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Indexing of Satellite Images With Different
Resolutions by Wavelet Features

Bin Luo, Jean-Frangois Aujol, Yann Gousseau, and Said Ladjal

Abstract—Space agencies are rapidly building up massive image
databases. A particularity of these databases is that they are made
of images with different, but known, resolutions. In this paper, we
introduce a new scheme allowing us to compare and index images
with different resolutions. This scheme relies on a simplified ac-
quisition model of satellite images and uses continuous wavelet de-
compositions. We establish a correspondence between scales which
permits us to compare wavelet decompositions of images having
different resolutions. We validate the approach through several
matching and classification experiments, and we show that taking
the acquisition process into account yields better results than just
using scaling properties of wavelet features.

Index Terms—Image indexing, resolution invariance, satellite
images, wavelet features.

1. INTRODUCTION

VER the last years, space agencies have built up massive
O image databases. For example, the CNES (the French
space agency) gets each day several terabytes of data from its
satellites. These institutions need efficient tools to index and
search their image databases. One particularity of satellite image
databases, compared to, e.g., natural image databases, is that
they are constituted by images with different but known resolu-
tions! depending on the satellite which acquires them. In con-
trast, the relationship between the size of objects and pixels is
usually unknown for natural images. Moreover, this relationship
depends on the position of objects in the scene, so that the no-
tion of resolution itself has little general meaning for natural
images. This obvious fact made it necessary to develop scale
invariant local features for many computer vision tasks, see,
e.g., [1]. For the indexing of texture, it makes sense to assume
a uniform resolution through the image. Since this resolution is
usually unknown, many scale invariant indexing schemes have
been developed, see, e.g., [2]-[4], and [5] for a review. Our
purpose in this paper is quite different. First, the resolution of
satellite images is usually a known parameter, at least if we ne-
glect tilts of the optical device and if we assume that the scene
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IBy resolution, we mean the true pixel size in meter.

being captured is approximately flat. Therefore, our goal is to
be able to compare two images knowing their resolution dif-
ference. Second, a resolution change is more complicated than
just a scale change, since it usually involves an optical device
and an imaging captor. In a previous work, [6], [7], this process
was modeled as a convolution followed by a sampling and its
effect on the computation of a characteristic scale was studied.
In this paper, we make use of the same model and propose a
scheme to compare features extracted from images at different
resolutions. Observe that several works have been performed to
extract image features that are invariant with respect to resolu-
tion changes [8], [9]. Again, our purpose is quite different since
we wish to be able to compare images with different but known
resolution. Many features have been proposed to index satellite
images [10]-[14]. In this work, we only consider mono-spectral
images and classically choose to index them using texture fea-
tures. In particular, wavelet features have been proved suitable
for texture indexing or classification [15]-[22]. Wavelet features
have already been used for indexing remote-sensing images in
[23]. The aim of the proposed approach is to investigate the in-
terplay between resolution and wavelet features and to propose
a scheme for the comparison of images with different resolu-
tions. Preliminary results of the present work were presented in
[24].

The plan of the paper is the following. In Section II, a simpli-
fied model for the acquisition of satellite images is introduced.
In Section III, we recall how the marginals of wavelet coeffi-
cients can be used for the indexing of images. In Section IV, a
method is given to compare features extracted at different res-
olutions. In Section V, the dependence of features upon res-
olution is checked using satellite images from the CNES and
the proposed scheme is validated through classification experi-
ments. We then conclude in Section VL.

