
1

Robust Downbeat Tracking Using an Ensemble of
Convolutional Networks

Simon Durand, Juan Pablo Bello, Bertrand David, and Gaël Richard

Abstract—In this paper, we present a novel state of the art
system for automatic downbeat tracking from music signals. The
audio signal is first segmented in frames which are synchronized
at the tatum level of the music. We then extract different kind
of features based on harmony, melody, rhythm and bass content
to feed convolutional neural networks that are adapted to take
advantage of the characteristics of each feature. This ensemble of
neural networks is combined to obtain one downbeat likelihood
per tatum. The downbeat sequence is finally decoded with a
flexible and efficient temporal model which takes advantage of
the assumed metrical continuity of a song. We then perform an
evaluation of our system on a large base of 9 datasets, compare
its performance to 4 other published algorithms and obtain a
significant increase of 16.8 percent points compared to the second
best system, for altogether a moderate cost in test and training.
The influence of each step of the method is studied to show its
strengths and shortcomings.

Index Terms—Downbeat tracking, Convolutional Neural Net-
works, Music Information Retrieval, Music Signal Processing.

I. INTRODUCTION

The time structure of a music piece is often conceived as
a superposition of multiple hierarchical levels, or time-scales,
interacting with one another [1]. Automatically detecting those
different temporal layers is thus of significant importance for
music analysis and understanding. When listening to a song,
most people naturally synchronize to a specific level called
the tactus or beat level [2]. Depending on the duration, the
loudness, the pitch of the events or even on the local prosody
of the musical phrase, these beats are differently accented. It
eventually leads to a grouping over a larger scale. This scale is,
at least in the western music context, that of the bar or measure
which thus defines the metrical structure of the piece. The
purpose of this work is to automatically estimate the locations
of the first beat of each bar, the so-called downbeat, with the
help of multiple features and deep neural networks especially
designed for the task.

Downbeats are often used by composers and conductors
to help musicians read and navigate in a musical piece.
Their automatic estimation is useful for various tasks such as
automatic music transcription [3], genre recognition [4], chord
recognition [5] and structural segmentation [6]. It is also useful
for computational musicology [7], measuring rhythm pattern
similarity [8], and synchronizing two musical excerpts [9] or
a musical piece with another media segment such as a virtual
dancer, a drum machine, virtual books or a light show [10].

S. Durand, B. David, and G. Richard are with the LTCI, CNRS, Télécom
ParisTech, Université Paris-Saclay, 75013, Paris, France.

J. P. Bello is with the Music and Audio Research Laboratory (MARL),
New York University − USA

Downbeat tracking is a challenging task because it often
relies on other subtasks such as beat tracking, tempo and
time signature estimation and also because of the lack of
an unambiguous ground truth1. Current approaches are thus
limited in their scope. For example, methods that are implicitly
limited to percussive instruments only [12], [13] are not
applicable to a wide range of music styles. Other systems
choose to strongly limit the possible time-signature [10], [12]–
[18], require downbeats to be at onset positions [19], or make
use of restrictive prior knowledge [16], [17]. Approaches that
estimate some necessary information beforehand are naturally
prone to error propagation. A number of current methods
characterize downbeats with the help of one feature type only,
while a more diverse description has proven to be more useful
[10], [13], [18], [20]. Interestingly, there is an analogy with
the multi-faceted aspect of human downbeat perception, which
takes into account rhythm, but also harmony, musical structure
and melodic lines [1]. Lastly, downbeat detection functions are
often computed from low-level features, without taking into
account higher-level representations. When this is not the case,
as in [17] the estimations depend on prior decision-making,
e.g. chord classification, which can be prone to errors.

We therefore propose an approach that:

• Minimizes assumptions in feature, classifier and temporal
model design, and therefore is more generalizable.

• Does not require any prior information such as genre or
time signature.

• Combines different kinds of features to cover different
aspects of the musical content.

• Uses deep learning, particularly convolutional nets, to
obtain higher-level representations that fully characterize
the complexity of the problem but are hard to design by
hand.

The model is evaluated on a large number of songs from vari-
ous music styles and shows a significant improvement over the
state of the art. This article significantly expands on our previ-
ous publications in several ways. First, it groups information
from multiple publications into a single discussion, providing
a much more detailed and systematic analysis of the system, its
strength and shortcomings, and an expanded comparison with
other published methods. More specifically it introduces a new
deep network configuration, the bass content neural network,
and an improved temporal model including more states. This
paper also explores and evaluates alternative strategies for
data fusion using random forests and boosting algorithms, as

1Indeed, metrical structures in music are not always well-formed but
ambiguous by design [11], which can in turn cause disagreement amongst
listeners.

2

30 35 40 45 50 55 60

(a
)

-1

0

1

30 35 40 45 50 55 60

(b
)

2
4
6
8

10
12

30 35 40 45 50 55 60

(c
)

0

0.5

1

time (s)
30 35 40 45 50 55 60

(d
)

0

1

2

Fig. 1. Illustration of the three-step process of downbeat tracking for thirty
seconds of audio. (a) Audio signal x. (b) A feature Fi, in this case chroma
vectors. (c) Downbeat detection function d, in this case downbeat likelihood.
(d) Discrete downbeat sequence s.

well as more configurations for the segmentation and temporal
modeling stages. Lastly, the proposed convolutional nets are
compared against simpler machine learning solutions based
on Support Vector Machines (SVM) and fully-connected deep
nets from chroma and spectral flux features.

The paper is organized as follows. Section II states the
problem of downbeat tracking and presents some of the related
work. Section III provides an overview of the method and its
main steps Section IV describes the neural networks and their
tuning together with the learning strategies. Finally, section V
provides the experimental results and a comparison with four
other published downbeat tracking systems.

II. RELATED WORK

Algorithms for downbeat tracking are designed to estimate
a discrete sequence of time instants corresponding to the bar
positions in a musical piece. In most cases, they can be divided
into three mains steps, as illustrated in figure 1:

1) From raw data compute feature vectors or matrices.
2) From features derive a function representing the down-

beat likelihood (the so-called downbeat detection func-
tion).

3) Obtain the downbeat sequence with the help of a tem-
poral model.

A wide range of techniques and ideas have been tested for
each step, which are summarized in the following.

A. Feature extraction

Past approaches use domain-specific knowledge of music
for feature design, often from only a single attribute. For ex-
ample, chromas [13], [17], [18], [20] and spectral component
histograms [10] have been utilized as harmonic features, with
the assumption that the harmonic content is more likely to
change around the downbeat positions.

Other features, more generally considered as rhythm mark-
ers, are based on the onset detection function (ODF) [10], [13],

[20]–[22]. It is worth noting here that, even if isolated onsets
are not always present at downbeat positions, onset patterns
will often be synchronous with the bar changes. ODF are
often extracted across frequency bands [12], [23] in order, for
instance, to separate the events corresponding to kick drums
or bass from those of the snare.

A third category concerns timbre inspired features [13],
[19], [24]. Alterations of the timbre content occur more likely
at the start of a new section and near a downbeat position.
This feature extraction step can be done in conjunction with
an onset [19], tatum [14] or beat [16] segmentation. A tatum
is the lowest regular pulse train that is generally perceived
from the musical events. As there are often three or four beats
per bar, we can expect between six and sixteen tatums per bar
even though it strongly depends on the music genre.

B. Downbeat detection function

The goal of the second step is to map the features into a
downbeat detection function. This can be done with heuristics.
When harmony features are used, most systems focus on mea-
suring a change in the feature properties [16], [18], [20]. This
can be done with the cosine distance, the Kullback-Leibler
divergence or a difference of the principal harmonic compo-
nents. If rhythm-based features are considered, i.e. features
specifically designed to represent the rhythmic content in the
music signal, comparison with pre-stored rhythm patterns [10],
[15], [22], beat enhanced onset detection function [13] and
relative spectral balance between high and low energy content
at different beat positions [18] have also been proposed.

Machine learning systems can also be considered. Generic
approaches such as SVMs with an auditory spectrogram [13],
[19] have been used. Other systems focus on recognizing
rhythm patterns in the data to find the downbeats. It can be
done with a Conditional Deep Belief Network (CDBN) [25]
or a Gaussian Mixture Model (GMM) [12] coupled to a k-
means clustering [23]. These rhythm-related methods are more
adapted to the problem, but they often make strong style-
specific assumptions and require music with a very distinctive
rhythm style to work well [12], [23], [26].

C. Downbeat sequence extraction

The goal of the last step is to discretize the downbeat
detection function into a downbeat sequence. Considering that
the temporal distance between two downbeats varies slowly, it
can be useful to estimate the bar periodicity beforehand. To do
so, it is possible to segment the audio into frames of different
lengths and find the length that makes those segments the most
similar [21]. We can also take advantage of the repetitive
aspect of the onset detection function with a comb filter or
a short time Fourier transform to find different periodicity
levels: tatum, tactus, and measure. Assuming an integer ratio
between these levels can help estimating them jointly [15] or
successively [14].

