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ABSTRACT

We present an original framework for the detection of re-

peating objects in multimedia streams. This framework is

designed so that it can work with any fingerprint model. A

fingerprint is extracted for each incoming frame of the multi-

media stream. The framework then manages this fingerprint

so that if one similar frame comes later in the stream, it will

be identified as a repetition. The framework has been tested

with two distinct fingerprint models on simulated and ’real-

world’ data. The results show that the framework performs

well with both presented models and that it is suitable for in-

dustrial use-cases.

Index Terms— Fingerprint, repeating objects, indexing,

framework

1. INTRODUCTION

Multimedia streams often contain repetitive data (see [1]).

Depending on the considered medium, repeated objects can

be entire programs, songs, advertisements or jingles. Let

us note that the repeated objects might however be distorted

from one version to the other (different volume, different

equalization, addition of noise, ...). For numerous reasons,

it is interesting to automatically detect these repetitions.

Applications include compression, automatic annotation of

repeating objects, segmentation and data mining.

As some authors have pointed out [2], it is relevant to use

the notion of fingerprint for fast detection of a repetition. A

fingerprint in signal processing can be viewed as a compact

representation of a signal excerpt. This representation is de-

signed so that two similar signals should have the same finger-

print. When it is queried with an unknown signal, the chal-

lenge for a fingerprinting system is to perform an efficient

search. Indeed, it has to compare the unknown fingerprint

with a reference database that usually contains thousands of

them. Hence, the powerful summary and indexing capabil-

ities that are required for a fingerprint system suit well the
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repeating objects detection problem.

Although methods have been proposed [2, 1, 3], each

comes as a specific combination of a detection method and a

fingerprint. In this work, we present a general framework that

allows the use of any fingerprint extraction system for the de-

tection of repeating objects. The only requirement is that the

fingerprint extraction system outputs a set of time-localized

keys for any frame of signal. This is the case for most finger-

print systems. They usually use this set of keys in an indexing

scheme for fast detection. For instance, Wang’s fingerprint

system [4] (also known as Shazam’s system) extracts time-

localized pairs of peaks in the spectrogram and uses them

as database keys. Haitsma’s [5] (known as Philip’s system)

extracts one binary feature every 10ms that summarizes the

spectral content. The authors call these features ’hashes’ and

use them as keys in a ’look-up table’. In spite of the general

applicability of the framework, we have restricted our exper-

iments to audio use-cases. However, one should note that

indexing tasks on multimedia signals (e.g. video) can often

be achieved by working on the sole audio component [6].

In the first section, we describe the framework and all its

components. In the second section, we provide two examples

of fingerprints that have been integrated in the framework.

Finally, we test these configurations in two distinct experi-

ments. The first experiment is meant to accurately evaluate

the performance of the systems. The second one is based on

a ’real-world’ use-case.

2. DESCRIPTION OF THE FRAMEWORK

2.1. General architecture

We describe here the general flow of the framework, given

in Figure 1. The stream is framed and then linearly pro-

cessed. Each frame undergoes a fingerprint extraction. From

here, the system forks. One branch is dedicated to analyz-

ing the fingerprint (in practical terms, looking for matches

in the past), the other is dedicated to storing the fingerprint

in the database containing the past fingerprints. In the anal-

ysis branch, the fingerprint is matched against the database

containing the previous frames’ fingerprints. Based on this

matching result combined with the matching results of previ-
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ous frames, a repetition detection decision is taken. In case of

a detected repetition, the ’storage branch’ is updated so that it

will not store repeated frames in the database. In the storage

branch, the frame’s fingerprint is pushed into a FIFO (’First In

First Out’) buffer. This buffer delays subsequent storage pro-

cessing for this frame. As the current frame fingerprint enters

the buffer, the last fingerprint of the FIFO buffer is pushed

into the database. Though, this latter will be written only if it

has not been detected as part of a repeating segment.

The different building blocks of this general framework

are further described below.

2.2. Framing and fingerprinting

The input stream is sliced in non-overlapping analysis frames
fn (n ∈ N) of length La. A typical value for La is 5s. For a

given analysis frame, the fingerprint module outputs a set of

features along with their dates of occurrence. We call these

extracted features keys. Formally, we define K the set of keys

extracted in fn. Let Ok(fn) be the number of occurrences of

the key k in fn. We then define tk(fn) = {tik(fn)}i=1..Ok(fn)

the set of times of occurrence of the key k in the frame fn.

The output of the fingerprint module is {(k, tk(fn))}∀k∈K.

The database contains all the keys that have been extracted

in the past stream with their times of occurrence in the stream.

