succes-

ive frames. Each speech frame is then identified as either voiced

r unvoiced segment. The auto regressive (AR) modelling is then

pplied on each frame to get the linear prediction (LP) coefficients.

rom LP coefficients, the poles and formant location are computed.

he formants of the voiced segments are then finally shifted away
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Fig. 2. Block diagram illustrating the proposed smoothed shifting of formant for voiced segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Delta function used for the proposed smoothed shifting of formants for 

voiced segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from the region of noise. The amount of formant shift in Hertz for

each speech frame is characterized by a delta function δ( F ) (see

below). The smoothing step consists of low-pass filtering the suc-

cessive frequency shift values using a simple exponential smooth-

ing model ( Brown, 1959 ). Finally, an updated set of LP coefficients

are obtained from the shifted poles and served to synthesis step

(e.g. Spectral Masking and Overlap and Add) to obtain the modi-

fied speech signal. 

The detailed algorithmic steps of the proposed smoothed shift-

ing of formants for voiced segments are given below. 

1. Input : Clean speech signal, smoothing factor ( ζ ). 

2. Framing : The clean speech signal is segmented into shorter

frames using a Hanning window of 25 ms duration. 

3. Voiced and Unvoiced (V/UV) decision : The voiced and un-

voiced decision is then made on each frame using the YAAPT

algorithm ( Zahorian and Hu, 2008 ). The unvoiced segments are

unaltered during the process. However, the LPC coefficients are

computed from the voiced segments. 

4. AR modeling : An AR model is a powerful front end tool to

process speech signal. In AR model, a speech frame signal s ( n,

m ) can be expressed in terms of a p th order linear predictor

( Rabiner and Schafer, 1978; Nathwani et al., 2016 ). Here, n and

m correspond to speech sample and short time frame indices

respectively. The order of linear predictor ( p ) is equal to 12. 

5. Poles and formants computation : The LP filter A ( f, m ) is then

computed from LP coefficients ( a k ( m ) of the m 

th frame) as 

A ( f, m ) = 1 + 

p ∑ 

k =1 

a k (m ) e − j2 π f k (3)

The poles P ( k, m ) and formant frequencies F ( k, m ) are then es-

timated as the roots of the LP filter A ( f, m ) and the angle of

estimated poles respectively. Here k and f correspond to the

formant frequency index and STFT frequency bin index respec-

tively. 

6. Smoothed shifting of formants : The formants obtained from

voiced segments in previous steps are then shifted upwards by

an amount specified by a delta function δ( F ). The formants from

unvoiced segments are not shifted during the process. The delta

function δ( F ) used in this case is shown in Fig. 3 . It may be

noted that the delta function shape should depend on the noise

statistics. In this work, some instances of typical car noises

were used to design a simple piecewise linear shape for the

delta function so that the formants are shifted away from the

noise region. As described in Nathwani et al. (2016) we have

chosen the different shapes of the delta function based on the

best PESQ and SII scores for a given car noise. This is obviously

suboptimal in real conditions with noises of variable spectral

characteristics. However, we rather aim at demonstrating the

potential of the proposed approach and the design of an op-

timal noise adaptive delta function is beyond the scope of this

paper and left for future research. Once the value of the shift

ρ( k, m ) is obtained for the k -th formant frequency by apply-

ing the delta function such that ρ(k, m ) = δ(F (k, m )) , the new
formant frequency ˆ F (k, m ) for the m 

th frame is obtained in the

following manner: 

ˆ F (k, m ) = F (k, m ) + �(k, m ) (4)

where the smoothed shifting value ( �( k, m )) is obtained by

smoothing ρ( k, m ) across the time frames using a simple ex-

ponential model ( Brown, 1959 ). Hence 

�(k, m ) = ζρ(k, m ) + (1 − ζ ) ρ(k, m − 1) (5)

where ζ denotes a positive factor such as 0 < ζ < 1. 

7. Computation of new poles and LP coefficients : The new poles
ˆ P (k, m ) are then computed from the estimated new formant

frequency ˆ F (k, m ) as 

ˆ P (k, m ) = Be j2 π
ˆ F (k,m ) (6)

Here, B is the amplitude of the original poles. The modified LP

coefficients are then easily obtained from the new filter built

for the new poles ˆ P (k, m ) . 