To take into account the slow bar length variation over time,
induction methods are often used. The estimated downbeat
sequence will be the one that maximizes the values of the
downbeat detection function and minimizes the bar length

3

variation. It can be done in a greedy way one downbeat after
another, starting at the first downbeat [10], [21] or at the start
of the first characteristic rhythm pattern [14]. To avoid being
stuck in a local minimum, most algorithms search a more
global downbeat sequence path. It can be done with dynamic
programming [13] or Hidden Markov Models (HMM) [15],
[17], [18] that can sometimes be coupled with a learned lan-
guage model [20]. A particularly interesting temporal model is
the dynamic bar pointer model [22]. It consists of a dynamic
Bayesian network jointly modeling the downbeat positions,
the tempo and the rhythm pattern. This method was refined
to improve the observation probabilities [12] and reduce the
computational complexity of the inference [27]. Most of the
aforementioned systems don’t handle varied time signatures
during the downbeat sequence extraction.

III. PROPOSED MODEL

In this section, we will describe the five parts of the
proposed model as well as a general overview.

A. Model overview

The model overview is illustrated in figure 2. The signal’s
time-line is quantized to a set of bar subdivisions so-called
tatums. The purpose of the system is to classify those tatums
as being or not at a downbeat position. Features related to
harmony, rhythm, melody and bass content are computed from
the signal. Inputs centered around each candidate tatum are
extracted. Each input is then fed to an independent deep
neural network (DNN). The DNNs classify the tatums as
being at a downbeat position or not and output a downbeat
likelihood function. Networks outputs are fused to obtain a
single downbeat likelihood per tatum. Finally, a HMM is used
to estimate the most likely downbeat sequence.

B. Tatum synchronous segmentation

We adapt the local pulse information extractor proposed
in [28] to achieve a useful tatum segmentation. The first step
is to compute the tempogram of the musical audio from the
short-term Fourier transform (STFT) of the novelty curve used
in [28], and to keep only periodicities above 1 Hz to avoid bar-
level frequencies. We then track the best periodicity path by
dynamic programming with the same kind of local constraints
as in [29]2. The resulting system can find a fine-grained
subdivision of the downbeats at a rate that is locally regular.
We reduce the tempogram to 10 periodicities around the
decoded path. We finally construct the predominant local pulse
(PLP) function as in [28] based on this modified tempogram,
and detect tatums using peak-picking on the PLP. The resulting
segmentation period is typically twice as fast as the beats
period, while it can be up to four times faster.

2They are more restrictive in our case, [0.5 0.7 1 0.7 0.5] instead of
[0.95 0.98 1 0.98 0.95], to avoid jumping from one periodicity level to
another. These local constraints state that it is only possible to move from
one periodicity to its 5 neighbors {+2,+1,0,-1,-2} between time steps. It can
be seen as a transition matrix from a state to the next one. The weight to stay
at the same periodicity is 1, the weight to jump to the next periodicity is 0.7
and so on. See [29] for more detail on the dynamic programming computation.

TABLE I
STFT ANALYSIS PARAMETERS FOR EACH REPRESENTATION. sr IS THE

SAMPLING RATE USED IN HZ. SIZES ARE GIVEN IN MS.

Window size Hop size sr

Chroma 743 92.9 5512.5
LFS 64 8 500
ODF 23.2 11.6 44100

MCQT 185.8 11.6 11025

It is interesting to use tatums3 as a first segmentation step
for several reasons. First, it is a musically meaningful segmen-
tation that adapts to the local tempo variations of the song and
introduces tempo invariance in the input representation. Like
any type of invariance encoded by the features, this allows for
the robust characterization of events with less training data
and a lower capacity network. Finally, it is possible to design
a tatum segmentation method with a high recall rate, meaning
that almost all possible downbeats are candidates for detection.

C. Feature extraction

In this work, the aim of feature extraction is to represent
the signal as a function of four musical attributes contributing
to the grouping of beats into a bar, namely harmony, rhythmic
pattern, bass content, and melody. This multi-faceted approach
is consistent with well-known theories of music organization
[1], where the chosen attributes contribute to the perception
of downbeats. In section III-C, we discussed why harmony
and rhythm features are useful for downbeat tracking. The
bass or low-frequency content contains mostly bass instru-
ments or kick drum, both of which tend to emphasize the
downbeat. For melody, some notes tend to be more accented
than others, and both pitch contour and note duration play
an important role in our interpretation of meter [30], [31].
In the following, harmony will be represented by chromas,
rhythm by an onset detection function (ODF), bass content by
a low-frequency spectrogram (LFS) and melody by melodic
constant-Q transform (MCQT) features. Each representation,
illustrated in figure 3, is computed from a STFT using a Hann
window of varying size applied to a resampled input signal
as given in Table I. More details on their implementation are
provided below.

1) Chroma: The chroma computation is done as in [32]. We
apply a constant-Q transform (CQT) with 36 bins per octave,
starting from 73 Hz to 584 Hz, to the STFT coefficients as
in [33] and convert the constant-Q spectrum to harmonic pitch
class profiles. Octave information is aggregated by accumu-
lating the energy of equal pitch classes. The chromagram is
tuned and then smoothed in time by a median filter of size 8
[743 ms]. It is finally mapped to a 12 bins representation by
averaging.

2) Onset detection function: We compute a three band
spectral flux ODF. To do so, we apply µ-law compression
as in [15] with µ = 106, to the STFT coefficients. We then
sum the discrete temporal difference of the compressed signal

3It is to note that we are not formally looking for tatums, but more precisely
for a regular and fast downbeat subdivision. The result is close to tatums and
is called this way for convenience.

4

Fig. 2. Model overview.

on three bands for each temporal interval, subtract the local
mean and half wave rectify the resulting signal. The frequency
intervals of the low, medium and high frequency bands are
[0, 150], [150, 500] and [500, 11025] Hz respectively as we
believe low frequency bands carry a lot of weight in our
problem. To limit the variation of this feature, the signal is
clipped so that all values above the 9th decile are equal.

3) Low-frequency spectrogram: We only keep spectral
components of the STFT representation below 150 Hz (the
first 10 bins). To limit the variation of this feature, as for the
ODF, the signal is clipped so that all values above the 9th

decile are equal.
4) Melodic constant-Q transform: We apply a CQT with

96 bins per octave to the STFT coefficients as in [32], starting
from 196 Hz to the Nyquist frequency, and average each CQT
bin q(w) with the following octaves:

qa(w) =

∑Jw

j=0 q(w + 96j)

Jw + 1
(1)

with Jw such that q(w+96Jw) is below the Nyquist frequency.
We then only keep 304 bins from 392 Hz to 3520 Hz that cor-
respond to three octaves and two semitones. This summation
of the CQT bins is useful to highlight harmonic components.
Also, it is noteworthy that we are summing the octaves of a
note and not its partials4. Doing so allows us to have equally
spaced versions of the melodic line at the cost of losing
information about its absolute pitch. In this case, melodic lines
are one octave apart from each other. Equally spaced melodic
lines are useful to design fixed length convolutional filters later
on, and absolute pitch is not useful here since we are looking
for melodic contour. The frequency range of this feature and
of the chroma feature are significantly different. This increases
the diversity between features which is beneficial when they
are used in combination. Besides, the frequency range of this
feature is wide enough to capture most of the melodic lines
while keeping a relatively low computational cost. We use a
logarithmic representation of qa to represent the variation of
the energy more clearly:

lqa = log(|q̂a|+ 1) (2)

where q̂a is the restriction of qa between 392 Hz and 3520
Hz. Additionally, we zero all values below the third quartile
Q3 of a given temporal frame to get our melodic CQT:

mCQT = max(lqa −Q3(lqa), 0) (3)

Keeping only the highest values allows us to remove most
of the noise and onsets so we can see some contrast and

4The octaves of a note of frequency f have a frequency of 2nf . Its partials
have a frequency of (n+ 1)f

obtain features that are significantly different from the previous
rhythm feature.

5) Temporal quantization: The four aforementioned fea-
tures are then mapped to a grid with subdivisions lasting one
fifth of a tatum using interpolation. We therefore have tempo
independent features with a temporal precision higher than the
tatum level. Their temporal dimension is therefore 5 per tatum
and their spectral dimension is respectively 12, 3, 10 and 304.
We segment these features so they start at the beginning of
each tatum and have a fixed length of 9 or 17 tatums depending
on the feature context as explained in section IV. Each instance
is finally scaled between 0 and 1 and acts as input to the deep
neural networks as described in the following section.

