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Abstract

High dynamic range (HDR) images are usually gener-
ated by combining multiple photographs acquired with dif-
ferent exposure times. This approach, while effective, suf-
fers from various drawbacks. The irradiance estimation is
performed by combining, for each pixel, different exposure
values at the same spatial position. This estimation scheme
does not take advantage of the redundancy present in most
images. Moreover, images must be perfectly aligned and
objects must be in the exact same position in all frames
in order to combine the different exposures. In this work,
we propose a new HDR image generation approach that si-
multaneously copes with these problems and exploits image
redundancy to produce a denoised result. A reference im-
age is chosen and a patch-based approach is used to find
similar pixels that are then combined for the irradiance es-
timation. This patch-based approach permits to obtain a
denoised result and is robust to image misalignments and
object motions. Results show significant improvements in
terms of noise reduction over previous HDR image genera-
tion techniques, while being robust to motion and changes
between the exposures.

1. Introduction

There are physical limitations on the maximal variations
of luminosity that a camera sensor can measure. These limi-
tations are due to the fact that each sensor has a finite capac-
ity : above a given quantity of incident photons, the sensor
saturates. This phenomenon is well known by photogra-
phers and is the reason of backlighting in images. In order
to get details simultaneously in shadows and highlights, an
efficient technique consists in mixing several images of the
same scene taken with different exposure times, creating in
this way an High Dynamic Range (HDR) image. Indeed,
bright regions can be recovered from short exposures while

dark ones are well captured by longer exposures. The main
difficulties of this exposure fusion come from the possible
camera motion and from the object motion in the scene. For
instance, a hand-held camera will produce misalignments
across the frames, while moving objects are the cause of
ghosting artifacts.

There is a broad literature dedicated to the creation of
HDR images for completely static scenes (the camera and
the objects of the scene are fixed) [20, 8, 23, 19, 10, 1].
This problem is simplified but nevertheless particularly in-
teresting. Knowing the physical model of the camera
sensor and working with raw data, the most recent ap-
proaches [19, 10, 1] model the HDR creation as a statistical
estimation problem, for which the maximum likelihood es-
timator is shown to be optimal [10, 1]. While powerful from
the theoretical point of view, in practice these approaches
greatly suffer from small camera misalignments and cannot
cope with moving objects, which makes them hardly reli-
able in non controlled environments.

Several approaches have been proposed in the literature
to overcome these limitations. Most of these approaches
start by globally registering the frames in order to compen-
sate for global camera motion. As a result, the background
of the scene can be seen as static, while dynamic objects re-
main unregistered. The first kind of methods makes use of
optical flow techniques in order to compensate the motion
across the different frames, generally after a global expo-
sure compensation between the frames [17, 3, 30]. Unfortu-
nately, explicit motion estimation remains an ill-posed and
ambiguous problem (especially in the presence of missing
regions), and such methods are exposed to alignment errors.
A second variety of deghosting methods aims at reducing
the influence of pixels of moving objects on the HDR es-
timation. These pixels can be detected in a first step and
completely discarded for the estimation [11, 16, 27, 9]. Al-
ternatively, the pixel weights in the irradiance estimation
can be adapted in order to decrease the influence of sus-
picious pixels [18, 22, 24, 15]. For a recent and complete



review on ghost detection and removal, see [28].
Another limitation of HDR imaging is that images cre-

ated from different exposures tend to be noisy. This comes
from the fact that the HDR estimation is generally performed
on a per-pixel basis (possibly after registration). For a given
pixel, the estimation only relies on the observed values at
the same location for all the available exposures. More-
over, this number is reduced if a moving object occurs or
if the pixel is over or underexposed in some frames. The
recent work by Heo et al. [15] proposes a first solution to
this problem, making use of a bilateral filtering during the
frame fusion step. However, such a local filtering cannot
cope with large motions.

In this paper, we propose to take advantage of the strong
self-similarity property of images in order to solve the HDR
estimation problem. More precisely, we rely on the redun-
dancy of image patches. This allows to correctly estimate
the irradiance at each pixel while avoiding the fastidious im-
age registration and motion estimation (or detection) steps.
In particular, the patch similarities are sufficiently robust
to handle camera motion and the possibly large motion of
objects. As an important by-product, the result of our non
local HDR algorithm is much less noisy than the results of
state-of-the-art HDR approaches. This denoising capacity is
obviously true for the background scene, but also for ob-
jects in motion, whose different occurrences through the
exposures are correctly retrieved thanks to the patch-based
approach.