8. Spectral masking : A direct synthesis using the modified LP co-

efficients results in good speech quality on average but with

some rare but annoying localised artifacts. To reduce these ar-

tifacts which are mostly due to phase incoherence, the mag-

nitude of the original speech spectrum is modified in order to

match the modified LP spectrum while the original phase spec-

trum is kept. 

Given S( f, m ) = | S( f, m ) | e jφ( f,m ) , the short time Fourier trans-

form of an original speech frame s ( n, m ) and | A ( f, m )| is the

module of the LP spectrum of s ( n, m ), the modified speech

frame spectrum S ′ ( f, m ) is then obtained as 

S ′ ( f, m ) = | S( f , m ) | . | A 

′ ( f , m ) | / | A ( f , m ) | e jφ( f,m ) (7)

Here, A 

′ ( f, m ) is the STFT of the modified LP coefficients and

φ( f, m ) is the short time phase spectrum. The modified speech
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Fig. 4. Filter spectrum of original signal, formant shi fted signal ( Nathwani et al., 

2016 ) and signal obtained by smoothed shifting of formants for voiced segments, in 

particular frames. 
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Fig. 5. Delta function values used in proposed formant shifting for voiced segments 

with and without smoothing are illustrated for first and second formant frequencies 

across the time frames. 
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frame is then obtained by inverse Fourier transform and its

overall energy is equalized to the energy of the unprocessed

frame. 

9. Overlap and add (OLA) method : Finally, the modified signal is

obtained using classic Overlap and Add synthesis. 

0. Output : Modified speech signal. 

.2. Significance of smoothing in artifacts reduction 

In Nathwani et al. (2016) , it was particularly shown that shifting

he central frequency of the lower formants away from the noise

egion resulted in higher intelligibility despite the audible degra-

ation of the speech quality. These degradations are possibly due

o the artifacts generated during the voice transformation. One of

he main reasons of such artifacts was due to the sudden changes

n formant trajectories across the frames. 

In Fig. 4 , an example is shown for the artifacts introduced by

he voice transformation algorithm proposed in Nathwani et al.

2016) . In order to illustrate the effect of smoothing the altered

ormant trajectories, the filter spectrum for the original signal,

ormant shifted signal for voiced segments followed by smooth-

ng and formant shifted signal (FS) without smoothing ( Nathwani

t al., 2016 ), are presented for particular voiced speech frames. It

an be seen from Fig. 4 that the lower formants of FS method is

hifted too aggressively compared to the original signal causing

isturbance in the naturalness of the signal and degradation of the

udio quality. However in the SSFV filter spectrum, formant shift-

ng is only applied on the voiced segments leaving the unvoiced

egments unaltered to preserve the naturalness of the signal. This

s followed by dynamically smoothing to soften the altered for-

ants trajectories and therefore limit the pitfalls of the previous

pproach ( Nathwani et al., 2016 ). Thus, the SSFV filter spectrum

as been able to shift the spectrum away from the region of noise

ithout causing significant artifacts in the spectrum. 

In an another attempt to justify the significance of the smooth-

ng in artifacts reduction, the delta function values obtained before

nd after smoothing for first and second formant frequencies are

hown in Fig. 5 for a particular sentence. 

It can be seen from Fig. 5 that �( F ) and δ( F ) is zero for un-

oiced segments as there is no shifting performed for such seg-
ents as explained in Section 4 . On the other hand, the delta

unction values obtained before ( δ( F )) and after smoothing ( �( F ))

hould have some non zero coefficients for voiced segments, de-

ending on which formant frequencies lie inside the delta function

hape. However, during transition from voiced to unvoiced seg-

ents, the first unvoiced segment is likely affected due to smooth-

ng used in �( F ) compared to δ( F ). Thus, Fig. 5 indicates that the

moothing step softens the altered formant trajectories when �( F )

s used in formant shifting instead of δ( F ). 