D. Feature learning

Downbeats are high-level events defined by complex pat-
terns in the feature sequence. We propose that the probability
of a downbeat can be estimated using feed-forward DNN
F (X0|Θ, P), where X0 ∈ [0, 1]N0×M0×L0 is our input tensor
of temporal, spectral and feature map size N0, M0 and L0

respectively. Θ and P are the learned and designed parameters
of the network. In our implementation, F is a cascade of
K = 4 non-linear functions fk(Xk|θk, pk):

F (X0|Θ, P) = fK−1(...f0(X0|θ0, p0)|θK−1, pK−1) (4)

where Xk is the input of layer k ∈ J0,K − 1K5 and θk =
{Wk, bk}, with Wk a collection of Lk+1 three-dimensional
filters and bk a vector of biases. pk is a set of parameters
allowing a compact description of the network and fk is a
cascade of a convolution c and of one or several non linear
functions hk:

fk(Xk|θk, pk) = hk(c(Xk|θk, p1k), p2k); ∀k ∈ J0,K − 1K
(5)

In our case, p1k = {t1k , v1k , Lk, Lk+1} gathers the shape of
Wk. The variables t1k , v1k and Lk are the temporal, spectral
and feature map sizes of Wk. c is defined as:

c(Xk|θk, p1k) = Wk ∗Xk + bk (6)

where ∗ represents a valid convolution. hk is in our case a set
of one or several cascaded nonlinear functions including recti-
fied linear units r(x) = max (0, x), sigmoids σ(x) = 1

1−e−x ,
max pooling m, softmax normalization s(x) = ex∑J

j=1 ex[j] and
dropout regularization d [34]. p2k = {t2k , v2k} is the designed
set of parameters of hk corresponding in our case to the
temporal and spectral reduction factors of the max pooling.
XK is the final output and acts as a downbeat likelihood.

5J , K denotes an integer interval.

5

In this work, we consider each feature type independently
and we train one DNN per feature. This is a convenient
way to work with features of different dimension and assess
the effect of each of them. Moreover, we want to adapt
feature learning to the feature type. Harmonic features will
mostly exhibit change while rhythm features will often show
characteristic patterns as downbeat cues. Low-frequency and
melodic features will exhibit a bit of both, and melodic features
need an adapted dimensionality reduction process for example.
Besides these differences, there is no reason that the optimal
DNN hyper-parameters have to be the same in each case. The
specific adaptations are described in section IV. Each network
is trained on binary ground truth targets representing tatums
being or not at a downbeat position. We use the MatConvNet
toolbox to design and train the networks [35].

E. Network combination

For each tatum we have four intermediary downbeat likeli-
hoods. We need to fuse this information into a single robust
downbeat likelihood to feed our temporal model. To do so,
we use the average of the four downbeat likelihoods. The
average—or sum rule—is generally quite resilient to estima-
tion errors [36]. However, it is not robust to redundant infor-
mation, and the network will need to produce complementary
information.

F. Temporal modeling

We use a first order left-to-right HMM to map the continu-
ous downbeat likelihood function d into the discrete sequence
of downbeats y. The inference is done with the Viterbi
algorithm and the temporal interval of our model is the tatum.
Our model contains:
• The state space H = {1...Nh} with Nh the number of

hidden states i.
Since the downbeat likelihood depends on the bar length
and the position inside a bar, we will define a state
for each possible tatum in a given bar. For instance,
considering two possible bars of two and three tatums,
there would be five different states in the model. One
state would represent the first tatum of the two-tatum
bar, another would represent the second tatum of the two-
tatum bar and so on. In that case, the states representing
the second tatum of a two-tatum bar and the second
tatum of a three-tatum bar are different. More precisely,
the second tatum of a two-tatum bar should most likely
transition to the first tatum of a two-tatum bar, and the
second tatum of a three-tatum bar should transition to
the third tatum of a three-tatum bar. In practice, we
allow time signatures of {3,4,5,6,7,8,9,10,12,16} tatums
per bar, for a total of Nh = 3 + 4 + ... + 16 = 80
states. Furthermore, modeling bars of different length
independently allows for consistency in the decoding
stage. We can also emphasize that bars with the same
number of tatums are found for example.

• The most likely state sequence y′ = [y′(1); ...; y′(T)]
with y′(τ) ∈ H, ∀τ ∈ J1, T K and T the length of the
sequence.

• The initial probability π = [π(1); ...;π(Nh)] with π(i) =
P (y′(1) = i) of being in a state i initially.
We use an equal distribution of the initial probabilities:
π(i) = 1

Nh
, ∀i ∈ H , for robustness6.

• The observation sequence o = [o(1); ...; o(T)] with
o(τ) ∈ [0, 1], ∀τ ∈ J1, T K.
It is equal to the downbeat likelihood: o = d.

• The emission probabilities ei = [ei(1); ...; ei(T)] with
ei(τ) = P (o(τ)|y′(τ) = i) the probability of the
observation o(τ) given a state i, ∀τ ∈ J1, T K.
For the emission probabilities we will distinguish two
cases, either the state corresponds to a tatum at the
beginning of a bar: i ∈ H1 ⊂ H , or it corresponds to
another position inside a bar: i ∈ H1 ⊂ H . In the first
case the emission probability is equal to the downbeat
likelihood, and in the second case to its complementary
probability:

ei =

{
d if i ∈ H1

1− d if i ∈ H1

(7)

• The transition probabilities A = {ai,j , (i, j) ∈
J1, NhK2} with ai,j = P (y′(τ) = j|y′(τ − 1) = i)
the probability of transitioning from state i to state j,
∀τ ∈ J2, T K. The Nh

2 = 6400 parameters of our
transition matrix could be trained entirely automatically,
but this is left for future work. We set the majority
of transition matrix parameter values by simply count-
ing the number of occurrences for a specific transition
and giving a minimum value if an occurrence didn’t
sufficiently happen. If a transition from i to j occurs
n times out of a total of N transitions from i to any
state, then ai,j = max

(
n
N , 0.02

)
. Putting non null values

to ai,j allows for better adaptability to the downbeat
likelihood from the model. Finally, transitions responsible
for a change in the time signature are manually fine-
tuned by maximizing the F-measure of the training set.
It appeared that over-fitting was not an issue for this
problem, probably because of a relatively wide range of
close to optimal values. To give an idea, the transition
matrix coefficients can be summarized in three categories.
There are high probabilities to advance circularly in a
given bar, medium probabilities to go from the end of
one bar to the beginning of another, and low probabilities
to go elsewhere.

In the end, decoded states corresponding to a tatum at the
beginning of a bar will give the downbeat sequence: y =
{y′(τ), τ ∈ J1, T K / y′(τ) ∈ H1}.

IV. FEATURE ADAPTED DEEP NEURAL NETWORKS

To take advantage of the specificities of the different ex-
tracted features, we first exploit their local structure by using
convolutional neural networks (CNN). In CNNs, convolutional
layers [37], [38] share weights across the inputs within a
spatio-temporal region so each input unit is not considered

6It means that the first detected tatum can be at any given position inside
the bar with equal probability.

6

independent from its neighbors. We then adapt the architecture
and the learning strategies to each input as described below.
The network design choices will be described with the nota-
tions introduced in subsection III-D.

A. Melodic neural network (MCNN)

Our intention here is to train a network that learns to predict
the downbeat based on melodic contours as they play a role
in our meter perception regardless of their absolute pitch [39].
Considering that those patterns can be relatively long, we will
use 17 tatum-long inputs. It roughly corresponds to two bars
of audio in 4/4. We then have input features Xm0

7 of spectral
dimension M0 = 304 and of temporal dimension of 17 times
5 temporal quantization: N0 = 85. Our network architecture
is presented in figure 3(a). For example, the first layer:

f0 = m(r(c(X0|θ0, {46, 96, 1, 30})), {2, 209}) (8)

means that we use filters of parameters θ0 and shape p10 =
{46, 96, 1, 30}8 on input X0 for convolution c, and then
rectified linear units r and max pooling m with a reduction
factor of {2, 209} as non linearity9. The first layer filter
is relatively large, t10 = 46 and v10 = 96, so we are
able to characterize pitch sequences. The reduction factor
in frequency of the following max pooling, v20 = 209, is
equal to the input size after the convolution. This way, we
only keep the maximal convolution activation in the whole
frequency range and lead the network to focus on patterns
regardless of their absolute pitch center. The fourth layer,
f3 = s(c(X3|θ3, {1, 1, 800, 2})), can be seen as a fully
connected layer: t30 = 1 and v30 = 1, that will map the
preceding hidden units into 2 final outputs. Those outputs
represent the likelihood of the center of the input to be at a
downbeat position and its complementary. To do so, we train
the network with the logarithmic loss between the outputs and
binary ground truth targets corresponding to the tatum at the
center of the input matrix.