The paper is organized as follows. We start in Section 2
with a short reminder of the state-of-the-art static HDR es-
timation techniques. In Section 3 we describe the different
steps of our non local HDR estimation approach. Experi-
ments and comparisons with state-of-the-art approaches are
displayed in Section 4. Conclusions are presented in Sec-
tion 5.

2. HDR imaging for static scenes and camera

Several methods have been proposed [20, 8, 23, 19, 10,
1] to solve the HDR image generation problem following a
pixel-wise approach in the case of static scenes. The ba-
sic idea, common to all of them, consists in combining T
images acquired with exposure times τ1, . . . , τT . The irra-
diance Cp at each pixel p is then computed as a weighted
average of the irradiance estimated from each frame,

Ĉp =

T∑
i=1

wip

(
f−1(zip)

τi

)
,

T∑
i=1

wip = 1, (1)

where f−1 is the inverse of the camera response function,
zip is the pixel value at position p for the frame acquired
with exposure τi and wip is the weight assigned to the i-th
exposure for pixel p.

The most recent and efficient approaches [10, 1] propose
to exploit raw camera values (in that case, f is linear be-
fore attaining the saturation threshold) and draw on a pre-
cise knowledge of the camera sensor noise to solve the ir-
radiance estimation problem. Under this noise model, non
saturated samples are seen as realizations of random vari-
ables Zip distributed according to

Zip ∼ N(gapτiCp + µR, g
2apτiCp + σ2

R), (2)

where g is the camera gain, ap models the photo response
non uniformity (PRNU) factor, µR and σ2

R are the readout
noise mean and variance (see for instance [2] for a complete
description of this simplified camera acquisition model).

Given that a closed formula for Cp under model (2) can-
not be found for the MLE, different numerical solutions have
been proposed in the literature for its numerical estimation.
The most efficient one is due to Granados et al. [10], which
propose an iterative algorithm: at each iteration, the irradi-
ance Ĉp is computed as a weighted average of the irradi-
ance estimations from each frame xip with weights equal to
the inverse of the variance of each estimation σ2

pi,

Ĉp =

∑T
i=1

xi
p

σ2
pi∑T

i=1
1
σ2
pi

, (3)

xip =
zip − µR

gapτi
, σ2

pi =
g2apτix

i
p + σ2

R

(gapτi)2
. (4)

The weights are initialized directly from the input samples.
Granados et al. also consider the dark currents which we
neglect here for being substantially smaller than the other
considered noise sources [2].

The MLE approach by Granados et al. can be consid-
ered to be the state-of-the-art in pixel-wise HDR genera-
tion for static scenes. Moreover, Aguerrebere et al. show
in [1] that this MLE approximation performs very close to
the Cramér-Rao lower bound of the irradiance estimation
problem. This result is proved for a pixel-wise estimation
discarding the saturated samples and raw pixel values fol-
lowing model (2). Also it is shown that in most cases, the
iterative approach of [10] does not require more than one
iteration to yield good results, the estimated irradiance re-
maining almost unchanged after the first iteration. In the
same paper, the irradiance estimation is shown to be im-
proved when performing MLE using a modified likelihood
function that takes into account the information provided by
the saturated samples [1].

3. HDR imaging for dynamic scenes and hand-
held camera

The methods presented in the previous section assume
that the images have been perfectly co-registered. These



methods work under the hypothesis that the camera is fixed
with respect to a static scene. As a consequence, their per-
formance is highly affected by image misalignments and
moving objects. Indeed, the HDR estimation problem be-
comes far more difficult in the case of dynamic scenes. A
precise prior registration and some kind of motion estima-
tion are seemingly essential to perform the frame combina-
tion if one wants to avoid blur and ghosting artifacts. Now,
motion estimation is often subject to ambiguities and fine
global registration becomes complicated for large camera
motion.