Indeed, in Fig. 4 of the manuscript, we have displayed the mod-

fications by showing the magnitude spectra of some voiced speech

rames for the original signal, the formant shifted signal without

moothing Nathwani et al. (2016) and formant shifted signal with

moothing. For most unvoiced segments, it is not desirable to per-

orm formant shifts. As a result, in the SSFV approach we only

ransformed voiced frames and use a smoothing step to guaranty

mooth transitions in time. To illustrate this, we have shown the

uccessive speech spectra of two segments containing a transition

rom voiced (resp. unvoiced) to unvoiced (resp. voiced) frames in

ig. 6 . 

It has been observed that in general, during transition from un-

oiced to voiced segment and vice-versa, the filter spectrum of

SFV at end points of unvoiced segments are most likely to be

ifferent from the original filter spectrum. This could be due to

moothing effect which results in very small non zero values for

( F ) for transition unvoiced segments. The similar observation can

e seen for SSFV filter spectrum from Fig. 6 . 

. Combined speech modifications 

In this section, we propose to combine several modifications

amely, the non-uniform time scaling, smoothed shifting of for-

ants for voiced segments and energy redistribution. 

.1. Energy redistribution 

Energy redistribution as introduced in Skowronski and Harris

2006) is a rather simple modification which automatically in-

reases the intelligibility of speech in noisy environment while

reserving the overall signal power and naturalness of the origi-

al speech. More precisely, the rationale behind the energy redis-

ribution modification is to boost unvoiced segments and to reduce

oiced segments with the constraint to limit sound harshness. This

n turn mimics the Lombard effect by accentuating phonetic con-

rast. Originally, the energy of the signal is ”moved” to targeted

egions of relatively high information content which are important
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Fig. 6. Filter spectrum for consecutive voiced and unvoiced frames. 

Fig. 7. Flow diagram of the proposed combined duration scaling, smoothed shifting of formants for voiced segments and energy redistribution modification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for intelligibility. The boosted regions are originally of low energy

and therefore redistributing the energy to such regions increases

intelligibility while preserving the naturalness of the signal. 

Here, energy redistribution is done between voiced and un-

voiced segments only. Unvoiced regions typically have less power

than voiced regions and are more easily obscured by noise in the

listener’s environment. By boosting unvoiced regions, the energy of

the unvoiced speech is raised above the noise resulting in intelligi-

bility increment. The transition between voiced and unvoiced gain

factors is finally smoothed by a 20 ms linear interpolation. The

word utterance is then scaled by a normalizing gain factor such

that the modified word energy is the same as the original word

energy. It may also be noted that the scaling factor used to boost

the unvoiced segments is selected in such a way that naturalness

of the signals is preserved. 

5.2. Algorithm for combined speech modifications 

Fig. 7 illustrates the block diagram of the proposed combined

speech modification obtained by Fusion of non uniform-Time scal-

ing, Smoothed shifting of Formants for voiced segments and En-

ergy redistribution (FTSFE) between voiced and unvoiced seg-

ments. 

The algorithmic steps for achieving the combined speech mod-

ifications are as follows. 

1. Input : Clean speech signal, λ (unvoiced gain factor), μ (voiced

gain factor), smoothing factor ( ζ ), α (unvoiced scaling factor)

and β (voiced scaling factor). 
2. The clean speech signal is first segmented into successive

frames by using a Hanning window of 25 ms. Thereafter, the

voiced and unvoiced decision is made framewise using the

YAAPT algorithm. 

3. The analysis pitch marks and fixed analysis marks ( t a ) are

then estimated from the voiced and unvoiced segments re-

spectively. However, it may also be noted that PRAAT pitch

marking algorithm ( Kotnik et al., 2006; Hagmüller and Kubin,

2006 ) is used to compute pitch marks for voiced segments. On

the other hand, analysis marks for unvoiced segments are ob-

tained at fixed analysis window. This is followed by synthesis

pitch marks ( t s ) computation from t a . The detailed procedure of

analysis and synthesis pitch marks selection can be seen from

Section 3.1 . 