B. Rhythmic neural network (RCNN)

We want to design a network that will estimate the downbeat
positions by learning rhythmic patterns of specific length.
Since rhythm patterns can be long we also use 17 tatum long
inputs. Contrary to melodic patterns, the length of a rhythmic
pattern and the length of a bar are strongly correlated and
the pattern boundaries are likely to be located at a downbeat
position. To characterize this pattern length, the network
should give different outputs if patterns of different length
are observed. We choose for that multi-label learning [40]. In
this case, if there is a downbeat position at the first and ninth
tatum of our 17 tatum-long input, the output of our network
should be X4 = [1; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0].
Since there might be multiple downbeats per input, it is not

7The index indicating the type of network, here m for melodic network,
won’t be explicitly mentioned in the following for simplicity.

8According to subsection III-D, this means that W0 is a collection of 30
three-dimensional filters of temporal size 46, spectral size 96, feature map
size 1.

9Therefore, the output of this layer, X1 ∈ R20×1×30
+ .

20 40 60 80

0.5

1.5

2.5

85

L

M

H

17

85

304

MelodicInetwork

RhythmicInetwork

45

DB NDB
12

HarmonicInetwork

...

0hX

0rX

0mX

DB NDB

Classes

Classes

Output)vector

f)=)m:r:c:X))|θ),{46,96,1,30}77,{2,209}7
f)=)m:r:c:X)|θ),{5,1,30,60}77,{2,1}7
f)=)d:r:c:X)|θ),{8,1,60,800}777
f)=)s:c:X)|θ),{1,1,800,2}77
training:)logarithmic)loss
)

0 0 0

1 1 1

2 2 2

3 33

m

f)=)m:r:c:X))|θ),{40,3,1,30}77,{2,1}7
f)=)m:r:c:X)|θ),{6,1,30,60}77,{2,1}7
f)=)d:r:c:X)|θ),{9,1,60,800}777
f)=)σ:c:X)|θ),{1,1,800,17}77
training:)Euclidean)distance
)

0 0 0

1 1 1

2 2 2

3 33

r

f)=)m:r:c:X))|θ),{6,3,1,20}77,{2,2}7
f)=)m:r:c:X)|θ),{7,2,20,50}77,{2,2}7
f)=)d:r:c:X)|θ),{7,2,50,1000}777
f)=)s:c:X)|θ),{1,1,1000,2}77
training:)logarithmic)loss
)

0 0 0

1 1 1

2 2 2

3 33

h

Input NetworkIarchitecture Output

10

85

0bX

17

BassIcontentInetwork

...

Output)vector

f)=)m:r:c:X))|θ),{6,3,1,30}77,{2,2}7
f)=)m:r:c:X)|θ),{7,3,30,60}77,{2,2}7
f)=)d:r:c:X)|θ),{17,1,60,800}777
f)=)σ:c:X)|θ),{1,1,800,17}77
training:)Euclidean)distance
)

0 0
0

1 1 1

2 2 2

3 33

b

FaS

FbS

FcS

FdS
LFS

Chroma

ODF

MCQT

Fig. 3. Convolutional networks architecture, inputs and outputs. The notation
is the same as in subsection III-D. DB and NDB stand for downbeat and no
downbeat respectively.

appropriate to normalize the network output X4. Instead, we
want each coefficient of X4 to be close to 0 if there isn’t a
downbeat and 1 if there is a downbeat at the corresponding
tatum position. Therefore, we first use a sigmoid activation
σ unit in our last layer to map the results into probabilities:
f3 = σ(c(X3|θ3, {1, 1, 800, 17})). We then train the network
with an Euclidean distance between the output and the ground
truth g with the same shape as X4: g(τ) = 1 if there a
downbeat at the τ th tatum of the input and g(τ) = 0 otherwise.
Each tatum is then considered independent from one another.
Our network architecture is presented in figure 3(b). To detect
bar-long rhythm patterns, our first convolutional layer uses
relatively large temporal filters of about the length of a bar,
t10 = 40 and v10 = 3. Besides, since we are using the
Euclidean distance to ground truth vectors to train the network,
we are not explicitly using classes such as ’downbeat’ and ’no
downbeat’. The output is then of dimension 17 and represents
the downbeat likelihood of each tatum position in Xr0. Since
we have 17 tatum-long inputs but a hop size of 1 tatum, overlap
will occur. We will reduce the dimension of our downbeat
likelihood to 1 by averaging the results corresponding to the
same tatum.

Figure 4 shows the ODF input transformation through the
rhythmic network until the downbeat likelihood is obtained
after the averaging step. It can be seen that in the first layer
some units tend to be activated around rhythmic patterns or
events, highlighted here in part by the orange circles in fig-
ure 4b). As we go deeper into the network, some units tend to

7

Fig. 4. RCNN input and intermediary and final outputs. a): Onset detection
function input. b-c): Output of all the filters on top of each other, from the
first and second layer respectively before the max pooling. d): Output of all
filters from the third layer. e): Output of the network, that acts as a downbeat
likelihood. The red dotted lines are the annotated downbeat positions. Since
inputs overlap in time, the figures are averaged to get one bin per filter per
time frame when necessary.

be activated more clearly around downbeat positions and some
other units around no-downbeat positions. We finally obtain a
rather clean downbeat likelihood function, in figure 4e), that
is high around the red dotted lines representing the annotated
downbeats. The network is a bit more indecisive around the
fifty fifth second, as there is a drum fills leading to a chorus.

C. Harmonic neural network (HCNN)

We aim at designing a network that will predict the down-
beat based on harmonic changes and salient harmonic events
in the input 10. The temporal and spectral size of the first layer
filters t10 = 6 and v10 = 3 respectively, as well as the input
size, N0 = 45, are chosen to be rather small. Here, contrary
to the RCNN, we do not need to characterize the length of
a pattern and we then choose the same kind of non-linear
functions as in the MCNN for the four network layers and
the logarithmic loss to train the network. The ground truth
targets are the same as in the MCNN. The size of the filters
differs to be adapted to the input size though. Additionally, it
is desirable for this network to be robust to key transposition,
as it changes the input but not our downbeat perception. To
that aim, max pooling on the whole frequency range as in the
melodic network will not work because chroma vectors are

10See figure 3(c) for the input size, network parameters and output.

Fig. 5. HCNN input and intermediary and final outputs. a): Chroma input. b):
Output of the filter number 9 of the first layer before max pooling. c): Output
of the filter number 16 of the second layer before max pooling. d): Output of
all the filters of the third layer. e): Output of the first class of the network,
that acts as a downbeat likelihood. The red dotted lines are the annotated
downbeat positions. Since inputs overlap in time, the figures are averaged to
get one bin per filter per time frame when necessary.

circular. Instead we choose to augment the training data with
the 12 circular shifting combinations of the chroma vectors.

The network input, layers output and final output can be
seen in figure 5. The first layer of the network transforms the
input to remove some of the noise as in figure 5b) or the
highlight some of its properties such as its onsets or offsets
for example. The second layer takes advantage of this new
representation to reduce its dimension or compute some sort
of harmonic change. The third layer outputs 1000 units of
dimension 1 and we can see that some of them act as downbeat
detectors, lower figure 5d), and some of them as no-downbeat
detectors, upper figure 5d). Finally, the obtained downbeat
likelihood, although a little noisy, is rather close to the ground
truth downbeats.

D. Bass content neural network (BCNN)

The bass content feature contains melodic and percussive
bass instruments as can be seen in the figure 3(d) by the
horizontal and vertical lines respectively. Our network archi-
tecture is also presented in figure 3(d). Detecting patterns is
useful here but instantaneous events are more directly related
to downbeats than for the melodic feature for example as
bass notes or bass drums tend to be played at a downbeat
position. We therefore use filters of moderate temporal size
for our first layer to emphasize these events, t10 = 6. As

8

bass events may be repeated each bar, we want to be able
to characterize the pattern length like with the rhythmic
network. We therefore use the same last layer architecture:
f3 = σ(c(X3|θ3, {1, 1, 800, 17})), and multi-label procedure
with the Euclidean distance to a ground truth vector g of
zeros around no downbeat and ones around downbeats as a
cost function to minimize. The dimension of our downbeat
likelihood function will also be reduced to one by averaging.

V. EVALUATION AND RESULTS

The proposed system is compared to 4 other published
downbeat tracking algorithms on a total of 9 datasets presented
below. We also assess each step of our method and present
some of its limitations and strengths.