In the following, we propose to solve the HDR estima-
tion problem in the dynamic case by exploiting the inher-
ent redundancy of images. Drawing on the recent works on
multi-image denoising [6, 4], the idea is to combine infor-
mation from pixels potentially sharing the same irradiance
value. In the process, we show that the HDR estimation of
dynamic scenes does not require to apply any special or de-
dicated motion estimation method.

3.1. The proposed non local approach

Given the T frames, we first choose a reference image
(c.f. Section 3.1.4 for the reference frame selection) and
estimate the irradiance on each pixel by combining the in-
formation of similar pixels present in all frames, i.e. the
reference frame and the frames corresponding to the other
exposure times. Similar pixels are found by comparing
the neighborhood of the pixel in the reference image with
those of pixels in all frames. Finding similar pixels through
patch comparison makes the method robust to image mis-
alignments, resulting from hand-held camera motion, and
to moving objects without the need of image co-registration
or motion detection. We propose to work with raw data in
order to exploit the potential of the statistical noise model
in (2).

3.1.1 Finding similar pixels

The first step of the method is to determine which pixels
share the same irradiance value. For this purpose we pro-
pose to use a variation of the patch comparison used by the
NL-MEANS method [5]. This variation is adapted to the
noise model (2). The original NL-MEANS algorithm aims to
denoise images corrupted with Gaussian noise of constant
variance. Under model (2), the noise is Gaussian distributed
but the variance depends on both the irradiance and the ex-
posure time. Therefore, the noise variance is different for
each pixel (different Cp) in each frame (different τ ).

Patches must be normalized by the exposure time in or-
der to be comparable. Thus the comparison is done in the
irradiance domain. The proposed distance between a patch
centered at pixel p in the reference frame and a patch cen-

tered at pixel q in another frame is given by

d(p, q) =
1

N

N∑
j=1

(xpj − xqj)
2 − 2σ2

pj

2σ2
pj

, (5)

where xpj (resp. xqj) is the irradiance of the j-th pixel of
the patch centered at pixel p (resp. at q) in the reference
frame (resp. in the other frame) and σ2

pj is the irradiance
variance, given by

xpj =
zpj − µR
gapτ

, σ2
pj =

g(zpj − µR) + σ2
R

(gapτ)2
, (6)

with zpj the value of the j-th pixel of the patch centered at
pixel p, τ its exposure time and N the number of non sat-
urated pixels in the patch. Saturated samples are discarded
and only those patches with at least a minimum percentage
of non-saturated samples are considered. The camera pa-
rameters (g, ap, µR and σ2

R) needed to compute d(p, q) are
assumed to be known from a previous camera calibration
step [10].

It can be shown that if the two patches centered at p and
q come from the same (un-noisy) underlying patch, the dis-
tance d(p, q) follows a Chi-square distribution. This result
is used to threshold the distance judiciously and compute
binary weights for the patches. If the distance between
patches p and q is small enough, pixels p and q are assumed
to follow the same distribution and thus q is used for the ir-
radiance estimation of p (q is assigned weight 1). Otherwise
q is discarded (q is assigned weight 0).

3.1.2 Irradiance estimation

The irradiance Ĉp at pixel p is computed as the first step
of the MLE iterative approximation given by (3). The com-
bined samples are the K pixels found to be similar to p ac-
cording to the patch distance (5)

Ĉp =

∑K
k=1

xk
p

σ2
pk∑K

k=1
1
σ2
pk

, (7)

xkp =
zkp − µR

gapτk
, σ2

pk =
g(zkp − µR) + σ2

R

(gapτk)2
, (8)

where zkp is the k-th pixel found to be similar to pixel p and
τk its exposure time.

3.1.3 Implementation details

The proposed algorithm works on raw data. Hence, the
patch distance as well as the irradiance estimator must be
computed combining pixels of the same color channel.



Figure 1: The Bayer pattern is decomposed into four sub-
images in order to speed up the similar patch search.

For each frame, the Bayer pattern is decomposed into
four sub-images (red, blue and the two green channels sepa-
rately considered). Patches are then considered as n×n×4-
dimensional, where n is the patch size and the third di-
mension represents the four color channels (see Figure 1).
The distance between two n × n × 4-dimensional patches
dT (p, q) is the mean distance among corresponding chan-
nels

dT (p, q) =
1

4

4∑
ch=1

d(pch, qch), (9)

where d(pch, qch) is computed using (5). Note that this is
equivalent to computing (5) between two patches of size
2n × 2n in the original Bayer pattern. Then the two pixels
are assumed to follow the same distribution if dT (p, q) is
below a given threshold as specified in Section 3.1.1. In
this way, a list of patches similar to p is created.