4. The smoothed shifting of formant algorithm described in

Section 4 (AR modelling, smoothed shifting of formants for

voiced segments, new poles computing and spectral masking)

is then applied on voiced segments to obtain the shifted for-

mant speech frame. 

5. The smooth shifted formant speech frame is then multiplied

by either a voiced ( μ) or unvoiced ( λ) gain factor depend-

ing on the voiced or unvoiced segment respectively. This step

smoothly redistributes the energy between voiced and unvoiced

segments. 

6. The modified speech signal is then obtained by combining the

modified (smoothed formant shifted) speech frames synchro-

nized on the streams of synthesis pitch marks t s . Thus, the

pitch synchronous overlap-add method is used for this purpose.
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Fig. 8. Power Spectrum Density (PSD) of the car noise recorded at 130 km/h. 
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7. The overall energy of the modified signal is then normalized to

the original signal. 

8. Output : Modified speech signal. 

. Performance evaluation 

The impact of the proposed modifications on intelligibility is

valuated using subjective and objective evaluation at different

NRs. The subjective test is performed based on the hearing in

oise test (HINT) protocol ( Nilsson et al., 1994 ). The objective mea-

ures used for evaluating intelligibility are speech intelligibility in-

ex (SII) Taal et al. (2010) , perceptual evaluation of speech quality

PESQ) Rix et al. (2001) , log likelihood ratio (LLR), weighted spec-

ral slope (WSS) Loizou (2013) and mutual information (MI) Taghia

nd Martin (2014) . Spectrographic analysis is also performed to

est its coherence with other evaluations. 

.1. Development of the database and material 

The French lists for HINT were adapted from the English version

n Vaillancourt et al. (2005) . Hence, 5 lists of 20 sentences used for

he test were taken from an audiometry CD recording ( CND, 2015 ).

he 4 modifications (ER, NU-TSM, SSFV, FTSFE) along with the ref-

rence clean signal (NM) were applied to those lists. The car noise

as recorded using a Head Acoustics dummy head in a mid-size

ar at 130 km/h steady speed. The power density spectrum of the

oise is illustrated in Fig. 8 . It can be seen that it contains few en-

rgies/frequencies above 10 0 0 Hz with a constant decrease of ener-

ies with frequency. Thus, the positive shift of the delta function in

ormant shifting should increase the SNR of the shifted formants. 

Finally the sentences obtained from 4 modifications along with

he clean reference signal are mixed with the car noise record-

ng at various SNRs (which are selected empirically). The mix was

resented under Sennheiser HD650 headphones and played from

 Head Acoustics Digital Equalizer (PEQ V). The level of the noise

s set at 67 dB speech perception level (SPL) as it was the level

n the car during the recording and only the level of the speech

s varying across the experiments. Speech perception level seeks to

nderstand how human listeners recognize speech sounds and use

his information to understand spoken language. 

.2. Parameters selection for different modifications 

In the duration scaling modification (NU-TSM), the voiced seg-

ents are scaled by β = 1 . 4 and unvoiced segments are scaled by
= 1 . 2 . In the context of SSFV modification, the smoothing factor

is equal to 0.66. It is observed that this smoothing factor value

oftens the altered formant trajectories, while preserving the natu-

alness of the signal. In fact, the selection of the smoothing factor

s highly dependent on the altered formant trajectories which in

urn is dependant on noise statistics. The unvoiced ( λ) and voiced

 μ) gain factor used for energy redistribution are 1.4 and 0.9 re-

pectively. However, it may be noted that the same parameters are

sed in FTSFE modification as used in individual modifications. 

The general strategy to select the aforementioned parameters

re based on best PESQ and SII scores for different modifications

n the HINT database. In this work, PESQ and SII scores are ob-

ained between the synthesized signal (obtained from ER, NU-TSM,

SFV and FTSFE) and the synthesized signal added with noise at

ifferent SNRs. These PESQ and SII scores are also compared with

he PESQ and SII scores of the ”“no modification” case. We also

ake sure that modifications should be done in such a way that

he naturalness of the signal should be preserved. This is ensured

y not allowing the PESQ scores between the clean speech and

ynthesized speech to go less than 3. 