As it is meant to represent the past of the stream, we use the

notation f−1 to refer to the database. Consequently, a key k
appears Ok(f−1) times in the database at times of occurrence

{tik(f−1)}i=1..Ok(f−1). When querying the database with key

k, we get in output {tik(f−1)}i=1..Ok(f−1). Our implementa-

tion uses the database engine ”Berkeley DB” set to its ”Hash

Table” mode.

2.3. Analysis

The analysis starts with the fusion step. It aims at finding

the closest match to the current analysis frame in the stream.

The main idea is that if the current frame is the repetition of

a previous section of the stream, its keys should all be stored

in the database. Furthermore, all the keys extracted from the

analysis frame should be retrieved in the past with the same

delay. We then adopt the following methodology to find the

best candidate in the past.

We compute the set of differences

{{tik(fn)− tjk(f−1)}∀(i,j)∈�1;Ok(fn)�×�1;Ok(f−1)�

}
∀k∈K

We store these time differences in a histogram. The highest

peak in the histogram gives the best candidate delay for a rep-

etition.

Let us note that this methodology ensures the retrieval of

the best candidate. Though, it does not require that all keys

are preserved from one version to the other. It only requires

that the majority of the keys are preserved. This makes the

method robust to distortions that would corrupt part of the

keys between the two versions. In order to bring even more

robustness to the system, we output the M best candidate de-

lays.

The work presented in [7] underlines the fact that the per-

formance of a fingerprint system is much higher when issuing

detections based on a vote mechanism involving several suc-

cessive matching results rather than making a frame-by-frame

decision. This idea is also exploited in the work from [8]. Our

framework thus stores the matching results of several succes-

sive analysis frames before making a detection decision. The

fusion step outputs a vector of M best candidates (that we call

Single Frame Candidates Vector - SFCV) that is integrated in

a H×M matrix that contains the H (for horizon) last SFCVs.

We call this matrix the Multiple Frames Candidates Matrix -

MFCM.

The last step of the analysis is a majority vote on the

MFCM. Previous works suggest the following vote mecha-

nism. For a given detection threshold θ, let Mn be the MFCM

after integrating the matching results of frame fn. Let C be

the set of candidate delays that appear in Mn and h be a func-

tion that counts the number of occurrences of a candidate in

the MFCM. Let δ be a function that is defined by:
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δ(x, y) =

{
x if y > θ
∅ otherwise

The vote function is then defined by:

v(Mn) = δ(argmax
c∈C

{h(c)},max
c∈C

{h(c)})

However, this vote model may generate some instability

when dealing with objects that contain an inherent repetitive

structure. For example, let us imagine that the database con-

tains one song with two similar choruses. As a consequence,

when processing an analysis frame belonging to a chorus of

the same song, the two choruses in the database will be can-

didates in the MFCM. Besides, their number of occurrences

in the MFCM will be very close. The result is that, when

processing the successive analysis frames of a chorus, the

detections issued by the vote algorithm may look like that:

chorus1-chorus2-chorus1-chorus1-chorus2...

This, of course, is not desirable, since we would like our

algorithm to consider that the successive analysis frames all

belong to the same chorus. Ideally, we would like the al-

gorithm to detect chorus1 when processing the first analy-

sis frames containing a chorus and chorus2 later on in the

stream.

In order to achieve this goal, we modify the preceding

vote model so that it becomes auto-regressive. The autore-

gressive aspect is obtained by favoring the delay that best cor-

responds to the preceding vote result. This ensures a certain

continuity in the algorithm detections. So, if the start of the

song has been detected, and when reaching the chorus, the

algorithm will naturally tend to select the first chorus of the

song in the database. Formally it consists of replacing func-

tion h in the vote by h̃, which is defined by:

h̃(c) =

{
h(c) + β if v(Mn−1) = c
h(c) otherwise

In our implementation, β = 1.

2.4. Storage

One of the principles of the framework is to store the finger-

prints of the analysis frames that have been processed in a

database. However, we do not wish to store in this database

the fingerprints of the frames that are detected as repetitions.

There are two reasons for that. First, it would be a waste of

space. Second, when matching a third fingerprint that would

be alike, we would obtain two good candidates instead of one.

That would uselessly jam the matching process.

As we have seen, the algorithm requires the matching re-

sults of H analysis frames before being able to make a de-

cision. This is why we store in a temporary FIFO buffer the

fingerprints of the processed analysis frames. This buffer con-

tains B > H processed fingerprints. If further processing

outputs a repetition detection for frame fn, its fingerprint in

Fig. 2. Example of output visualization.

the FIFO buffer is labeled so that it will not be written in the

database.