The central pixel of a patch corresponds to four differ-
ent pixels in the Bayer pattern (one for each color chan-
nel). The irradiance estimator for each of these pixels is
independently computed. For instance, the estimator of the
red channel is computed combining the center pixels of the
red components of selected patches. Note that the similar
patches are found once and used to compute the four irra-
diance estimators. Another option is to do all processing
on the Bayer image directly: center patches at each pixel,
compute distances according to (5) and combine samples
of the corresponding channels. The advantage of the pro-
posed implementation is that the list of similar patches is
computed once and used to estimate four irradiance values,
thus making it four times faster.

Following [6] similar patches are sought on a limited
search window. Since images are acquired with a hand held
camera, a rough global translation estimation is first per-
formed in order to compensate large global translations and
allow a reasonable sized search window. The global eu-
clidean distance between translated versions of each frame
and the reference frame is computed in order to estimate the
translation motion. Notice that this translation estimation is
quite rough and only intends to correctly center the patch
search window. In all our tests the search window is of size

11× 11 pixels (which is equivalent to a window of 22× 22
in the Bayer image).

3.1.4 Selection of the reference image

The selection of the reference image has a major impact
on results. Indeed, the irradiance values of over or under-
exposed regions of the reference image cannot be recovered
using the proposed method, since the patches lying on those
regions do not contain reliable information. Thus these re-
gions need to be identified and filled judiciously. We do
not address this aspect of the problem in this paper. We
assume that it has been solved in a first stage by a well cho-
sen inpainting technique, as for instance the ones described
in [29, 26], which aim at filling these regions in the refer-
ence frame with information taken from other frames. By
doing so, we assume that an overexposed region of the ref-
erence frame will appear as not saturated in at least one of
the shorter exposures. Conversely, we assume that under-
exposed regions can be retrieved from longer exposures. In
this process, the reference image has to be chosen carefully,
in order to limit the size of the regions to be inpainted. In
practice, we choose this reference image as the shortest ex-
posure containing no underexposed region. The HDR gener-
ation procedure described in Section 3 can then be directly
applied using the filled reference image.

In this work, we make use of a classical inpainting tech-
nique, known as Poisson image editing [25], in order to
fill the overexposed regions in the reference image. The
information is retrieved from other frames by comparing
large patches surrounding the region to be filled with sim-
ilar patches in the other frames. Another interesting possi-
bility to complete the missing regions would be to rely on
the work recently published by Sen et al. [26], which pro-
poses to generate an HDR image by choosing a reference
frame and by filling the missing information through the
minimization of a global energy. The unknown information
is retrieved from the other frames keeping the coherence
with the known regions of the reference image.

4. Results

4.1. Static scene / Static camera

Releasing the hypothesis of aligned images is one of the
key points that makes our method robust to camera motion
and object motion. However, the price to pay may be quite
high since that strong hypothesis carries a large amount of
information implying that several samples per pixel can be
reliably combined. In practice, that lost information is to
be recovered by combining information from neighboring
pixels. In this section we present the results of an experi-
ment conducted to evaluate the impact on performance of
releasing this assumption on a perfectly static case. Four



Figure 2: Tone mapped version of the HDR image used as
ground-truth for the synthetic test presented in Section 4.1.
From [13].
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Figure 3: Synthetic data. SNR curves obtained using the
classical MLE method [10] (green) and the proposed ap-
proach (violet). SNR values obtained with the non local ap-
proach are very close to those obtained with the classical
method. Even though our approach releases the alignment
hypothesis, it is close to the optimal result in a case where
images are perfectly aligned.

synthetic images corresponding to four different exposures
are generated according to model (2) taking as irradiance
ground-truth an HDR image. A tone mapped version of the
ground-truth is shown in Figure 2. The camera parameters
for the simulation are those of a Canon 400D set to ISO 200.
This corresponds to the ideal case of the classical MLE ap-
proach: static camera and static scene. Figure 3 shows the
SNR curves obtained using the classical MLE method [10]

(green) and the proposed approach (violet). It can be ver-
ified that the SNR values obtained with the non local ap-
proach are very close to those obtained with the classical
approach. Hence, releasing the alignment hypothesis does
not have significant impact on the algorithm performance in
a case where this hypothesis is perfectly satisfied.