.3. Objective evaluation 

.3.1. Evaluation based on PESQ, LLR, WSS and SII measures 

PESQ analyzes the speech signal sample-by-sample after the

emporal alignment of corresponding excerpts of the synthesized

ignal (SS) and the synthesized signal added with noise (SSN).

ESQ principally models mean opinion score (MOS) results that

over a scale from 1 (bad) to 5 (excellent). WSS is a distance mea-

ure which computes the weighted difference between the spectral

lopes of SS and SSN in each frequency band. LLR is a LPC-based

easure which finds the spectral envelope difference between the

S and SSN ( Ma et al., 2009 ). SII model ( Taal et al., 2010 ) basically

alculates the average amount of speech information available to a

istener. The value of the SII varies from 0 (completely unintelligi-

le) to 1 (perfect intelligibility). 

Table 1 shows the mean scores for all the objective measures

t various SNRs for different modifications. These mean objective

cores are computed on all the sentences of the database. In gen-

ral, a method having higher SII, PESQ scores and lower LLR, WSS

cores is supposed to lead to higher intelligibility ( Loizou, 2013 )

or the modified speech compared to the original speech when

layed in noise. The objective scores for NU-TSM have not been

eported herein since NU-TSM cannot be properly assessed by ob-

ective measures. This may be due to the needed alignment pro-

ess (required in PESQ, SII etc.) which will likely compensate the

ime-scaling. Although it is not appropriate to evaluate the ef-

ect of time-scaling on intelligibility with these objective mea-

ures, it is possible to assess other approaches which combine sev-

ral modifications. We have then included objective evaluations for

TSFE as it is the combination of different effects (SSFV, ER and

U-TSM). 

It can be seen from Table 1 that higher SII and PESQ scores

long with lower LLR and WSS scores are observed at various

NRs for the modification SSFV over NM. This indicates the sig-

ificance of SSFV in intelligibility improvement under high speed

ar noise. In comparison to ER ( Skowronski and Harris, 2006 ),

SFV has shown better objective scores at most of the SNR val-

es. The third modification FTSFE has been an adequate compro-

ise between the two modifications NU-TSM and SSFV by incor-

orating the properties of individual modifications. It can also be

een from the Table 1 that the FTSFE has best PESQ, WSS and LLR

cores compared to other modifications. However, FTSFE has ap-

roximately similar SII scores to SSFV modification. This indicates

hat the effect of SSFV and ER modifications have compensated the

ime alignment effect in FTSFE objective scores. Additionally, we
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Table 1 

Mean objective scores for all 5 conditions using SII, PESQ, LLR and WSS measures at different SNRs. Here, NM : No Modification, ER : Energy Redistribution, NU-TSM : Non 

Uniform-Time Scale Modification, SSFV : smoothed shifting of formants for voiced segments and FTSFE : Fusion of Time Scale, Smoothed shifting of Formants for voiced 

segments and Energy Redistribution Modification. 

Method SNR = −26 SNR = −14 SNR = −8 SNR = 0 SNR = 10 

SII PESQ LLR WSS SII PESQ LLR WSS SII PESQ LLR WSS SII PESQ LLR WSS SII PESQ LLR WSS 

NM 0.39 1.26 1.37 70.43 0.63 1.91 0.61 64.18 0.76 2.31 0.42 55.48 0.89 2.94 0.26 40.96 0.98 3.73 0.14 23.29 

ER 0.37 1.41 0.96 71.94 0.61 2.04 0.58 64.47 0.75 2.45 0.40 55.14 0.89 3.06 0.23 40.05 0.97 3.80 0.10 21.69 

SSFV 0.42 1.49 1.31 68.70 0.64 2.02 0.56 62.15 0.77 2.42 0.38 53.85 0.89 3.04 0.24 39.90 0.98 3.79 0.13 22.74 

FTSFE 0.40 1.57 0.92 67.76 0.63 2.19 0.53 60.27 0.76 2.59 0.37 51.60 0.89 3.22 0.22 37.79 0.97 3.90 0.11 21.13 

SSFV + ER 0.40 1.50 0.94 69.70 0.62 2.12 0.54 62.23 0.75 2.51 0.37 53.41 0.89 3.12 0.21 39.17 0.97 3.84 0.10 21.51 

Table 2 

Mean MI scores for all modifications at different SNRs. 