II. MODEL OF THE ACQUISITION PROCESS

A digital image f,. at resolution r is obtained from a contin-
uous function f (representing the scene under study) through an
optical device and a digital captor. Neglecting contrast changes
and quantization, the effect of the imaging device can be mod-
eled as follows:

fr=Ms (G f)+n

where G is the convolution kernel, S, C Z? the sampling grid
at resolution 7, IIg, the Dirac comb on S, and n the noise. In
what follows, we will take interest in the effect of the acqui-
sition model on the wavelet coefficients of f,.. Therefore, as-
suming that we will neglect coefficients at the smallest scales,
we will assume that n = 0. Moreover, we will assume that
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S, = rZ?, that is a regular and square sampling grid with
step r. We, thus, neglect the satellite vibrations and scan ac-
quisition. Last and more importantly, according to [25], the re-
sponse of an ideal optic aperture can be accurately approximated
by a Gaussian kernel. We will, therefore, assume that G is an
isotropic Gaussian kernel, thus neglecting the specificity of the
satellite optics, the real response of the captor and motion blur.
This is probably the strongest assumption made in this paper.
The motivation behind it is mainly the tractability of forecoming
computations, as will become clear soon. Last, we assume that
the standard deviation of the kernel is proportional to the res-
olution. In the experimental section, we will check that these
assumptions are not too restrictive by considering real satel-
lite images. To summarize, we assume the following acquisition
model:

fr = Hr(f * krp) (1)

where

2 2
_rmty ) )

1
kyp(z,y) = Yrr2p? exp < 22p?
1L, is the Dirac comb on 7Z2, that is

H'r‘ = Z 6(i7‘,j7‘)

i,JEZL

and the parameter p is a characteristic of the acquisition process,
which characterizes the width of the convolution kernel: the
larger the value of p, the more blurred the image.

III. WAVELET FEATURES FOR TEXTURE INDEXATION

Based on empirical observations, S. Mallat [27] proposed to
model the marginals of wavelet coefficients of natural images
by generalized Gaussian distributions (GGD). That is, writing
h(w) for the density of the distribution of coefficients w at some
scale and orientation

h(w) = Ke=(wl/®)7. 3)

It is shown in [15]-[17] that the parameters o and 3 of GGD
can be used as efficient features for texture indexing and classi-
fication. It is possible to compute these parameters from the es-
timation of the first and second order moments of |w| [27]: we
denote them, respectively, by m1 = [ |w|h(w)dw and my =
J w*h(w)dw. More precisely, mi = ol'(2/8)I'(1/8)~" and
my = o’T'(3/8)T(1/3)~", where T stands for the Gamma
function.

In this paper, for simplicity, we address the problem of re-
lating features m; and mo to resolution changes. Adapting the
results to « and (3 is then straightforward and this can be useful
when using the Kullback—Leibler distance in a classification
task, see [16].

In order not to be restricted to dyadic resolution changes, con-
tinuous wavelet transform [28] is used instead of the more clas-
sical discrete wavelet transform. Moreover, we consider mother
wavelets obtained as derivatives of a Gaussian kernel in hori-
zontal, vertical, and diagonal directions. This important assump-
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Fig. 1. (a) Image of Marseille at resolution 0.707 m (© CNES). (b) Histogram
(blue bars) of wavelet coefficients of image (a) at scale 5 (horizontal) and the
approximation by GGD (red curve).

tion is motivated by the simplified model for resolution changes
presented in the previous section, as will be shown by the com-
putations of Section IV-A.

Fig. 1 shows a histogram of absolute values of wavelet coef-
ficients, illustrating the soundness of the use of GGDs to model
such distributions.

IV. WAVELET FEATURES AND RESOLUTION CHANGES

A. Resolution Invariance

a) Notations: The discrete version of the Gaussian kernel
with standard deviation ¢ (¢ being given in pixels) is denoted by
k. Let us define the discrete wavelet coefficients as (recall that
the wavelets we use are derivatives of the Gaussian kernel)

Wy rit = Aq];tg‘fr = I;tg‘Aqfr @

where ¢ € {0,1,2,3}, A, stands for the difference between
adjacent pixels in the horizontal (¢ = 0), vertical (¢ = 1) or
diagonal (¢ = 2, 3) direction, * stands for the discrete convolu-
tion operation.

b) Resolution Invariance: Recall that the image f,. at reso-
lution r is obtained as f, = IL,(k,,*f). From (4), we, therefore,
have

Wyt = ki* AL (i % f)
~ kt;HT(Taq(krp * f)) (5)

where 0, is the continuous directional derivative at orientation
q. This last approximation is detailed in the Appendix.

