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ABSTRACT

Multichannel blind source separation performances rapidly
degrade when the mixtures are highly reverberated. In fact,
blind source separation algorithms usually focus on the sepa-
ration task without dealing with the dereverberation problem.
Some recent studies attempted to reduce the reverberation by
introducing a dereverberation module before or after the blind
source separation but only limited success was obtained in
improving the separation performance in highly reverberant
rooms. In this article, we conduct a number of experiments
combining state of the art spectral enhancement-based dere-
verberation and source separation algorithms showing that,
in this particular case, speech enhancement does not improve
the performance of blind source separation.

Index Terms— Blind source separation, speech derever-
beration, spectral subtraction, microphone array.

1. INTRODUCTION

In a multichannel acoustic scene analysis context, one impor-
tant task is to separate different audio sources that are active
simultaneously. This is the case for example in robot audi-
tion where the robot equipped with a microphone array must
separate the speech signal from several competing talkers, so
that it can recognize a given sentence. In this context, blind
source separation (BSS) techniques use the multichannel in-
formation received at the sensors to recover in separate chan-
nels the acoustic events related to a given source. A common
approach for BSS is to assume an instantaneous mixture of in-
dependent and equally distributed sources. When these con-
ditions are actually met, which is equivalent to consider that
sources are propagated in an anechoic environment, methods
like independent component analysis give satisfying separa-
tion results.

In practice, instantaneous blind source separation tech-
niques are known to fail in reverberant rooms [1], where the
mixtures become convolutive. State of the art methods deal
with this limitation by working in the frequency domain so
that the convolutive mixture can be approximated with an
instantaneous one. Methods based on independent compo-
nent analysis, Non Negative Matrix Factorization and sparse

optimization have shown satisfying separation results when
the reverberation is low or moderate. However, when the
room is highly reverberant the separation performances de-
grade dramatically. This is because longer Room Impulse
Responses (RIR) require longer analysis windows to span all
the convolution effects in the frequency domain. But by using
longer windows the assumption of independence between the
sources does not hold anymore. The separation performances
are then bounded by the trade-off between the independence
of the sources and the length of the convolutive filter. In a
recent work, Maazaoui et al. used beamforming methods as
a preprocessing step for BSS [2]. By focalizing the directiv-
ity of the sensor array towards the sources, the reverberation
from the jammer direction is attenuated and as a consequence
the separation performances are improved.

Speech dereverberation (SD) techniques have been largely
studied in recent years, leading to better reverberation reduc-
tion than beamforming techniques [3]. One should then
expect to improve the separation performance by previously
applying some SD processing to the mixture. In [4], Yoshioka
et. al proposed to use a multichannel SD algorithm based on
linear prediction as a preprocessing step for BSS. The SD and
BSS filters were jointly optimized leading to significantly
better separation results in rooms with reverberation times of
0.3 and 0.5 seconds. Similar results were observed with the
multichannel approach proposed in [5].

In this paper we investigate the influence of single chan-
nel spectral enhancement-based dereverberation as a prepro-
cessing step for multichannel BSS for a large range of rever-
beration times. We considerer a simple framework: single
channel SD is applied to every channel and the dereverber-
ated mixtures are separated by multichannel BSS. By using a
single channel approach for SD we propose a system that is
independent of the geometry of the microphone array. It also
allows to parallelize the SD task, allowing for faster process-
ing in real-time applications. We use state-of-the-art methods
for this study. SD is performed with the method proposed by
Habets et al. in [6] and BSS with method by Maazaoui et al.
in [2]. We show that, in this particular configuration, reduc-
ing the reverberation does not lead to an improvement on the
separation performances.

This paper is organized as follows: in Section 2 we briefly



introduce the methods used for SD and BSS. In section 3 we
present two variants of the sequential algorithm under inves-
tigation. Experimental results are given in Section 4 before
drawing some conclusions in Section 5.