Method SNR = −26 SNR = −14 SNR = −8 SNR = 0 SNR = 10 

MIP MIR MIP MIR MIP MIR MIP MIR MIP MIR 

NM 2.24 0.05 10.20 0.24 20.68 0.49 39.26 0.92 63.27 1.49 

ER 2.46 0.06 10.87 0.26 21.31 0.51 39.51 0.94 63.30 1.51 

NU-TSM 3.74 0.09 11.57 0.30 21.50 0.55 39.02 1.00 61.87 1.59 

SSFV 2.59 0.06 12.23 0.27 22.51 0.53 40.50 0.95 63.66 1.50 

FTSFE 3.00 0.08 13.36 0.35 23.64 0.61 40.79 1.06 63.34 1.64 

SSFV + ER 2.76 0.06 12.45 0.29 22.71 0.54 40.36 0.96 63.41 1.51 
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have also obtained the scores for SSFV+ER to analyse its impact on

intelligibility and compare with FTSFE. It is observed that the per-

formance of SSFV+ER lies between FTSFE and SSFV at various SNRs.

Hence, it can be concluded that the combined effect, whether it

is FTSFE or SSFV+ER, has shown improvement in objective scores

compared to corresponding individual modifications. However on

increasing the SNR to further high values, it is observed that the

difference in intelligibility between no modification and all modifi-

cations vanishes. This indicates that there is no need to modify the

original signal at high SNRs. 

6.3.2. Evaluation based on mutual information measure ( Taghia and 

Martin, 2014 ) 

Mutual information (MI) is an another measure used for evalu-

ating the speech intelligibility improvement in noise. MI is a mea-

sure of dependence between the two random variables that ac-

count for higher order statistics, and hence to consider dependen-

cies beyond the conventional second order statistics ( Taghia and

Martin, 2014; Taghia et al., 2012 ). To estimate the MI scores, input

signals are first transformed into 15 subbands by using a 1/3 oc-

tave band filter bank. Thereafter, the mutual information between

the amplitude envelopes of the reference and the test signals is

estimated per subband to evaluate auditory perception ( Taghia

and Martin, 2014 ). Here, reference signal correspond to synthe-

sized signal obtained from different modifications (including NM)

and test signal is the corresponding synthesized signal added with

noise. 

Table 2 presents the normalized mean mutual information

scores in percentage (MIP) and instrumental intelligibility scores

before normalization (MIR) ( Taghia and Martin, 2014; Taghia et al.,

2012 ) computed on complete database. The proposed modification

FTSFE illustrates higher MIP and MIR scores over other modifica-

tions at various SNRs indicating its significance for speech intelli-

gibility tasks. In general, the higher the mutual information scores,

the stronger the dependency between the reference and the test

signal. This in turn leads to a higher intelligibility improvement

for the corresponding modification. SSFV+ER modification shows

the second best performance for mutual information scores af-

ter FTSFE. However, it is interesting to observe that MIR scores

for NU-TSM are slightly better than SSFV at various SNRs. Addi-

tionally, as the SNR increases to very high values, the MIP and

MIR scores are approximately similar for all modifications. Thus,

the Tables 1 and 2 indicate that inclusion of several modifica-
ion is beneficial for intelligibility improvement under car noise

nvironment. 

.4. Subjective evaluation 

.4.1. HINT protocol and participants for subjective evaluation 

A slightly modified Hearing In Noise Test (HINT) ( Vaillancourt

t al., 2005 ) is used for measuring the enhancement of intelligibil-

ty provided by the different speech treatments. A speech recep-

ion threshold (SRT) is obtained for each 5 conditions. A total of 31

ative French speaking male and female subjects participated to

he test. Out of 31 subjects, 19 subjects were screened out normal

earing (mean besides 20 dB HL over 0.5–6 kHz) and remaining

2 subjects were hearing impaired. Their ages ranged from 21 to

9 years with a mean age of 35. 