A. Methodology

1) Evaluation metrics and procedure: We use the F-
measure, expressed in percent, to evaluate the performance
of our system. This widely used metric [17], [18], [20] is
the harmonic mean of precision and recall rates. We use a
tolerance window of ±70 ms and do not take into account the
first 5 seconds and the last 3 seconds of audio as annotations
are sometimes missing or not always reliable. To assess
statistical significance, we perform a Friedman’s test and a
Tukey’s honestly significant criterion (HSD) test with a 95%
confidence interval. The best performing method and the ones
with non statistically significant decreases will be highlighted
in bold in the result Tables. Finally, to be fair to systems that
were not originally trained on all datasets, we use a leave-
one-dataset-out approach as recommended in [41], whereby in
each iteration we use all datasets but one for training, and the
holdout dataset for testing. 90% of the training dataset is used
to train the networks and 10% to set the hyper parameters.

2) Datasets: We evaluate our system on nine different real
audio recording datasets, presented in Table II. The letter "e"
in the "# Tracks" column means that the tracks are excerpts
of about 1 minute, compared to full songs elsewhere. Those
datasets, while being mainly focused on western music, cover
a wide range of styles, including pop, classical, jazz, choral,
hiphop, reggae, disco, blues, electro, latin, rock, vocal and
world music. They include more than 1500 audio tracks
ranging from 30 seconds excerpts to 10-minute long pieces
for a total of about 43 hours of music and 78171 annotated
downbeats. Long excerpts will be more sensitive to an adapted
temporal model while an instantaneous downbeat estimation
is more important for short excerpts. Some datasets focus
on a certain music style or an artist while others include a
wider musical spectrum and are labelled as "Various" in the
Table II. The subset of the Klapuri dataset gathers 40 randomly
selected tracks among four music styles - Blues, Classical,
Jazz and Electro/Dance - given two constraints : the time
signature is fixed for each excerpt and there are 10 tracks per
genre. Besides variety in content, using several datasets creates
variety in annotation. Indeed, downbeats can be ambiguous
and different annotators will make different annotations.

TABLE II
DATASETS OVERVIEW.

Name # Tracks # DB Length Genre
RWC Class [42] 60 10148 5h 24m Classical
Klapuri subset [15] 40− e 1197 0h 38m Various
Hainsworth [43] 222− e 6180 3h 19m Various
RWC Jazz [42] 50 5498 3h 44m Jazz
RWC Genre [44] 92 11053 6h 22m Various
Ballroom [45] 698− e 12219 6h 04m Ballroom dances
Quaero [46] 70 7104 2h 46m Pop, rap, electro
Beatles [47] 179 13937 8h 01m Pop
RWC Pop [42] 100 10835 6h 47m Pop
Total 1511 78171 43h 05m

TABLE III
F-MEASURE RESULTS FOR SEVERAL PUBLISHED DOWNBEAT TRACKERS.

Peeters Davies Papadopoulos Krebs ACNN
et al. et al. et al. et al.
[18] [16] [17] [48]

RWC Class 29.9 21.6 32.7 33.5 51.0
Hainsworth 42.3 47.5 44.2 51.7 65.0
RWC Genre 43.2 50.4 49.3 47.9 66.1
Klapuri 47.3 41.8 41.0 50.0 67.4
RWC Jazz 39.6 47.2 42.1 51.5 70.9
Ballroom 45.5 50.3 50.0 52.5 80.1
Quaero 57.2 69.1 69.3 71.3 81.2
Beatles 53.3 66.1 65.3 72.1 83.8
RWC Pop 69.8 71.0 75.8 72.1 87.6
Mean 47.6 51.7 52.2 55.8 72.6

B. Comparative analysis

We compare our system, called here ACNN11, to the
downbeat trackers of Peeters et al. [18], Davies et al. [16],
Papadopoulos et al. [17] and Krebs et al. [48] using the same
evaluation measure. [18], [16] and [17] are unsupervised
methods. [48] is supervised and is also trained with a
leave-one-dataset-out approach12 with all the above sets but
the Klapuri and Quaero datasets and with the addition of the
Böck [49], [50], Rock [51] and Robbie Williams [52] datasets.
It is worth noting that the algorithm of [16] was manually
fed with the ground truth time signatures since it was needed
to run it. Results are shown in Table III and highlight a better
performance for our system on every dataset and an overall
improvement of 16.8 percentage points (pp) compared to
the second best system. The relative difference for the pop
music datasets is the lowest at 11.1 pp. The harmonic change,
spectral energy distribution and rhythmic pattern assumptions
made by the other systems seem appropriate in this case.
However, in the other music datasets where the downbeats
are harder to estimate, the overall increase in performance
is much higher, at 18.9 pp. A possible explanation is that
our more sophisticated feature extraction and learning model
is working well on some excerpts where downbeat cues are
harder to obtain.

11A for all features used, CNN for the learning method
12Except for the Hainsworth dataset that is also contained in the training

set.

9

A particularly interesting case is the ballroom dataset. There
is indeed a substantial 27.6 pp difference in performance
compared to the second best system. Our system has a similar
performance with this dataset and the pop music datasets while
the compared algorithms have a much lower performance
here. The difference may then be explained by the fact that
the explicit rhythm-related assumptions of [18] and [48] are
not borne by the data. The performance of [48] increases
drastically if it uses rhythmic patterns really close to the
one used in this dataset [12]. Our system also uses training
data with different rhythmic patterns, but seems to highlight a
better robustness to unseen data. It may be because we use a
larger set of rhythmic patterns or because of the usually better
generalization power of the CNNs compared to the GMMs
used in [48].

Besides, the assumption of [16], [17] and [18] that the
harmonic content is different before and after a downbeat
position may not be well verified here. To assess this, we
used the chroma input only and replaced our harmonic
network with a heuristic function as in [16] to obtain the
downbeat likelihood. The performance of this heuristic
function on the ballroom dataset is 8 pp poorer compared
to its average performance across sets. The performance
of [16], [17] and [18] is also lower for the ballroom dataset
than overall as can be seen in Table III. On the other hand,
the performance of the harmonic network is 5 pp better for
the ballroom dataset than overall. Qualitative analysis of the
results highlights that the harmonic network seems able to
detect downbeats even without clear harmonic change, if
there are salient harmonic events for example. Short melodic
or harmonic events can be important to find downbeats and
they tend to be diluted during the average process of the
chroma vectors done in several methods, but the harmonic
network can take them into account. Our network also seems
less prone to noisy events because the content of a 9 tatum
window is taken into account to estimate a downbeat position.

The system by Davies et al. [16] seems to work well on
songs with correct beat estimation but it uses pre-estimated
beat positions and an hypothesis of constant time signature
that can propagate errors easily. Its performance increases
significantly with the use of a more powerful beat tracker
such as the one by Degara et al. [53] with an overall
F-measure of 56.7%. Conversely, [17] is adapted to changes
in the time signature but may be a bit too sensitive to these
changes. [48] includes a sophisticated temporal model but
uses rhythmic features only. [18] performs a global estimation
of the meter with an efficient visualization of the output and
may be improved with a feature deep learning stage to be
less dependent on certain downbeat assumptions.

The performance of our algorithm can be summarized
in three categories, highlighted by horizontal lines in the
Table III. First is the RWC Class dataset with a rather low
F-measure of about 50%. In this case, the tatum estimation is
uncertain and it is therefore difficult to estimate the downbeat
likelihood or use the same temporal model as for the other
styles. Besides, annotation is more difficult to perform,

especially with soft onsets and romantic pieces, and the
±70 ms tolerance window of the evaluation measure may
be too short in many cases. A better tatum segmentation
will significantly improve the results, as will be shown in
section V-C1. Finally, listening tests show that some classical
music pieces are inherently more difficult to estimate without
additional information such as the ground truth beats even
for an expert listener. Second, the Ballroom, Quaero, Beatles
and RWC Pop datasets can be regrouped with a F-measure
between 80% and 90%. These datasets contain a stable
tempo easy to be tapped and are often not surprising in
terms of their metrical structure or cues in order to infer the
downbeat position and are well estimated by our system.
Finally, a third set can be composed of the Klapuri subset,
Hainsworth, RWC Jazz and RWC Genre datasets with a F-
measure between 65% and 70%. Most of them are composed
of a mixture of genres that are either easy or difficult to
estimate and therefore have a performance in between. The
RWC Jazz dataset also belongs in this category because
on the one hand the songs there contain, for the most part,
clear rhythmic events and a relatively stable tempo. On the
other hand, some instrumental lines are rhythmically more
expressive, including rhythm pattern variations especially
during solos. Finally many tempo errors occur because
it is harder to define the correct metrical level. The F-
measure is indeed increased by 10 pp if double or half tempo
variations are allowed. It is the highest increase of all datasets.