2. MODELS AND METHODS

2.1. Single channnel dereverberation

For this study we use the single channel dereverberation
method described by Habets in [6]. This state-of-the art
method is based on a short term prediction of the late rever-
berant energy and spectral filtering. The signal at the mth
microphone is written as xm(n) = xem(n) + xrm(n) where
xem(n) is the early signal that we want to recover and xrm(n)
is the late reverberation signal. xem(n) represents the di-
rect path signal followed by ne seconds of early reflections.
Assuming that the early and late reverberation parts of the
RIR are uncorrelated and that the observed signal is station-
ary it has been shown in [6] that the power spectral density
(psd) of the reverberant signal at frequency f , frame k and
microphone m, denoted λxm(f, k), can be written as:

λxm(f, k) = e−2δneλxm(f, k − ke) + λem(f, k),

where λem(f, k) is the psd of the signal affected by the
early reflections of the RIR and λxm(f, k) = |Xm(f, k)|2. The
estimator for the psd of late reverberation is given by:

λ̂rm(f, k) = e−2δneλxm(f, k − ke). (1)

Here, δ is the decay rate of the room and ke is a frame delay
given by ke = nefs

R , where R is the frame rate of the STFT
and fs is the sampling frequency. The decay rate is related to
the reverberation time T60 by:

δ =
3 ln(10)

T60
. (2)

The framework adopted for single channel speech en-
hancement based dereverberation is illustrated in Figure 1.
The time domain signal x(n) is analyzed with a Short Time
Fourier Transform (STFT) filterbank. We first estimate the
late reverberant energy using Eq. (1) using the reverbera-
tion time measured directly from the RIR. Then we design
the time-frequency dereverberation filter G(f, k) using the
Optimally Modified Log Spectral Amplitude (OM-LSA) es-
timator as described in [7]. The OM-LSA framework is an
extension of the state-of-the-art Log Spectral Amplitude es-
timator for speech signals introduced in [8] which takes into
account the speech presence uncertainty. This leads to a non
linear filter that is a function g of the STFT of the observed
signal Xm(f, k) and the late reverberation psd λ̂rm(f, k):

Gm(f, k) = g
(
Xm(f, k) , λ̂rm(f, k)

)
. (3)
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Fig. 1. Single channel dereverberation framework as pro-
posed in [6].

Finally the dereverberated signals are recovered in the ma-
trix Xe(f, k) where the mth line Xe

m(f, k) is obtained by
spectral filtering as:

Xe
m(f, k) = Gm(f, k)Xm(f, k) (4)

2.2. Multichannel blind source separation

We apply a blind source separation algorithm to the M outputs
of the dereverberation stage Xe(f, k) in the time-frequency
domain. We use a sparsity separation criterion based on the `1
norm minimization to estimate the separation matrix W (f)
as originally proposed in [2]. The optimization technique
used to update the separation matrix W (f) is the natural gra-
dient proposed by Amari et al. in 1996 [9], the update equa-
tion is written as:

Wt+1 (f) = Wt (f)− µ∇ψ (Wt (f))WH
t (f)Wt (f)

(5)
ψ (W (f)) is our loss function, µ is an adaptation step and t
refers to the iteration. In order to induce the sparsity of the
separated sources we use the loss function defined by:

ψ (W(f)) =

N∑
i=1

T∑
k=1

|Yi(f, k))| (6)

where N is the number of sources and T the total num-
ber of signal frames. The output signal is Y (f, k) =
W (f)Xe (f, k) where each line of Y contains one sep-
arated source. For the complete derivation of the natural
gradient in Eq. (5) the interested reader should refer to [2].

3. SEQUENTIAL DEREVERBERATION AND BSS
ALGORITHMS

In this section we present the two strategies chosen to estimate
the multichannel late reverberation starting from the single
channel estimator presented in 2.1.

3.1. Single channel reverberation estimation

In a first configuration, each input to the BSS system is dere-
verberated independently. The late reverberation psd of the
mth channel is estimated according to Eq. (1) and an indi-
vidual filter is derived for each channel. This results in M



dereverberated signals. In this configuration, the channels do
not share any information about the late reverberation, a chan-
nel dependent perturbation signal is used for the design of the
M dereverberation filters. We refer to this method as Single
Channel Dereverberation (SCD).