This result was also verified using real data. Pictures of
a static scene were acquired using a static camera remotely
controlled from a laptop. The data set is composed of four
images, corresponding to four exposure times acquired with
a Canon 400D camera set to ISO 800. The first row of Fig-
ure 4 shows JPEG versions of the input image set1. Since
our method treats raw data, a post-processing stage includ-
ing demosaicking, white balance and tone mapping must be
performed to display the results. To perform demosaicking
we choose the technique by Hamilton and Adams [12] be-
cause of its simplicity, it does not modify the known sam-
ples, and offers better performance than a simple bilinear
interpolation. More evolved techniques were considered
in order to avoid some artifacts present in Hamilton and
Adams results. However, they were discarded since they
also perform denoising of the samples which would inter-
fere with our denoising results. For tone mapping we use
the technique by Mantiuk et al. [21].

Figure 4 shows the tone mapped version of the results
obtained for the irradiance estimation of the scene. The
second row shows the result obtained using the reference
image normalized by the exposure time. The saturated re-
gions of the reference image were filled using the Poisson
editing patch based approach described in Section 3.1.4.
We present this result for comparison purposes, since the
normalized reference frame is the simplest HDR genera-
tion method we could use. The third row shows the results
obtained using the MLE approach [10] and the fourth row
shows the results obtained using the proposed non local es-
timation approach.

As expected, the noisier result is the one obtained with
the normalized reference frame. On the other hand, the re-
sult for the non local approach is less noisy than the one
obtained using MLE. The non local method gives a good
quality result even if it does not make use of the alignment
hypothesis. Sub-pixel motion (e.g. due to the camera shut-
ter) deviates samples from perfect alignment thus degrading
the MLE performance with respect to the ideal case.

For this real example involving a static scene and a static
camera, a ground-truth image could have been computed
from several pictures so as to compare the SNR results of the
different methods, in a way similar to [10, 14]. We declined
to do so since, as shown in [2], a highly accurate knowledge
of the camera model parameters is needed in order to ob-
tain unbiased results, putting a strong question mark on the

1All datasets and results are available at http://perso.
telecom-paristech.fr/˜gousseau/hdr_denoising



Figure 4: Real data. A static scene is acquired using a static camera. First row: Input images (JPEG version). Second row:
Tone mapped reference image normalized by the exposure time. The saturated regions of the reference image were filled
using the Poisson editing patch based approach described in Section 3.1.4. Third row: Tone mapped irradiance estimation
by the MLE approach [10]. Fourth row: Tone mapped irradiance estimation of the proposed non local estimation approach.
The result of the non local approach is less noisy than the one obtained using MLE. Thus releasing the alignment hypothesis
does not have a significant impact on the algorithm performance. Recall that some demosaicking artifacts may appear due to
the basic used technique. Please see electronic copy for better color and details reproduction.

validity of such ground-truth.

4.2. Dynamic scene / Hand-held camera

As previously discussed, three main problems must be
handled when generating an HDR image: camera motion
(global motion), object motion and noise reduction of the
irradiance estimation. Several methods addressing these

problems can be found in literature. Nevertheless, to the
best of our knowledge, none of them treats them simulta-
neously. There exists a wide variety of HDR methods that
treat camera and object motion [28]. In particular, the work
recently presented by Sen et al. [26], is shown to be among
the state-of-the-art methods treating these issues. On the
other hand, the literature is less vast concerning methods



for noise reduction of the irradiance estimation. The appli-
cation of most classical denoising techniques is not straight-
forward since the irradiance image does not respect the usu-
ally considered hypothesis of additive white Gaussian noise
with constant variance. Indeed, the noise distribution varies
depending on the estimation method and the variance is sel-
dom constant. Granados et al. [10] propose to denoise the
result of their irradiance estimation using a bilateral filter.
Their irradiance estimation method allows to compute an
estimate of the irradiance noise variance. Then the filtering
parameter of the bilateral filter is set according to the esti-
mated noise variance. Although Granados et al. apply some
bilateral filtering after the MLE estimation, we chose not to
include their results in the comparison because two criti-
cal hypothesis of their approach are not verified. Neither
the camera nor the scene are fixed. Therefore, their results
present severe ghosting problems on our test sets. In the
following we present a comparative evaluation of methods
performing HDR imaging for dynamic scenes acquired with
hand-held cameras. Next, we present some results compar-
ing our simultaneous HDR - denoising technique against the
denoising as a post-processing step after estimating the ir-
radiance.