Next, we assume that the inversion between the convolution
and the sub-sampling is appropriate for nonaliased images such
as kyrp * f when p is at least, say, 1 /2. The validity of this as-
sumption on real images has been checked in [7]. Assuming that
IZ:t ~ k¢ (see [7]), and that the continuous and discrete convo-
lutions are equivalent, we have

Wyt & I (Kpy % kpp % g f). 6)

Using the semi-group property of the Gaussian kernel, it can be
deduced that

Wq,r,t

2~ T (b, e+ 0F) @

The accuracy of this approximation will be computed in the Ap-
pendix.
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Assume now that we have two images f,,, and f,., of the same
scene at resolutions 71 and 7. From (7), we deduce that if we
choose scales ¢; and ¢ such that

rl\/t%+p2:r2\/t%+p2 (8)
then
mi(g,m1,t1)/r1 = mi(q,r2,t2)/72 9)
ma(q,m1,t1) /17 & ma(q,r2,t2) /75 (10)
with
(@) = — 3 fwgd
m = —
1\q,7, Ny Z Wq,rt
1
mQ((LT? t) = n_r Z |wf17T7t|2

where n,. is the size of the discrete image f;. and the sum is taken
over the image domain (notice that, since we use a continuous
wavelet transform, w has the same size as f,.). These equalities
(9), (10) permits to compare wavelet features from f; and f5. In
what follows, we denote by 0, .+ = {m1(q,r,t), ma(gq,r,t)}
the wavelet features at scale ¢ and direction ¢ extracted from f;..

¢) Remark About the Naive Choice p = 0.0: A naive as-
sumption could be made that for the same scene f, if we keep

rxt=C (11)

where C' is a constant, the parameter set is also constant (after
the correct normalization). However, this assumption is not
sufficient because it approximates the resolution change by
a simple zoom, which is not consistent with the acquisition
process modeled in Section II. We will see in Section V that
such a naive choice leads to poor numerical results compared
with the use of (8). In what follows, we will call “naive choice”
the use of p = 0 in (8).

d) Tuning of p: To use (8), one needs to know the value
of p. This is a characteristic of the acquisition process [see (1)].
This can, therefore, be tabulated once for each satellite. Observe
that if one considers two images f,., and f,., with different res-
olutions, it is very likely that they originate from different satel-
lites and that the corresponding values of p be different. In this
case, writing p; for the value of p corresponding to resolution 7;
(i = 1,2) it is straightforward to show that (8) can be general-
ized to

8+ 5} = o\ J13 4+ 13- (12)
This equality again ensures that approximations (9) and (10)
hold and permits the comparison of wavelet features from f.,
and f,,. In what follows, for the sake of simplicity, we will
assume that p; = po and, therefore, use (8).

B. Wavelet Features and Resolution

As explained in the introduction, the aim of this paper is to
propose a way to compare the features originating from two im-
ages with different and known resolutions. One way to achieve
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this is to modify the features (i.e., the first and second order mo-
ments my and mg) extracted at resolution r; to compare them
with the features extracted at resolution 7». Assume that we have
fr, the image at resolution 7 of a given scene, and that we want
to predict its features at resolution 7. From (7)—(10), we deduce
the following scheme.
» Compute the wavelet coefficients for f,, at scales t;,7 =
1,2,3,...,N.
 Estimate the parameters O, ,, ;, from the wavelet coeffi-
cients at scales ¢; for resolution 7.
* For resolution 2, compute the scales ¢ corresponding to
t; according to [see (8)]

! T% 2
i =1 = &7 +p?) -
T3

* Define éq,rz,t; = O, t, at scales t,.

By using such an algorithm, it is now possible to compare
images taken at different resolutions and, for instance, to train
classification methods on a set of images at only one resolution
and to apply the recognition criteria to images at different reso-
lutions.