The FIFO buffer also has a screening function. Indeed,

the repetitions that occur before B frames are not detected

(since the corresponding fingerprints have not been added to

the database). Depending on the use case, this can be useful

to prevent over-segmentation. For instance, when segmenting

a radio broadcast, one would usually want repeating segments

that correspond to whole songs. Though, if there is no screen-

ing and if the songs contain repetitive choruses, the algorithm

might annotate the songs in several repeating bits (the cho-

ruses) and unrepeated bits (the verses). By setting B to a

larger value than the length of the song, we can prevent the

system from detecting repetitions within the song.

2.5. Results

The framework outputs a decision for each analysis frame.

It is either considered as a repetition of a previous frame, or

as a first occurrence. A graphical illustration of the result is

given in Figure 2. The origin point is the experiment starting

date. Points on the diagonal indicate frames detected as first

occurrences. Points outside of the diagonal indicate repeated

frames. They are plotted with respect to their first occurrence

dates.

3. DESCRIPTION OF THE FINGERPRINTS

3.1. A CQT-based fingerprint

The first fingerprint we use is fully described in [7]. In short,

the methodology consists of using a 2-dimensional peak-

peaking in the Constant-Q-Transform (CQT) spectrogram of

each analysis frame. The extracted peaks are then grouped

in pairs. Each pair is encoded in a form that makes it robust

to common audio-distortions. These encoded pairs are used

as keys. Their time localizations are given by the times of

occurrence of the first peaks in the pairs.
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3.2. A sparse decomposition-based fingerprint

The fingerprint presented above is based on a peak picking

mechanism in the time frequency domain. Alternatively one

can build a fingerprint based on a sparse decomposition of

the signal in a redundant dictionary. Let x be a framed sig-

nal ∈ C
N and Φ be a dictionary of elementary waveforms

φk ∈ C
N called atoms. We denote x̂m an m-term approxi-

mant of x in Φ, that is to say a linear combination of m wave-

forms: x̂m =
∑m−1

i=0 αiφi. There are many different ways of

building such approximant. A fast one is to iteratively select

the φi according to an energetic criterion:

φi = argmax
φ∈Φ

|〈x− x̂i−1, φ〉|

Algorithms based on this greedy paradigm are called Match-

ing Pursuits (MP) following the work of Mallat et al [9].

Sparse decompositions have initially been proposed for

compression purposes. Indeed, in a variety of multimedia

contexts, wavelet dictionaries (e.g. for images) and Fourier-

based transforms (e.g. MDCT for audio) have enabled a fair

amount of dimensionality reduction. The idea of exploiting

sparse decompositions for fingerprinting has already been

proposed (e.g. in [10]).

An m-term approximant x̂m can efficiently be used as a

fingerprint if: 1) its dimension is much lower than that of x 2)

two different signals would yield significantly different fin-

gerprints and 3) the fingerprints exhibit some robustness to

mild distortions. Most MP-like algorithms are only tailored

for the first of these properties. However, in a fingerprint con-

text, we are not interested in minimizing a reconstruction er-

ror, but in maximizing a discriminating power. Therefore, two

options can be considered: either build a fingerprint from an

existing m-term approximant or modify the decomposition

algorithm so as to only select elements that will favor good

fingerprint properties in x̂m.

In this work we have implemented the second approach,

and the following fingerprint construction is performed. We

have used a multiscale MDCT dictionary and a plain MP al-

gorithm with the additional property that atom selection in the

time frequency neighborhood of previously selected atoms is

discouraged. The selection criterion at iteration i becomes:

φi = argmax
φ∈Φ

λ(φ,ΦI).|〈x−
i−1∑
j=0

αjφj , φ〉|

where ΦI is the set of previously selected atoms and λ(φ,ΦI)
is a binary penalty term set to zero if any previously selected

atom is in the time-frequency neighborhood of φ.

For a given analysis frame fn, an approximant f̂m
n is com-

puted and the set of keys used by the fingerprinting system is

simply the set of indexes of the m atoms chosen in the dic-

tionary Φ. By limiting the decomposition to a small number

m of iterations, the dimensionality can be greatly reduced.

However, the fingerprint discriminative power increases with

the number of atoms selected in the decomposition.

CQT-Peaks MP-150

Precision (%) 95.1 94.5

Recall (%) 97.8 91.5

F-measure (%) 96.5 93.0

CPU Time - Fingerprint (s) 0.12 0.33

CPU Time - Total (s) 0.20 0.40

Memory (MBytes) 9.3 2.4

Table 1. Frame by frame detection performances of the pro-

posed framework with two different fingerprint mechanisms

on 2 hours of synthetic redundant audio stream.