The subjects are asked to listen to a sentence and to repeat

loud what they hear. The first sentence is presented at a level be-

ow the SRT, usually at -30 dB. Then the SNR is increased by 2 dB

teps until it is repeated correctly. The subsequent sentences are

resented once each (in order to avoid training effect) at a level

epending on the correct repetition of the preceding sentence. If

t is repeated correctly, presentation level is attenuated by 2 dB,

therwise it is increased by 2 dB. For each condition, a 20 sen-

ences list is presented in a random order. There is one list per

ondition. The presentation order of the 5 conditions is balanced

ver the participants as well as the presentation of the lists. The

xperimenter compares the listener’s response to a text version to

etermine whether it is correct or not. Small variations in the sen-

ences are allowed as specified in ( Nilsson et al., 1994 ). The level of

he noise is fixed to 67 dB SPL as it was the level in the car dur-

ng the recording, only the level of the speech is varying between

uccessive sound examples Vaillancourt et al. (2005) . 

.4.2. Experimental results 

In this section, speech reception thresholds (SRT) for each con-

ition/modification is compared to the reference no modification

NM) condition. SRTs have been averaged over the last fifteen SNR

btained with HINT. The relative threshold (RT) (in dB) is obtained

y taking the difference between the SRT of NM and SRT of each

odification. A positive relative threshold indicates an improve-

ent in intelligibility for the particular modification. 

Table 3 i llustrates the number of participants showing positive

nd negative RT (who gets benefit or not) from each modification.
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Table 3 

Number of participants having positive and negative relative thresholds for different modifications. 

Methods Total sum of RT ( TSRT ) Different combinations of RT from −3 to 3 dB 

T SRT ≤ −1 TSRT ≥ 1 RT ≤ −3 −3 < RT ≤ −2 −2 < RT ≤ −1 −1 < RT < 1 1 ≤ RT < 2 2 ≤ RT < 3 RT ≥ 3 

ER 5 13 1 2 2 13 5 6 2 

NU-TSM 8 10 1 2 5 13 4 5 1 

SSFV 6 15 0 2 4 10 7 2 6 

FTSFE 1 23 0 1 0 7 7 10 6 
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Fig. 9. Statistical analysis of the RT obtained from subjective evaluation. 
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e have considered that results with RT between −1 and 1 dB

re not significant and hence are not further discussed below. In

eneral, a method which gathers the highest and the lowest num-

er of participants with positive and negative relative threshold

espectively, is considered to be most useful for the intelligibility

mprovement task. The following conclusions which can be drawn

rom Table 3 are explained below. 

• Out of total 31 subjects, the modifications ER, NU-TSM, SSFV

and FTSFE have 13, 10, 15 and 23 subjects with RT significantly

exceeding 1 dB respectively. 

• Only one participant has RT ≤ −1 dB for FTSFE modification

compared to at least 5 participants for the other modifications. 

• On the extreme cases of RT, the FTSFE and SSFV modifications

have 0 and 6 participants each with RT ≤ −3 and RT ≥ 3 dB

respectively, which is the best in comparison to other modifi-

cations. 

• In addition, the modifications SSFV and FTSFE gather the great-

est number of participants with 1 ≤ RT < 2 dB. 

Hence in a nutshell, the proposed modification FTSFE has been

ost promising in the intelligibility improvement task in the high

peed car noise by incorporating the properties of individual mod-

fications. Additionally, the SSFV modification has shown second

est performance after FTSFE. 

Fig. 9 gives a statistical analysis of RT obtained from the sub-

ective evaluation using total 31 subjects (TS), 19 normal subjects

NS) and 12 hearing impaired subjects (HIS). It can be seen from

ig. 9 that ER and NU-TSM do not provide significant mean im-

rovement in intelligibility. On the contrary, SSFV and FTSFE show

reater mean improvement in intelligibility for all subjects (includ-
ng normal and impaired) with the highest maximum mean value

nd lowest minimum value is observed for SSFV and FTSFE re-

pectively. Additionally, the standard deviation of the FTSFE mod-

fication indicates that it is possible to get a greater improve-

ent (5.6 dB for maximum value) and a very low probability

o have a possible degradation of the intelligibility (due to one

ubject). 