Evaluating simultaneous HDR imaging and denoising
Here we present the results obtained by the proposed HDR
image generation method on three sets of images. Each set
is composed of pictures of a dynamic scene acquired with
a hand-held camera. We compare our results to those ob-
tained by Sen et al. [26]. We also present the results ob-
tained using the reference image normalized by the expo-
sure time. The saturated regions of the reference image are
filled using the Poisson editing patch based approach de-
scribed in Section 3.1.4. We present this result for compar-
ison purposes, since the normalized reference frame is the
simplest HDR generation method we could use.

As already explained in Section 4.1, results are displayed
using the demosaicking technique by Hamilton and Adams
[12] and the tone mapping technique by Mantiuk et al. [21].
The first case is a static scene except for one moving ob-
ject (the postcard). Images are acquired using a hand-held
camera (Canon 400D set to ISO 800). The second row of
Figure 5 shows a tone mapped version of the irradiance es-
timation obtained using our non local estimation approach.
Three extracts of the results obtained for the moving ob-
ject are shown in the first row (right side) of Figure 5. It
can be verified that the result presents no ghosting artifacts.
The second and third rows (right side) of Figure 5 present
extracts of the results obtained with the normalized refer-
ence frame only (left), Sen et al. approach (center) and the
proposed non local estimation method (right). The irradi-
ance estimation of the proposed approach is far less noisy
than the one obtained using the reference frame only or the

method by Sen et al. This example allows to verify both,
the effectiveness in noise reduction and the robustness to
camera and object motion of the proposed approach.

Figures 6 and 7 present the results obtained for the two
other test sets. These two cases present dynamic scenes
where several objects are moving: pedestrians in the bridge
and people next to the boat for the first example and pedes-
trians in the street and moving cars for the second exam-
ple. Images are acquired using a hand-held camera (Canon
400D set to ISO 800 for the bridge scene and to ISO 400
for the street scene). The result for the proposed method is
shown in Figures 6 and 7 (left). Extracts of the results ob-
tained for the moving objects are presented in Figure 8 (left
for the bridge scene and right for the street scene). It can be
verified in both examples that no ghosting artifacts appear.
The denoising capacity of the method is shown on various
extracts. As in the previous example, the third and fourth
rows of Figures 6 and 7 present extracts of the results ob-
tained with the normalized reference frame only (left), Sen
et al. approach (center) and the proposed non local estima-
tion method (right).

It is interesting to remark that the non local approach is
not likely to spread errors possibly introduced by the satu-
rated region filling method. Recall that overexposed regions
in the reference image must be filled before performing the
non local estimation. If artifacts appear after hole filling,
the created patches are not likely to appear elsewhere and
thus wont have a significant effect on the estimation.

On other ways to denoise irradiance maps Another
possibility to denoise the irradiance map is to apply ex-
isting denoising techniques after estimating the irradiance.
However, as previously mentioned, the application of most
of these techniques is not straightforward since the irradi-
ance image does not respect the usually made assumption
of additive white Gaussian noise with constant variance.
The noise distribution varies depending on the estimation
method and the variance is seldom constant. This compli-
cates the setting of parameters. Values chosen to correctly
denoise bright regions will remove details in the dark re-
gions while values correctly denoising dark regions will not
denoise bright regions. To illustrate this behavior, the classi-
cal NL-MEANS algorithm2 is applied to the normalized ref-
erence image and to the result obtained by Sen et al. The
NL-MEANS parameters are chosen so as to obtain a good vi-
sual compromise between removing noise and keeping de-
tails. Figure 9 shows extracts of the obtained results. The
proposed approach manages to correctly denoise the bright
regions (see the street panel) while still preserving details
on the dark regions (see the tree branches). On the contrary,
this is not the case for the two other examples. The denois-

2Implementation from [7].