4. EXPERIMENTS AND COMPARISONS

4.1. Frame by frame evaluation

This task consists of determining for each incoming analysis

frame whether it is a repetition of a previous frame. If so, the

exact first occurrence in the stream is retrieved. A synthetic

stream is built as a concatenation of 140 audio excerpts ran-

domly taken from a pop song database1. Each excerpt lasts

30 seconds, 100 of them occur twice in the stream and the 40

remaining are not repeated. The total duration of the stream

is thus 2 hours. Analysis frames are 5 seconds long, the com-

plete dataset therefore consists of 1440 frames, 600 of which

are exact repetitions of previous frames. The framework is

evaluated with both presented fingerprints: the CQT-based

fingerprint (labeled CQT-Peaks) and the MP-based fingerprint

with a dictionary of 3 MDCT scales and stopped after 150 it-

erations (labeled MP-150). The two systems are compared

in terms of precision, recall and F-measure. Additionally, we

compare for each analysis frame the average time needed to

compute its fingerprint and the total processing time (mea-

sured on the same Dual-Core CPU at 3.16GHz). Finally, we

compare the size of the databases.

Table 1 summarizes the obtained results. The framework

reaches a good level of precision with both fingerprints. The

recall with the CQT-based fingerprints is better than when us-

ing the MP atom indexes. However, it is also more memory

consuming. The MP-based fingerprints are smaller, but less

robust as the recall shows. The CQT-based fingerprints are

faster to compute but the matching process roughly requires

the same amount of time for both methods. The results con-

firm the relevance of the proposed architecture as a generic

repetition detection framework.

4.2. Real-world evaluation

In [11], the authors underline the importance of evaluating

fingerprinting systems on real-world (i.e. coming from real

broadcasts) data. We here follow their framework applied to

1http://quaero.org
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Fingerprint Detected rep. / Total nb False Alarms

CQT-Peaks 191 / 191 (=100%) 0

MP-150 178 / 191 (=93.2%) 1

Table 2. Repeating objects detection scores for a real-world

radio broadcast

a 24-hours long radio broadcast for the evaluation of our sys-

tem.

It is virtually impossible to get a frame-by-frame repeti-

tion annotation on a real broadcast. On the other hand, the use

of the annotations provided within Quaero allows a detection-

based evaluation. The annotations provide for each broad-

cast song in the 24-hours stream the identifier of the song, its

broadcast time and duration. We extract from the annotations

a repeat list. It contains, for each song that is broadcast for

the second time or more, its time of broadcast, its duration

and the song identifier.

We have set the vote parameters so that the system only

outputs long scale repetitions (H = 9, θ = 6). With these, no

repetition shorter than 30s should be detected.

Our evaluation dataset contains numerous short repeating

objects that are not annotated (advertisements, jingles, ...).

A fair evaluation can only be performed on the music titles

broadcasts. Therefore, we limit the evaluation to repeating

segments that are longer than 90s. This matches the set of

broadcast songs, for which we do have the annotations.

The evaluation is then defined as follows. For each repeti-

tion detected by the algorithm, we check that it does actually

correspond to one entry of the repeat list (meaning the detec-

tion time is within the bounds of one repeated song and the

algorithm points to a previous occurrence of the song). If one

repetition is detected and does not correspond to any entry in

the repeat list, we count one false alarm.

The results are given in table 2. Although both algorithms

have performed well, the CQT fingerprints makes no error

in this task. The MP-based method misses a few songs and

has output one false alarm on the 24 hours broadcast. Let us

note that avoiding false alarms in this task is far less challeng-

ing than in the previous experiment since we only consider

long scale repetitions. This second evaluation shows that the

framework is suitable for industrial applications and that it

does actually fit real-world use-cases.

5. CONCLUSION

In this work we have presented a framework for the detection

of repeating objects in multimedia streams. A remarkable fea-

ture of this architecture is that it can handle any time-based

fingerprint. We have applied this framework to two distinct

audio fingerprints and evaluated its performance. The evalu-

ation has shown that the system performs well in both cases.

More interestingly, this shows that the framework can be used

as a test-bed for drawing comparisons between fingerprints in

this specific use-case. Our evaluation includes a real-world

experiment that shows that the framework is suitable for the

detection of repeating objects in an industrial context.

In the future, it would be interesting to compare this ap-

proach with a ”standard” fingerprint algorithm. Usual finger-

printing systems indeed rely on a prior static database that

contains all the items that can be found in the analyzed mul-

timedia streams. Our system builds its database adaptively as

repeating objects occur in the stream. A final open question

is whether this system can compete with traditional systems

on a typical fingerprint use-case such as the broadcast moni-

toring described in [11].
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