The standard deviation of the F-measure across songs for
this task is high but varies across databases. In our case,
the mean of the standard deviation across songs, datasets
and algorithms is 30%. The F-measure can indeed easily
go from 100% to 0% if the third beat of the bar is taken
for the downbeat for example, which happens frequently.
The standard deviation is lower for the RWC Class dataset
because the time signature changes more regularly and the
downbeat estimation is less consistent, limiting the 100% and
0% occurrences. At the opposite, the standard deviation is
higher on the datasets composed of short excerpts, up to
40%, because missing a downbeat has a higher effect on the
performance.

C. Detailed analysis of the proposed system

An analysis of each step of the proposed system is given
below.

1) Segmentation: How much do the limitations of our
tatum segmentation affect the performance? The tatum
segmentation step, with the advantage of segmenting the
data into a reduced set of rhythmically meaningful events,
has a mean downbeat recall rate of 92.9% across datasets
considering a ±70 ms tolerance window and therefore
occasionally misses an annotated downbeat13. How much can
it affect the overall performance? To assess this, we kept the
system the same and only replaced the closest estimated tatum
position to a ground truth downbeat by its annotated position

13We estimate that half of the missed downbeats come from inconsistencies
in the segmentation step and half from a subjective annotation.

10

in the segmentation step to obtain a perfect recall rate. Mean
results across datasets are shown in the row (a).1 of the
figure 6 and we see an improvement of 3.9 pp compared to
the reference model. This is statistically significant. Results
in the RWC Pop, Quaero and Ballroom datasets of systems
with or without a perfect downbeat recall are fairly close with
a relative difference of about 1.4 pp. It highlights that our
tatum segmentation step is very reliable to detect downbeats
in music with a clear rhythmic structure. Improvement of
4.1 pp in the Beatles dataset may be contradictory, but a
subjective error analysis shows that most of the difference
in performance there is due to a questionable annotation.
However, for other genres, a bigger difference of 5.4 pp
appears, highlighting some of the limitations of the timing of
estimated tatums near downbeat positions.

The segmentation step can have other issues than imprecise
timing around downbeat positions. For example, two
consecutive bars may contain a different number of estimated
tatums. It also happens that tatums don’t have the right
periodicity or do not match downbeats at all. To assess this
effect without changing the rest of the system, we want to
use the best tatum segmentation for a given metrical level.
Since we have access to annotated beats but not to annotated
tatums, we replace the tatums with an interpolation by a
factor 2 of the annotated beats in the segmentation step. This
is the most common factor between beats and tatums in our
datasets. Results are shown in the row (a).2 of the figure 6
and we see an improvement of 11.4 pp. This is statistically
significant. The overall increase in performance is much
higher here because all tatum positions are modified to match
the downbeat sequence instead of only those near downbeats
in the former experiment. The segmentation is therefore a lot
cleaner and octave error are a lot less common. Compared
to the perfect downbeat recall case, the improvement is
particularly striking on the RWC Jazz dataset (9.4 pp) and the
RWC Classical dataset (20.4 pp). Many octave errors were
present in the first case and are now solved. In the second
case, many spurious events and a lack of tatum consistency
inside a bar were greatly disturbing the system. The hard
part in the Classical music dataset is mostly to have a proper
sub-downbeat segmentation. It is to note that the overall
performance when beats are known is a bit overfitted to
the annotations and may not be a precise estimate of the
performance of our system with a better segmentation step.
Indeed, besides some human errors in annotation, this task
is sometimes subjective in terms of downbeat timing and
metrical level. However, it appears that designing a more
precise, clean and consistent segmentation step may have a
significant effect on the overall performance.

2) Feature adapted neural networks: Are all feature
adapted neural networks useful?

Using several complementary features and adapted learning
strategies is the core of our method. However, there is a limit
to the added value of a new feature compared to its redundancy
with the others and not all features may be worth adding in
our model, especially when using the average as a feature

Fig. 6. Relative F-measure for various configurations of our system compared
to the standard model (ACNN). Mean across all datasets. (a): Segmentation
variation. (b): Network variation. (c): Network combination variation. (d):
Temporal model variation.

combination.
To assess the effect of each feature adapted neural network

efficiently, we show the performance of the best performing
network, followed by the performance of the best combi-
nation of two networks, and then the performance of the
best combination of three networks compared to our four
networks system in figure 6(b). The harmonic neural network,
figure 6(b).1, is quite powerful by itself with an overall F-
measure of 61.0%, that is already significantly better than
the compared algorithms in subsection V-B. On a dataset
strongly depending on harmony such as the RWC Classical
dataset, the performance of the harmonic network only is
close to the one obtained with the whole model with a 4.7 pp
difference. However, using the four networks is more robust
on a variety of datasets and leads to a 11.6 pp increase overall.
The harmonic and rhythmic networks is the best two-network
configuration with an overall F-measure of 69.9%. Harmonic
and rhythmic features are indeed quite complementary in
a wide range of music. However, a statistically significant
improvement is achieved by adding the bass content network
with an overall F-measure of 71.5% and also by using all the
networks with an overall F-measure of 72.6%.

While the system complexity increases with each new
network, it remains relatively low. The mean processing time
for 60 seconds of musical audio is respectively of 1.0, 1.5, 2.0
and 12.5 seconds as we add features and their corresponding
network as in figure 6(b) on a PC with an Intel Xeon e5-1620
CPU with 3.6 GHz. The melodic network increases the
processing time by a larger margin because of its bigger
input. The training time of all four networks is about one day
on a Geforce GTX TITAN Black GPU.

3) Feature learning: Is deep learning useful?
Considering that the combination of the harmonic and

rhythmic networks provides a very good performance already
and for complexity and clarity constraints, we will restrain the
experiments in this part to these two networks. We will then
consider several ways of getting a downbeat likelihood from

11

TABLE IV
MEAN F-MEASURE RESULTS FOR VARIOUS FEATURE PROCESSING STEPS.

Inputs used SVM DNN CNN
ODF 49.0 53.9 57.0
Chroma 43.6 52.2 61.1
ODF + Chroma 56.6 64.5 69.9

our chroma and onset detection function inputs individually
and in combination. We will compare a shallow learning
method, a deep learning method and finally the hereby pre-
sented feature adapted and locally dependent deep learning.

We first use linear Support Vector Machine (SVM) with a
penalty parameter C to the error term found on the validation
set as our shallow learning method. As SVM predicts only
class labels, the probability of each class will be estimated
following the second method of [54] that is based on Platt
scaling. As for the harmonic network, we used the same
number of downbeat and no downbeat examples in our training
data to have a balanced training set. There is also one classifier
per input type and the fusion of several classifiers is done
by averaging. Results, presented in Table IV show that the
rhythmic SVM is significantly better than the harmonic SVM
and that their combination is competitive with the algorithms
presented in subsection V-B14.

We will now take advantage of the relatively large number
of training examples and the high level aspect of downbeats
to apply a relatively simple deep learning method to our
problem. We use DNN without convolutions with the exact
same architecture as in [55]. The used networks consist of
four fully connected layers of 40, 40, 50 and 2 sigmoid
units respectively, and a softmax regularization output.
We train the networks as in [55] using the chroma and
ODF inputs described in subsection III-C. Each network
is pre-trained with stacked Restricted Boltzmann Machines
and 1-step Contrastive Divergence. The fine tuning is done
with backpropagation by minimizing the cross entropy
error using mini-batch gradient descent. The pre-training
learning rate is 0.1 and the fine tuning learning rate is 1.
The mini-batch size is 1000 and we use momentum. For the
first 5 epochs it is of 0.5 and then it is 0.9. We randomly
removed some of the features at non-downbeat position in
such a way that our training set contains an equal amount of
features computed at downbeat and non-downbeat positions.
In our implementation we use early-stopping and dropout
regularization. The two networks are independent. Results
in Table IV highlight a significant improvement for both
features and their combination. However, we see in Table IV
that using the proposed convolutional networks is more suited
to our problem and also significantly improves the results.
Indeed, there are specific structures that shift in time and
frequency that are properly captured and characterized by
the CNN. Doing so without convolutions requires a network
with significantly more capacity, since every shift in time and
frequency need to be encoded as a separate pattern. Moreover,

14A better SVM model, adapted feature, or probability estimate may be
found but this is not the focus of this work.

the DNN will need every shift of every pattern to appear in
the training set a number of times, for it to be learned, while
the CNN can learn the same structure out of a sparser set
of expositions at different locations in the time-frequency
plane. Besides, the CNNs here have more parameters than the
DNNs15, even though we didn’t observe significantly better
results with larger DNNs. In addition, the DNNs have the
same architecture regardless of the input while we adapted
the CNNs architecture to each feature characteristic. Finally
using both inputs leads to better results as they can take into
account different useful information for downbeat tracking.