(13)

V. EXPERIMENTS AND RESULTS

A. Image Database

In the following sections, we experimentally validate the
proposed scheme for comparing wavelet features. These exper-
iments are carried on an image database provided by the CNES
(the French space agency). This database is made of various
scenes (such as fields, forests and cities). Each scene has been
acquired as an aerial image at resolution 0.25 m. Then, for each
scene, the CNES has simulated images at various resolutions,
using realistic satellite modeling. The available resolutions
range from 0.5 to 4 m, according to a geometric progression
with ratio 21/6. In Fig. 2, some examples of the images from
the database are shown. It is important at this point to note
that convolution kernels used by the CNES are not Gaussian.
However, we will see that the approximate acquisition model
of Section II yields good numerical results. In what follows, we
will use the acquisition model (1) with a value p = 1.3. This
value has been chosen as the value yielding the best numerical
results (among values ranging from 1 to 2 by steps of 0.1) and
it also corresponds to a rough approximation of the kernel used
by the CNES.

B. Validity of the Prediction Scheme

First, we check the validity of (8)—(10) by plotting numerical
values of features m and ms as a function of the resolution.

In Fig. 3(d)—(f) [resp. (g)-()], graphs of m1(q,r,t)/r [resp.
ma(q, r,t)/r?)] as functions of r are presented when 7t is kept
constant [that is, when using the naive normalization of (11) and
when 74/t% + p? with p = 1.30 is kept constant; see (8)]. The
resolution 7 ranges from 0.50 to 4 m. For the image at resolution
0.50 m (the highest available resolution), m; and my are com-
puted at scale 16 in the horizontal direction. It may be seen that
using (11) (that is forgetting the convolution step in the model of

Authorized licensed use limited to: ENST Paris. Downloaded on October 16, 2008 at 08:31 from IEEE Xplore. Restrictions apply.



1468

®
Fig. 2. Image samples from the database provided by the CNES: (a)—(d) Im-
ages at resolution 0.5 m; (e)—(h) images at resolution 1.0 m; (i)—(I) images at
resolution 2.0 m; (m)—(p) images at resolution 3.175 m; (q)—(t) images at reso-
lution 4.0 m. From left to right, classes of the images are: field, city, forest, and
sea.

resolution change) does not yield a constant parameter set, es-
pecially when the resolution change is large. In contrast, using
(8) yields fairly constant values.

Next, we compare values of m; and ms computed on an
image with resolution 3.175 m to values of m; and ms com-
puted on a image of the same scene with resolution 1 m and
then predicted for a resolution of 3.175 m. We perform this com-
parison for various scales. Fig. 4(a)—(c) [resp. (d)—(f)] show the
values of m; (respectively, mo) at various scales (scale is on
the horizontal axis) in solid blue line for three different scenes.
In the same figure, m; (resp. mso) predicted from a resolution
of 1 m for a resolution of 3.175 m according to the scheme pre-
sented in Section IV-B are displayed by a solid red line. The two
solid lines almost perfectly coincide. In dashed line, are plotted
the values of m (respectively ms) predicted from a resolution
of 1 m for a resolution of 3.175 m by the same scheme of Sec-
tion IV-B, except that (13) is replaced by t; = 71¢;/r2. This
corresponds to what we called the naive choice, neglecting con-
volutions in the resolution change. It can be seen that in this
case, the guessed values of m; and ms are less accurate, espe-
cially for small scales. These experiments validate the scheme
proposed in Section IV-B and suggests that it is necessary to
take into account the convolution step in resolution changes to
be able to compare features computed on images with different
resolution. The next section investigates how the accuracy of
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Fig. 3. (a)—(c) Three images (OCNES); (d)—(f) graphs of m1(g, r,t)/r (with
g = 0) as a function of r; (g)—(i) graphs of mo(q,r,t)/r? (with ¢ = 0) as
a function of r. On all these graphs, solid lines correspond to the case where
r/%2 + pZ is kept constant (with p = 1.3), and dashed lines correspond to the
case the case where rt is kept constant. One observes that using (8) yields fairly
constant values, whereas using (11) does not.