When comparing the statistical analysis of HIS and NS popu-

ations, it is observed that the mean scores for ER, NU-TSM and

SFV are higher with lower standard deviation for HIS population

n comparison to NS population. Although, the maximum mean

alues for all modifications are higher for NS compared to HIS pop-

lation. On the other hand, the mean score for FTSFE modification

nder HIS population is lower than NS population. However, the

east standard deviation and positive minimum mean value are ob-

erved for HIS in comparison to NS, when FTSFE modification is

sed. 

In addition, we have run an ANOVA analysis along with a Dun-

an multiple range test which have highlighted that for impaired

isteners the difference between SSFV and FTSF is not significative

ut that they both bring significant improvement compared to NM.

or normal listeners, these statistic analyses have shown that the

mprovement brought by FTSFE is significant compared to all other

pproaches. 

These findings indicates the significance of the proposed modi-

cations in intelligibility improvement under high speed car noise

or both normal and impaired listeners. Some of the French sound

xamples used in the experiments are accessible at http://perso.

elecom-paristech.fr/ ∼bedavid/karan/index.html . We have also pre-

ented some English sound examples on the webpage. However,

http://perso.telecom-paristech.fr/~bedavid/karan/index.html
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Fig. 10. Spectrograms of different modifications in the presence of noise at −8 dB SNR. 
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these English sound examples have not been used in the subjec-

tive and objective evaluations. 

6.5. Spectrograhic analysis 

This section deals with the spectrograhic analysis obtained from

different modifications at SNR equal to -8 dB along with the clean

speech spectrogram ( Fig. 10 (a)). It may be noted that the speech

signals are sampled at 44.1 KHz but their spectrograms are only

displayed for frequencies up to 2.5 KHz since most speech modi-

fications are below 1 KHz. It can be clearly seen from Fig. 10 (b)

that the noise has masked low frequency spectrum of the clean

speech completely, resulting in a significant loss of formants vis-

ibility which are crucial for intelligibility. The ER spectrogram in

Fig. 10 (c) has strengthened the unvoiced segments which are ob-

scured due to the addition of noise. This results in slight improve-

ment of speech formants visibility in noise compared to NM. Simi-

larly, the improvement in formants visibility is observed from NU-

SM spectrogram ( Fig. 10 (d)) due to formants widening. 

On the other hand, the spectrogram of SSFV modification

( Fig. 10 (e)) has been able to highlight the speech formants in

the presence of low frequency noise spectrum better than NM,

ER and NU-TSM modifications. This is due to the shifting of low

frequency speech formants upward away from the region of noise

spectrum. Additionally, it can also be observed from FTSFE spectro-

gram shown in Fig. 10 (f) that the low frequency spectrum is pre-

served better than any other modifications with higher visibility of

formants. This is because FTSFE utilizes the combined properties of

individual modifications. Hence, it can be concluded that the FTSFE

has been an adequate compromise between NU-TSM and SSFV. 

7. Conclusion and future scope 

In this work, we focused on improving speech intelligibility for

in-car applications by transforming normal speech to Lombard-like

speech. This transformation is achieved by using a set of voice

conversion effects namely, non uniform-time scale modification,

smoothed shifting of formants for voiced segments and energy re-

distribution between voiced and unvoiced segments. The subjective

and objective evaluations have shown significant voice intelligibil-

ity improvement for normal hearing and hearing impaired listen-

ers using the proposed modifications. Additionally, the combined

model gathers the greatest number of participants with positive
elative threshold in comparison to other modifications. The spec-

rographic evaluation for the hybrid model also highlights the vis-

bility of speech formants in the noise better than any other mod-

fications. 

Future scope would be to investigate new methods which will

onsider hearing abilities of impaired persons in shifting the for-

ants away from the region of their loss. Additionally, it would be

nteresting to investigate the effect of pitch shifting or pitch mod-

lation for intelligibility improvement. 
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