Figure 5: Real data. Static scene except for one moving object (the postcard) acquired using a hand-held camera. Left side.
First row: Input images (JPEG version). Second row: Tone mapped irradiance estimation using the proposed non local
estimation approach. Right side. First row: Extracts of the moving object (the postcard). No ghosting artifacts appear.
Second / Third row: Extracts of the normalized reference image (left), the method by Sen et al. [26] (center) and the
proposed non local approach (right). The irradiance estimation of the proposed approach is considerably less noisy than the
one obtained using the reference frame only or the method by Sen et al. Please see the electronic copy for better color and
details reproduction.

ing technique manages to remove part of the noise on the
bright regions but at the cost of blurring the dark zones.

For the same reason, applying a classical denoising tech-
nique to each raw LDR image before the irradiance estima-
tion is not a good option. Besides, information is lost when
denoising each LDR image independently (e.g. details are
lost, blurred edges) which might be kept in a multi-image
denoising approach. Moreover, after denoising, the statisti-
cal model known for input samples is no longer valid. Thus
the nearly optimal irradiance estimation obtained with the
MLE estimator is no longer justified and an alternative opti-
mal estimator should be found (which is not obvious given
the new unknown model).

5. Conclusions

In this paper we present a new method for HDR image
generation which copes simultaneously with three impor-
tant problems: irradiance estimation noise, camera motion
(hand-held camera) and multiple objects motion (dynamic
scenes). Previous methods successfully handle these prob-
lems independently, but to the best of our knowledge none
of them treats them all. The noise reduction capacity and
robustness to camera and object motion of the proposed
approach was experimentally verified in various real cases.
The results show good denoising performance and no ghost-
ing artifacts.
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Study of the digital camera acquisition process and sta-
tistical modeling of the sensor raw data. Preprint HAL
http://hal.archives-ouvertes.fr/docs/00/
73/35/38/PDF/camera_model.pdf, 2012.

[3] L. Bogoni. Extending dynamic range of monochrome and
color images through fusion. In Pattern Recognition, 2000.
Proceedings. 15th International Conference on, volume 3,
pages 7–12. IEEE, 2000.

[4] G. Boracchi and A. Foi. Multiframe raw-data denoising
based on block-matching and 3-D filtering for low-light
imaging and stabilization. In Proc. Int. Workshop on Lo-
cal and Non-Local Approx. in Image Processing, volume 1,
2008.



Figure 6: Real data. Dynamic scene (pedestrians in the bridge and people next to the boat) acquired using a hand-held
camera. Left: Tone mapped irradiance estimation using the proposed non local approach. No ghosting artifacts appear.
Right first row: Input images (JPEG version). Right second row: Extracts of the the normalized reference image. Right
third row: Extracts of the results by Sen et al. [26]. Right fourth row: Extracts of the results by the proposed non local
approach. The result obtained by the proposed approach is far less noisy than the one by Sen et al. Please see the electronic
copy for better color and details reproduction.

[5] A. Buades, B. Coll, and J. M. Morel. A Review of Image De-
noising Algorithms, with a New One. Multiscale Modeling
& Simulation, 4(2):490–530, 2005.

[6] A. Buades, B. Coll, and J.-M. Morel. Nonlocal image and
movie denoising. Int. J. Comput. Vision, 76(2):123–139,
2008.

[7] A. Buades, B. Coll, and J.-M. Morel. Non-Local Means De-
noising. Image Processing On Line, 2011.

[8] P. E. Debevec and J. Malik. Recovering high dynamic range
radiance maps from photographs. In SIGGRAPH, pages
369–378, 1997.

[9] O. Gallo, N. Gelfandz, W. Chen, M. Tico, and K. Pulli.
Artifact-free high dynamic range imaging. In Computational
Photography (ICCP), 2009 IEEE International Conference
on, pages 1–7. IEEE, 2009.

[10] M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel,
and H. Lensch. Optimal HDR reconstruction with linear dig-
ital cameras. In CVPR, pages 215–222, 2010.

[11] T. Grosch. Fast and robust high dynamic range image gen-
eration with camera and object movement. Vision, Modeling

and Visualization, RWTH Aachen, pages 277–284, 2006.
[12] J. Hamilton and J. Adams. Adaptive color plan interpola-

tion in single sensor color electronic camera. US Patent
5,629,734, 1997.