fouan110 - m, 216 —m,

75 2 25 5 35 4
sclo

[ 52 25 9 35 4 45 5 5% 5% 25 3 35 4 45 5

(d) (e ®

Fig. 4. Values of m; (a)—(c) and m, (d)—(f) for various scales (scale corre-
sponds to the horizontal axis). In solid red line are displayed the values computed
directly on images with resolution 3.175 m (the ground truth in this experiment).
In solid blue line, are displayed the values first computed on the images with res-
olution 1 m and then predicted using the scheme presented in Section IV-B. Both
solid lines almost perfectly coincide, showing the accuracy of the scheme. Dash
lines show the results obtained by using the scheme proposed in Section IV-B
but replacing (13) with ¢, = ryt; / ro (the naive normalization). Observed and
predicted values do not correspond anymore in this case.

the proposed scheme permits the classification of images at dif-
ferent resolutions.

C. Classification

a) Classified Database: We have manually built a classi-
fied database based on the sequences of images provided by the
CNES. This database contains 366 scenes observed on urban
areas (Marseille and Toulouse), rural areas (Roujan), forests
(Didrai) and the sea. For each scene, there are five different im-
ages corresponding to five different resolutions (0.5, 1, 2, 3.175,
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TABLE I
CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRACTED
IN FOUR DIRECTIONS AT 21 SCALES (t = {2¥/6]; = 0,1,...,20}). THE
LEARNING SET IS MADE OF IMAGES AT RESOLUTION 4 M
Resolution | error (p = 1.3) | error (p = 0)

0.5m 0.00% 21.86%

Im 0.00% 19.95%

2m 0.00% 10.66%

3.175m 0.00% 1.91%

and 4 m). The scenes are manually divided into four sets: city
(199 scenes), fields (134 scenes), forests (23 scenes), and sea
(ten scenes).

b) Experiment: The first experiment carried out on this
database is classification. Images at the resolution of 4 m are
used as a learning set for training the classifier. The aim is to
find the classes of the images at resolutions other than 4 m.
Wavelet features (mq and mo) are at first extracted from all the
images by applying Gaussian derivatives at different scales in
four directions (horizontal, vertical and diagonal). The features
extracted from the images at a resolution of 4 m over 21 scales
(t = {2¥/6,5 = 0,1,...,20}) are used to train the classifier.
Therefore, the dimension of the feature space is 2 X 4 x 21 =
168. The features extracted from the other resolutions are pre-
dicted at a resolution of 4 m by using the scheme presented in
Section IV-B. For comparison, we set the value p respectively
equal to 1.3 (using the acquisition model) and 0.0 (the naive ap-
proach). We then classify the images at resolutions other than 4
m with the predicted features.

The classifier we used is simply the nearest neighbor classifi-
cation algorithm. For a given image A, the classifier search for
its nearest neighbor B in the training set and affect to A the class
of B. As a distance between features, we use the Euclidean dis-
tance, after normalizing each coordinate by its variance.

¢) Results: The classification results are shown in Table L.
It can be observed that with the naive approach, the classifica-
tion errors increase rapidly when the resolution gets away from
4 m. This shows numerically that the naive approach (p = 0) is
not a good choice for classification purpose. On the contrary,
when the acquisition model is taken into consideration (i.e.,
p = 1.3), there is no error. This is due to the fact that the predic-
tion scheme is very accurate, as we have shown in Section V-B.
Errors are small enough not to switch from one class to another
when changing the resolution.

d) Influence of the Number of Features: The classification
results presented in Table I are obtained from features in a space
with relatively large dimension (168 values for each image). We,
therefore, study the effect of a dimension reduction. In Table II,
are shown the classification results obtained when performing
the same experiment as in Table I, using the wavelet features
(mq and my) at only three scales (¢ = 1,2, 4). In this case, the
dimension of the feature space is 2 x 4 x 3 = 24 and it can be
observed that the errors remain similar.