3.2. Global reverberation estimation

Our second configuration tries to emphasize the spatial diver-
sity at the microphone level to get a better knowledge of the
reverberant field. We assume that the power of late reverbera-
tion is approximately equal for each microphone. This allow
us to use a global estimate of the late reverberation psd de-
fined by:

λ̂r(f, t) =
1

M

M∑
m=1

λ̂rm(f, t) (7)

This global estimation of the late reverberation was firstly
proposed in [6] where the dereverberation algorithm was used
as a postprocessing step to a spatial processor (e.g. beam-
former). We estimate λ̂rm(f, k) for every input channel and
align properly the estimated signals before computing λ̂r. Fi-
nally we design the channel dependent dereverberation filters
Gm(f, t) that are now steered by the same perturbation sig-
nal λ̂r(f, t). The approach is referred to as Multiple Channel
Dereverberation (MCD).

4. EXPERIMENTS AND RESULTS

4.1. Experimental settings

For our experiment we simulate the acoustics of a room with
fixed dimensions of [6 × 4 × 5]m. We consider 42 mix-
tures with N = 2 speech sources at different locations cap-
tured by a linear microphone array with M = 10 micro-
phones spaced by 5 cm. For each source position and each
microphone we compute 10 Room Impulse Responses with
reverberation times ranging from 100 to 1000 ms using the
Fast Image-Source Method described in [10]. The reverberant
mixtures are obtained by filtering each source with the corre-
sponding RIRs. The reverberation time of the room is esti-
mated directly from the RIR using Schroeder’s backwards in-
tegration method [11]. For each microphone, we estimate the
late reverberation psd using Eq. (1) and we compute the dere-
verberation filter using both strategies described in the previ-
ous section. The time domain dereverberated signals xem(n)
are fed to the source separation stage with the same settings
of [2] and we recover an estimate of the two separated sources
denoted y1(n) and y2(n).

4.2. Dereverberation Performance

First we evaluate the dereverberation stage using the segmen-
tal Signal to Reverberant Ratio (SRR) and the Log Spectral
Distortion (LSD) as described in [6]. For each microphone,
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Fig. 2. SRR and LSD improvement after the dereverberation
step using Single Channel Dereverberation (SCD) and Multi-
ple Channel Dereverberation (MCD).

we use the early signal xem(n) as a reference. We compute
each measure for the dereverberated signal and study the im-
provement related to the unprocessed one for each micro-
phone. Figure 2(a) shows the average improvement of the
SRR (∆SRR) as a function of the reverberation time for the
single channel and multiple channel dereverberation methods
(SCD and MCD respectively) described in Section 3. In both
cases, the reverberation level of the mixture is reduced for ev-
ery reverberation time. In our application we have a mixture
of two sources affected by two different RIRs while the model
for dereverberation presented in Section 2.1 assumes a single
source affected by a single RIR. However the late reverber-
ation is diffuse so we can consider that it is constant in the
room. Under this assumption, we approximate the late rever-
beration of each individual source by an estimate of λ̂rm(f, t)
for the mixture. If we compare the single channel and the
multiple channel approaches we see that the spatial averaging
of the estimated reverberant field slightly improves the dere-
verberation capability of the algorithm, showing that the use
of spatial diversity benefits SD.

This improvement is obtained at the cost of higher spectral
distortion as illustrated in Figure 2(b). The distortion intro-
duced by the dereverberation stage remains moderate even for
high reverberation times. In the MCD case, the averaged es-
timated reverberation uses information about the other chan-
nels for the design of the dereverberation filter, this results
in spectral distortions due to the incoherences between those
channels. The analysis of the dereverberation part shows that
at the input of the BSS block we have a signal with less re-
verberation than the microphone signal but with slightly more
spectral distortion. In the following Section we study how this
affects the separation performance of the separation step.

4.3. Source Separation Performance

For the evaluation of the separation task we use the BSS-eval
Toolbox[12]. We study the Signal to Interference Ratio (SIR),
the Signal to Distortion Ratio (SDR) and the Signal to Artifact
Ratio (SAR) measures. We compute the separation scores
for each separated source in each reverberant condition. The
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Fig. 3. Average BSS-eval scores for the separation: with-
out dereverberation (red), using SCD (blue) and using MCD
(green). The error bar shows the standard deviation when no
dereverberation is performed.

anechoic signals are used as source images. We compare the
performance in three configurations: BSS without SD, BSS
with SCD and BSS with MCD.