[13] S. Hasinoff, F. Durand, and W. Freeman. Noise-optimal
capture for high dynamic range photography. http://
people.csail.mit.edu/hasinoff/hdrnoise/.
Accessed: 13/08/2012.

[14] S. Hasinoff, F. Durand, and W. T. Freeman. Noise-optimal
capture for high dynamic range photography. In CVPR,
pages 553–560, 2010.

[15] Y. Heo, K. Lee, S. Lee, Y. Moon, and J. Cha. Ghost-free
high dynamic range imaging. Computer Vision–ACCV 2010,
pages 486–500, 2011.

[16] K. Jacobs, C. Loscos, and G. Ward. Automatic high-dynamic
range image generation for dynamic scenes. Computer
Graphics and Applications, IEEE, 28(2):84–93, 2008.

[17] S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High
dynamic range video. ACM Transactions on Graphics
(TOG), 22(3):319–325, 2003.



Figure 7: Real data. Dynamic scene (pedestrians in the street and moving cars) acquired using a hand-held camera. Left:
Tone mapped irradiance estimation using the proposed non local approach. No ghosting artifacts appear. Right first row:
Input images (JPEG version). Right second row: Extracts of the normalized reference image. Right third row: Extracts
of the results by Sen et al. [26]. Right fourth row: Extracts of the results by the proposed non local approach. The result
obtained by the proposed approach is significantly less noisy than the one by Sen et al. Please see the electronic copy for
better color and details reproduction.

Figure 8: Real data. Extracts of the results obtained by the proposed non local estimation method for moving objects present
on the scenes of Figures 6 (left) and Figure 7 (right). Notice that no ghosting artifacts appear in neither example.

[18] E. Khan, A. Akyuz, and E. Reinhard. Ghost removal in high
dynamic range images. In Image Processing, 2006 IEEE
International Conference on, pages 2005–2008. IEEE, 2006.

[19] K. Kirk and H. J. Andersen. Noise characterization of
weighting schemes for combination of multiple exposures.

In BMVC, pages 1129–1138, 2006.

[20] S. Mann and R. W. Picard. On being ‘undigital’ with digital
cameras: Extending dynamic range by combining differently
exposed pictures. In Proceedings of IS&T, pages 442–448,
1995.



Figure 9: Real data. Left: Extracts from the NL-MEANS denoising of the normalized reference frame. Center: NL-MEANS
denoising of the result by Sen et al. Right: Proposed non local approach. The proposed approach manages to better denoise
the bright regions (see the street panel) while better preserving details on dark regions (see the tree branches). On the contrary,
this is not the case for the two other examples. The denoising technique manages to remove part of the noise on the bright
regions but at the cost of blurring the dark zones. Only the green channel irradiance is displayed in order to avoid contrast
changes introduced by the tone mapping techniques (needed to display HDR color images) and better visualize noise level
differences.

[21] R. Mantiuk, S. Daly, and L. Kerofsky. Display adaptive tone
mapping. ACM Trans. Graph., 27(3):68:1–68:10, Aug. 2008.

[22] T. Min, R. Park, and S. Chang. Histogram based ghost re-
moval in high dynamic range images. In Multimedia and
Expo, 2009. ICME 2009. IEEE International Conference on,
pages 530–533. IEEE, 2009.

[23] T. Mitsunaga and S. K. Nayar. Radiometric self calibration.
In CVPR, pages 1374–1380, 1999.

[24] F. Pece and J. Kautz. Bitmap movement detection: HDR for
dynamic scenes. In Visual Media Production (CVMP), 2010
Conference on, pages 1–8, 2010.

[25] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.
In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages
313–318, New York, NY, USA, 2003. ACM.

[26] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B.
Goldman, and E. Shechtman. Robust patch-based HDR
reconstruction of dynamic scenes. ACM Trans. Graph.,
31(6):203:1–203:11, Nov. 2012.

[27] D. Sidibe, W. Puech, and O. Strauss. Ghost detection and
removal in high dynamic range images. In European Signal

Processing Conference, 2009.
[28] A. Srikantha and D. Sidibé. Ghost detection and removal
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