e) Comparison With Other Features: In order to further in-
vestigate the effect of resolution changes on classification tasks,
we perform an experiment using Haralick features. Haralick
[29] has proposed features based on the statistics of co-occur-
rence matrices of images. These features are proved to be very
efficient for indexing textures. Co-occurrence matrices are de-
fined as the empirical joint distribution of the gray values of
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TABLE I
CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRACTED
IN FOUR DIRECTIONS AT THREE SCALES (t = 1,2, 4). THE LEARNING SET IS
MADE OF IMAGES AT RESOLUTION 4 M

Resolution | error (p = 1.3) | error (p = 0)
0.5m 0.55% 26.50%
Im 0.00% 24.59%
2m 0.00% 12.84%
3.175m 0.27% 4.92%
TABLE III

CLASSIFICATION RESULTS OBTAINED WITH HARALICK FEATURES. THE
DISTANCE PARAMETER FOR CALCULATING CO-OCCURRENCE MATRICES
VARIES ACCORDING TO THE RESOLUTION OF IMAGE. THE LEARNING SET IS
MADE OF IMAGES AT RESOLUTION 4 M

Resolution | distance error
0.5m 24 31.9%
Im 12 22.4%

2m 6 13.6%
3.175m 4 10.1%

pixels in some direction € and at some distance d. The consid-
ered directions are horizontal, vertical and two diagonal direc-
tions. The distance between the pixel pairs can be considered
as a scale parameter. For images at different resolutions, it is,
therefore, natural to compute co-occurrence matrices with dif-
ferent distances. In our experiment, we set d = 3, 4, 6, 12,
24, respectively, for images at resolutions 4, 3.175, 2, 1, and
0.5 m. These values ensure that d X r is a constant. The Har-
alick features are composed of 13 statistical values calculated
from each matrix and the mean and standard deviation values
through the four directions. Therefore, the total feature dimen-
sionis (4 + 2) x 13 = 78.

Fig. 3 shows the classification results obtained with Haralick
features. Our purpose here is not to compare directly these re-
sults with the results obtained in the previous section. Indeed,
results obtained with wavelet features are better, but we did not
take full advantages of co-occurrence matrices since only one
scale is used for each image. The interesting point is to notice
how fast the classification results decrease with the change of
resolution, therefore showing the inability of Haralick features
to handle such changes. Observe that the approach taken here is
similar to the naive choice of previous sections (approximating a
resolution change through a zoom). Due to the nonlinear nature
of co-occurrence matrices, the approach proposed in the case of
wavelet features is not adaptable to Haralick features.

D. Image Matching

In this subsection, we carry out a more difficult experiment
than in the previous subsections. For each image at a resolution
of 4 m, we want to find the exact same scene from the images at
other resolutions with the help of wavelet features. The features
are extracted and predicted as presented in Section IV-B. For an
image at a resolution different from 4 m, we search its nearest
neighbor in the feature space among the set of images at 4 m. If
the two images represent the same scene, it is a correct match,
otherwise it is an error. This is the same classification task as
before, except that we consider each scene to be a class in itself.

In Table IV, are displayed the matching results when using
features over 21 scales (t; = 2/5,i = 0,1,...,20) and four
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Fig. 5. Error function (E) and power spectrum of wavelet coefficients w,. ; in
the frequency domain.

TABLE IV
MISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRACTED
AT 21 SCALES WITH FOUR ORIENTATIONS

resolution 0.5 1.0 2.0 3.175

p=1.3 4.1 0.27 0 1.64

p=0 81.97 | 79.51 | 65.57 | 34.97
TABLE V

MISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRACTED
AT THREE SCALES WITH FOUR ORIENTATIONS

resolution 0.5 1.0 2.0 3.175
p=1.3 11.2 4.64 1.09 9.29
p=0 95.90 | 96.45 | 92.62 | 62.02

orientations. In Fig. 5 are displayed the matching results when
using only three scales (¢; = 2¢,i = 0,1,2).