Figure 3 shows the BSS-eval scores as a function of the re-
verberation time for the three cases. Figure 3(a) gives the SIR
separation performance of the algorithms. It is clear that BSS
succeeds for reverberation times shorter than 300 ms where
the SIR is higher than 10 dB. Then the performance rapidly
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Fig. 4. Scatter plot of the SIR score in the MCD case. Each
point represents a separated source in one of the considered
reverberant conditions.

degrades until the floor value of 2 dB for highly reverberant
enclosures, a drop of 20 dB compared to a reverberation time
of 100 ms. There is also a degradation of the SDR and SAR
where we lose up to 12 and 9 dB respectively. Regarding the
standard deviations of the measured scores, we observed al-
most identical deviations in the three cases. For the sake of
readability, in Figure 3 we only show the error bars in the
case where no SD is applied. It is clear that the dereverbera-
tion preprocessing does not significantly improve BSS. This
means that the BSS stage is not sensitive to the reverberation
reduction that we assessed in Section 4.2. The SDR and SAR
scores in Figures 3(b) and (c) confirm that, in this particular
case, single channel dereverberation does not improve BSS.

We take a further look to the scores with the SIR scat-
ter plot in Figure 4 representing the individual scores of each
separated signal for all the reverberant conditions. We com-
pare the scores of BSS without SD and those of the MCD
approach. If we focus around 10 dB in the horizontal axis we
observe cases where the SIR is improved by 15 dB with the
preprocessing. But we also have cases where the separation
fails with a degradation of the same amount while in average
we do not observe any improvement.

4.4. Discussion

Knowing that reverberation degrades the separation perfor-
mance as shown in Figure 3(a) we applied a dereverberation
algorithm previous to the separation stage. The mixtures pro-
cessed with SD have reduced reverberation when compared
with the unprocessed ones as shown in Figure 2(a). How-
ever we could not observe any significant improvement of the
separation by using a SD preprocessor. Here we draw some
interpretations of this behavior.



BSS and Spectral Subtraction. The OM-LSA estimator
involves spectral subtraction that can lead to negative compo-
nents if the power of the disturbance is over estimated. This is
avoided by thresholding the spectral amplitude to a low non-
negative value. In addition, spectral subtractive techniques
cannot recover the phase component of the target signal. As a
consequence, the dereverberated signal is affected by non lin-
ear distortions that contradict the linear mixture assumption
used for multichannel BSS. For the BSS we also assumed the
mixture matrix and the separation matrix W(f) to be time
invariant. However in a spectral enhancement framework the
input is processed by different filters from a frame to another.
All these elements suggest that spectral filtering techniques
are not suitable as a preprocessing for systems relying on lin-
earity assumptions. Dereverberation based on LTI filtering is
more suitable for this framework [4].

Early Reflections. The estimator of the psd of the re-
verberation predicts the late reverberation using a parametric
model of the room impulse response. This algorithm is robust
against RIR fluctuations but it is not intended to perform per-
fect deconvolution and because of this, the processed signals
are still affected by convolutive distortions. As reducing the
tail of the reverberation does not affect the separation perfor-
mances, we should study more deeply the role of the early
part of the reverberation in the mixtures.

5. CONCLUSION

We presented in this paper a set of experiments to study the
influence of state-of-the-art dereverberation algorithms in a
blind source separation context. We used a non linear derever-
beration method based on spectral subtraction in conjunction
to a linear sparse optimization source separation algorithm.
We presented two different strategies to attenuate the rever-
beration by using the spatial information available in the mi-
crophone array. We showed that the reverberation of the mix-
ture signal was well reduced by the chosen technique. Even
if the reverberation of the mixtures was efficiently reduced,
we did not observe any improvement in the separation perfor-
mance due to the dereverberation stage. BSS performs poorly
for high reverberation times independently of the preprocess-
ing we used. We suggest that spectral subtraction approaches
for dereverberation are not suitable for applications involv-
ing a system based on linearity assumptions. We believe that
further studies have to be carried to understand the effect of
early reflections on BSS and to make BSS benefit from the
efficiency of spectral subtraction-based approaches for dere-
verberation.
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