4) Downbeat likelihood combination: Are more sophisti-
cated combinations useful?

We are currently using the average of the downbeat likeli-
hood computed with each of the four networks to obtain one
single estimation. Since this method may seem too simple, we
provide a comparison with two other feature combination tech-
niques. We first compare our fusion method with the Adaboost
algorithm [56]. A linear combination of the classifiers will
be learned by emphasizing the ones that correctly classify an
instance mis-classified by the other classifiers. This approach
can work well in practice but it is better suited to a problem
involving many weak classifiers. We use a learning rate of
0.10 and an ensemble of 100 trees.

Random forests are also tested. A multitude of decision trees
are constructed by this ensemble learning method, to predict
the class that is chosen by most individual trees [57]. The
probability output is computed as the number of observations
of the selected class in a tree leaf over the number of trees
in the ensemble. Similar to deep learning algorithms, this
method often requires a large number of training examples
to work well. We use 30 trees and a leaf size of 50. For
those two methods, as we did with the harmonic network,
we randomly remove some training inputs in order to have a
balanced training set.

Results are shown in figure 6(c). We can see a decrease
of 1.3 pp with boosting and of 1.6 pp with random forest
overall. This is statistically significant. This result may seem
surprising at first, but may be explained by the fact that those
two algorithms minimize classification error on the training
set for each instance individually, while we evaluate the
F-measure on full songs after the temporal model. Adaptation
to the temporal modeling phase is therefore key and neither
boosting nor random forest focus on this part. We found
that the boosting method has a similar performance for the
three Pop music datasets but is less robust to other sets.
The average rule is indeed often more resilient and will not
overfit a particular and more represented set. Besides, since
we only have 4 features that are relatively strong, comparable
in performance and complementary, an average of the result
can give a good result already.

5) Temporal model: Is the temporal model useful?
The temporal model is an important part of our system

as it allows an increase in performance of 15.4 pp as can

15Since we chose to keep the architecture as in [55] to show the usefulness
of a more refined deep learning system.

12

be seen in the figure 6(d). In the configuration without the
temporal model, figure 6(d).1, a downbeat position is included
in the final downbeat sequence if its likelihood is above a fixed
oracle threshold. This oracle threshold t = 0.88 was manually
selected to give the best F-measure result. It corresponds
roughly to the ratio of downbeats and no downbeats in the
datasets.

The important gap in performance can be explained by
the fact the downbeat likelihood function is quite noisy as
can be seen at the bottom of figure 5. Besides, 9 or 17
tatum long inputs are sometimes too short to give a reliable
information about the downbeat position by themselves. How-
ever, longer inputs added a significant computational cost and
didn’t result in a better performance. They were especially
counterproductive at the beginning and end of songs. Taking
into account the heavily structured nature of music with a
temporal model therefore enables the system to obtain a more
sensible downbeat sequence.

However, considering that 94% of the songs in the datasets
are mainly in 3 or 4 beats per bar and that the estimated tatum
is mostly twice the beat16, it may be interesting to reduce
the number of states of the model. To investigate this, we
first considered a simple temporal model with only 8 states
(for an 8 tatum bar). Its F-measure performance, shown in
figure 6(d).2 is of 63.9%. We then considered 14 states (for 8
and 6 tatum bars). The F-measure goes up to 69.9% as seen
in figure 6(d).3. However, at the moderate cost of only 18
ms per one minute song, the 80 states temporal model gives
a significantly better performance of +2.7 pp. Indeed, while
using more states can lead to unlikely states being chosen,
it allows enough flexibility to work in different scenarios.
Especially when we can emphasize the most common case
of two tatums per beat with appropriate transition matrix
coefficients. Regarding the ability of the model to deal with
different meters, downbeat sequences of three and four beats
per bar tracks are fairly well estimated with a mean F-measure
of 79.5% and 77.4% respectively. The performance of 2 beats
per bar tracks is significantly lower, at 55.0% since they are
mostly taken for 4 beats per bar tracks. This is a common
ambiguity for algorithms and human listeners that goes beyond
the scope of this work. The other meters represent less than
1% of the datasets.

VI. CONCLUSION AND FUTURE WORK

In the present work, we have presented a system that
robustly detects downbeat occurrences from various audio
music files. Our work is based on the fact that a downbeat is
a high level concept depending on multiple musical attributes.
We therefore have designed complementary features based
on harmony, melody, bass content and rhythm and adapted
convolutional neural networks to each feature characteristics.
Rhythm in music being highly structured, an efficient and flex-
ible temporal model was also proposed to largely improve the
instantaneous downbeat estimation. A comparative evaluation

16The estimated tatum is at the beat level 16.4% of the time, twice the
beat 62.4% of the time, three times the beat 3.5% of the time and four times
the beat 17.5% of the time. Other configurations occur less than 0.2% of the
time.

on a large database of 1511 audio files from various music
styles shows that our system significantly outperforms four
other published algorithms, while keeping a low computational
cost. Each step of our system was analyzed to highlight its
strengths and shortcomings. In particular, the combination of
harmonic and rhythmic deep networks proved to be very good
by itself.

While the proposed algorithm obtained the best results over-
all, it is to note that the recent MIREX campaign17 highlighted
some limitations in our method. The submitted system does
not match exactly the one presented here but is based on the
same framework. First, the temporal model doesn’t deal well
with 2 beats per bar songs as in Cretan music for example as it
can easily be confused with 4 beats per bar songs. This issue
can be fixed by adapting the temporal model to the music
convention of a particular style. Second, while it can adapt
to music of different traditions such as Turkish Usuls fairly
well, music coming from a much more different genre such
as Indian Carnatic or with particular rhythm conventions such
as Hardcore, Jungle and Drum and Bass requires a training
set containing some adapted examples for the system to work
better. These remarks are rather expected as a human listener
hearing these music styles for the first time will also tend to
be lost before training 18. It shows that bars are not intuitively
understood for all music traditions and that designing a more
adapted or exhaustive training set is important. However, the
number of music tracks for which our system provides a good
estimation is still important.

In the future, besides a more refined training set, a network
combination procedure adapted to the temporal model and a
more robust segmentation step seem promising to improve the
current system.

REFERENCES

[1] F. Lerdahl and R. Jackendoff, A generative theory of tonal music.
Cambridge, MA: The MIT Press, 1983.

[2] E. W. Large and M. R. Jones, “The dynamics of attending: how people
track time-varying events.” Psychological review, vol. 106, no. 1, p. 119,
1999.

[3] M. Mauch and S. Dixon, “Simultaneous estimation of chords and
musical context from audio,” vol. 18, no. 6. IEEE, 2010, pp. 1280–
1289.

[4] E. Tsunoo, G. Tzanetakis, N. Ono, and S. Sagayama, “Beyond timbral
statistics: Improving music classification using percussive patterns and
bass lines,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 19, no. 4, pp. 1003–1014, 2011.

[5] A. Shenoy and Y. Wang, “Key, chord, and rhythm tracking of popular
music recordings,” Computer Music Journal, vol. 29, no. 3, pp. 75–86,
2005.

[6] N. C. Maddage, “Automatic structure detection for popular music,” IEEE
Multimedia, vol. 13, no. 1, pp. 65–77, 2006.

[7] M. Hamanaka, K. Hirata, and S. Tojo, “Musical structural analysis
database based on GTTM,” 2014.

[8] J. Paulus and A. Klapuri, “Measuring the similarity of rhythmic
patterns,” in Proceedings of the International Conference on Music
Information Retrieval (ISMIR), 2002.

[9] J. A. Hockman, J. P. Bello, M. E. P. Davies, and M. D. Plumbley,
“Automated rhythmic transformation of musical audio,” in Proceedings
of the International Conference on Digital Audio Effects (DAFx), 2008,
pp. 177–180.

17http://www.music-ir.org/mirex/wiki/2015:Audio_Downbeat_Estimation_
Results

18Several audio excerpts are available at http://www.music-ir.org/mirex/
wiki/2015:Audio_Downbeat_Estimation for the interested listener.

http://www.music-ir.org/mirex/wiki/2015:Audio_Downbeat_Estimation_Results
http://www.music-ir.org/mirex/wiki/2015:Audio_Downbeat_Estimation_Results
http://www.music-ir.org/mirex/wiki/2015:Audio_Downbeat_Estimation
http://www.music-ir.org/mirex/wiki/2015:Audio_Downbeat_Estimation

13

[10] M. Goto, “An audio-based real-time beat tracking system for music with
or without drum-sounds,” Journal of New Music Research, vol. 30, no. 2,
pp. 159–171, 2001.

[11] J. London, Hearing in time: Psychological aspects of musical meter.
Oxford University Press, 2012.