It can be observed that:

* The errors increase considerably when compared to the
classification results of the previous subsection, especially
when p = 0.0. This is due to the fact that in the image
database, there are many scenes of the same class which
are very similar one to another. Therefore, the points rep-
resenting these images in the feature space are close one to
another. As a consequence, a small error in the prediction
causes an error in the image matching, in contrast with the
classification case of Section V-C.

e The small errors in the case p = 1.3 confirm the accuracy
of the scheme.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a scheme for comparing
wavelet features from images taken at different resolutions.

The acquisition of images is modeled by a convolution
followed by a sampling. The scheme to compare wavelet
features is based on this model and the semi-group property
of the Gaussian kernel. We first checked experimentally the
validity of this scheme and showed that the numerical accuracy
is significantly improved compared to a naive approach where
resolution change is simply modeled by a zoom. This approach
is then applied for the classification of satellite images at several
resolutions simulated by the CNES. Our approach improves
significantly the accuracy of the classification. This fact is
confirmed trough an image matching experiment.

The method presented in Section IV-B to compare wavelet
features between images with different resolution is quite gen-
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eral. We applied it to image classification, but other tasks could
benefit from this approach. For instance, the scale invariance of
wavelet transformations has been applied to the fusion of aerial
images having different resolutions [30]-[32]. None of these
works takes into account the influence of the optics and cap-
tors on the change of resolution. We believe that the approach
presented in Section IV could improve the precision of such fu-
sions of images.

APPENDIX 1

In this Appendix, we detail the approximation made in (5)
and compute the error functions of the approximation made in
(6).

Recall that w, . ; are the wavelet (Gaussian derivative) coef-
ficients extracted from f,. at scale ¢ and in direction ¢, where f,
is the digital image at resolution 7 obtained from the continuous
scene f. For clarity, we only consider the 1-D case. Recall (5)

Wyt = Dyt (K % f)
= k* AL, (K * ).

In the 1-D case, we have
Wyp = keF AL (K * f).
Writing g(z) = (krp * f)(z), we have
W) = kAT, (g(2)
= kex(I(g(2 +7) — g(x)))
and since g € C 1 we have
gl +r1)=g(x)+rg () + ofr).

Therefore

Wy & JE-t;HT(g(a:) +rg'(z) — g(z))
= k-tka,,(rg'(:E))
~ ’I‘k)t;Hr(krp * fl(w))

This is the approximation made in (5). Next, we compute the
error energy of the approximation made in (6). For simplicity,
we consider the resolution » = 1. We want to show that the
energy of the error is small

B =3 Ak + i(g) — Wy (ke + g')?
= /|FT {Amfct « 114 (g) — Ty (ke *gl)} |?dw

where F'T(f) is the Fourier transform of f. With the approxi-
mation k; ~ TI,.(k,), we have

E~ / |FT{A I (k% g) — Ty (ke % ¢')} |2 dw

= [ 1P b 9o+ 1)
= ok g(o)) — Ty + g} P
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We suppose that the image is not aliased, (i.e., k¢ * g is band
limited), therefore

Er~?2 / |ET{ke x g(z + 1) — ke * g(x) — ke * ¢’} dw
JO
I / 1679 — 1 — jwP|FT{ks * g} Pdw
JO

(2(1 = cosw — wsinw) 4+ w?)[FT{k; * g}|*dw

J,
™ 2 4
~ 2/ (2 <—% + w_) + w2> [FT{k; * g}|*dw
0

8

Q

™ (4)4 )
; 7|FT{kt*kp*f}| dw

T 4
- /0 STk ) PIET () o

Recall that ¢ > 1 and p = 1.3 in all our numerical experi-
ments. Since the power spectrum of the image f is generally
decreasing, and (w?)/(2) is increasing, the worst case (which
yields the largest error) is, therefore, |[FT{f}|?> = 1 for all w,
where we have

7rw4

and
_E
> |wre]?

Fig. 5 shows a plot of £ and the power spectrum of wavelet
coefficients w,.; in the frequency domain for the case where
|[FT{f}|?> = 1. In the worst case, the approximation made in
(6) yields an energy error of 3.5% when compared to the energy
of the original wavelet coefficients.

~ 0.035.
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