[12] F. Krebs and S. Böck, “Rhythmic pattern modeling for beat and
downbeat tracking in musical audio,” in Proceedings of the International
Conference on Music Information Retrieval (ISMIR), 2013, pp. 227–232.

[13] J. Hockman, M. E. P. Davies, and I. Fujinaga, “One in the jungle: down-
beat detection in hardcore, jungle, and drum and bass.” in Proceedings of
the International Conference on Music Information Retrieval (ISMIR),
2012, pp. 169–174.

[14] D. Gärtner, “Unsupervised learning of the downbeat in drum patterns,”
in Proceedings of the AES International Conference on Semantic Audio,
2014.

[15] A. Klapuri, A. Eronen, and J. Astola, “Analysis of the meter of acoustic
musical signals,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 14, no. 1, pp. 342–355, 2006.

[16] M. E. P. Davies and M. D. Plumbley, “A spectral difference approach to
extracting downbeats in musical audio,” in Proceedings of the European
Signal Processing Conference (EUSIPCO), 2006.

[17] H. Papadopoulos and G. Peeters, “Joint estimation of chords and
downbeats from an audio signal,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 19, no. 1, pp. 138–152, 2011.

[18] G. Peeters and H. Papadopoulos, “Simultaneous beat and downbeat-
tracking using a probabilistic framework: Theory and large-scale evalu-
ation,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 19, no. 6, 2011.

[19] T. Jehan, “Downbeat prediction by listening and learning,” in Proceed-
ings of the IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, 2005, pp. 267–270.

[20] M. Khadkevich, T. Fillon, G. Richard, and M. Omologo, “A probabilistic
approach to simultaneous extraction of beats and downbeats,” in Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2012, pp. 445–448.

[21] M. Gainza, D. Barry, and E. Coyle, “Automatic bar line segmentation,” in
Audio Engineering Society Convention 123. Audio Engineering Society,
2007.

[22] N. Whiteley, A. T. Cemgil, and S. J. Godsill, “Bayesian modelling of
temporal structure in musical audio,” in Proceedings of International
Conference on Music Information Retrieval (ISMIR), 2006, pp. 29–34.

[23] A. Holzapfel, F. Krebs, and A. Srinivasamurthy, “Tracking the ”odd”:
Meter inference in a culturally diverse music corpus,” in Proceedings of
the International Conference on Music Information Retrieval (ISMIR),
2014.

[24] S. Durand, B. David, and G. Richard, “Enhancing downbeat detec-
tion when facing different music styles,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014, pp. 3132–3136.

[25] E. Battenberg, “Techniques for machine understanding of live drum
performances,” Ph.D. dissertation, Electrical Engineering and Computer
Sciences University of California at Berkeley, 2012.

[26] L. Nunes, M. Rocamora, L. Jure, and L. W. P. Biscainho, “Beat and
downbeat tracking based on rhythmic patterns applied to the uruguayan
candombe drumming,” in Proceedings of the 16th Int. Conference on
Music Information Retrieval (ISMIR), 2015.

[27] F. Krebs, A. Holzapfel, A. T. Cemgil, and G. Widmer, “Inferring metrical
structure in music using particle filters,” IEEE Transactions on Audio,
Speech and Language Processing, vol. 23, no. 5, pp. 817–827, 2015.

[28] P. Grosche and M. Müller, “Tempogram Toolbox: MATLAB tempo and
pulse analysis of music recordings,” in Proceedings of the International
Conference on Music Information Retrieval (ISMIR), late breaking
contribution, 2011.

[29] M. A. Alonso-Arevalo, “Extraction d’information rythmique à par-
tir d’enregistrements musicaux,” Ph.D. dissertation, École Nationale
Supérieure des Télécommunications, 2006.

[30] E. Hannon, J. Snyder, T. Eerola, and C. Krumhansl, “The role of melodic
and temporal cues in perceiving musical meter,” Journal of Experimental
Psychology: Human Perception and Performance, vol. 30, no. 5, p. 956,
2004.

[31] P. Pfordresher, “The role of melodic and rhythmic accents in musical
structure,” Music Perception, vol. 20, no. 4, pp. 431–464, 2003.

[32] J. P. Bello and J. Pickens, “A robust mid-level representation for
harmonic content in music signals.” in Proceedings of the International
Conference on Music Information Retrieval (ISMIR), vol. 41, 2005, pp.
304–311.

[33] J. C. Brown and M. S. Puckette, “An efficient algorithm for the
calculation of a constant q transform,” The Journal of the Acoustical
Society of America, vol. 92, no. 5, pp. 2698–2701, 1992.

[34] G. Hinton, N. Srivastava, A. Krizhevsky, I. Suskever, and R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of
feature detectors,” The Computing Research Repository (CoRR), vol.
abs/1207.0580, 2012.

[35] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural networks
for matlab,” CoRR, vol. abs/1412.4564, 2014.

[36] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classi-
fiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 226–239, 1998.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[38] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in IEEE International Symposium on Circuits
and Systems (ISCAS), 2010, pp. 253–256.

[39] J. Thomassen, “Melodic accent: Experiments and a tentative model,”
Journal of the Acoustical Society of America, vol. 71, p. 1596, 1982.

[40] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
International Journal of Data Warehousing and Mining, vol. 3, pp. 1–13,
2007.

[41] A. Livshin and X. Rodet, “The importance of cross database evaluation
in sound classification,” in Proceedings of the International Conference
on Music Information Retrieval (ISMIR), 2003, pp. 241–242.

[42] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music
database: Popular, classical and jazz music databases,” in Proceedings of
the International Conference on Music Information Retrieval (ISMIR),
vol. 2, 2002, pp. 287–288.

[43] S. Hainsworth and M. D. Macleod, “Particle filtering applied to musical
tempo tracking,” EURASIP Journal on Applied Signal Processing, vol.
2004, pp. 2385–2395, 2004.

[44] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music
database: Music genre database and musical instrument sound database,”
in Proceedings of the International Conference on Music Information
Retrieval (ISMIR), vol. 3, 2003, pp. 229–230.

[45] “www.ballroomdancers.com.”
[46] “http://www.quaero.org/.”
[47] “http://isophonics.net/datasets.”
[48] F. Krebs, S. Böck, and G. Widmer, “An efficient state-space model for

joint tempo and meter tracking,” in Proceedings of the International
Conference on Music Information Retrieval (ISMIR), 2015, pp. 72–78.

[49] J. P. Bello and J. Pickens, “A robust mid-level representation for
harmonic content in music signals,” vol. 19, 2005.

[50] S. Böck, F. Krebs, and M. Schedl, “Evaluating the online capabilities
of onset detection methods.” in Proceedings of the International Con-
ference on Music Information Retrieval (ISMIR), 2012.

[51] D. Temperley and T. d. Clercq, “Statistical analysis of harmony and
melody in rock music,” Journal of New Music Research, vol. 42, no. 3,
pp. 187–204, 2013.

[52] B. D. Giorgi, M. Zanoni, A. Sarti, and S. Tubaro, “Automatic chord
recognition based on the probabilistic modeling of diatonic modal
harmony,” in Proceedings of the International Workshop on Multidi-
mensional Systems (nDS), 2013.

[53] N. Degara, E. Argones Rua, A. Pena, S. Torres-Guijarro, M. E. P.
Davies, and M. D. Plumbley, “Reliability-informed beat tracking of
musical signals,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 1, pp. 290–301, 2012.

[54] T. F. Wu, C. J. Lin, and R. C. Weng, “Probability estimates for multi-
class classification by pairwise coupling,” The Journal of Machine
Learning Research, vol. 5, pp. 975–1005, 2004.

[55] S. Durand, J. P. Bello, B. David, and G. Richard, “Downbeat tracking
with multiple features and deep neural networks,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015.

[56] Y. Freund and R. Schapire, “A short introduction to boosting,” Journal-
Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, p.
1612, 1999.

[57] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

	Introduction
	Related Work
	Feature extraction
	Downbeat detection function
	Downbeat sequence extraction

	Proposed model
	Model overview
	Tatum synchronous segmentation
	Feature extraction
	Chroma
	Onset detection function
	Low-frequency spectrogram
	Melodic constant-Q transform
	Temporal quantization

	Feature learning
	Network combination
	Temporal modeling

	Feature adapted deep neural networks
	Melodic neural network (MCNN)
	Rhythmic neural network (RCNN)
	Harmonic neural network (HCNN)
	Bass content neural network (BCNN)

	Evaluation and results
	Methodology
	Evaluation metrics and procedure
	Datasets

	Comparative analysis
	Detailed analysis of the proposed system
	Segmentation
	Feature adapted neural networks
	Feature learning
	Downbeat likelihood combination
	Temporal model

	Conclusion and future work
	References

