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High Dynamic Range Imaging (HDR)

Capture a scene containing a large range of intensity levels...

Limited contrast range in the picture → loss of details in bright and/or
dark areas.
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Challenges of HDR imaging in dynamic scenes
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Existing methods

Treat each problem separately.

Camera motion Global alignment adapted to different exposures
[Ward2003]

Dynamic scenes De-ghosting techniques
[Grosch2006,Jacobs2008,Sidibe2009,Gallo2009,Heo2010]

Noise Denoising techniques [Buades2005,Dabov2007]
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Advantages of the non-local patch based approach

Denoising power most state-of-the-art methods use patches (NL-means,
BM3D).

Motion / Alignment No need for explicit motion detection or image
registration.



Patch comparison based on camera noise model

Distance between patches centered at pixels p and q

d(p, q) =
1

N

N
∑

j=1

(xpj − xqj)
2 − 2σ2

pj

2σ2
pj

where

xpj pixel value in the irradiance domain (j-th pixel of patch p)

σ2
pj variance of xpj

Denoising level at pixel xpj is controlled by its variance σ2

pj

N number of pixels in the patch

How to set the denoising parameter σ2
pj?
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Irradiance estimation

Which is the best way to combine samples with the same

underlying irradiance?

Maximum likelihood estimator by Granados et al. is the
state-of-the-art for pixelwise estimation for static scene / static
camera [Granados2010].

We performed theoretical and experimental study and show the
MLE is nearly optimal [Aguerrebere2012]

for perfectly corregistered images

under model Z ∼ N (µ(C), σ2(C))

Optimal = Minimum variance

Not obvious for non asymptotical cases (∼ 4 samples per pixel)

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch. Optimal
HDR reconstruction with linear digital cameras. CVPR, 2010.
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MLE nearly optimal

Cramér Rao lower bound for irradiance estimation [Aguerrebere2012]
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At most 4 samples per pixel!

C. Aguerrebere, J. Delon, Y. Gousseau, and P. Musé. Best algorithms for HDR image
generation. A study of performance bounds. Submitted to SIAM Journal on Imaging
Sciences (SIIMS).



Irradiance estimation

Once stated which samples follow Z ∼ N (µ(C), σ2(C)) for the given
irradiance, estimate C as

CMLE =

∑H

h=1 w
h
MLE

(

(zh−µR)
agτh

)

∑H

h=1 w
h
MLE

wh
MLE =

1

var
(

(zh−µR)
agτh

) =
(gaτh)

2

g(zh − µR) + σ2
R

with zh, h = 1, . . . , H pixels found to be similar according to d(p, q).
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Reference image selection and filling

selected reference

Other filling techniques are possible, e.g. work by Sen et al. [Sen2012]

P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman, and E. Shechtman.
Robust patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graph. Nov.
2012
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Results: Example 3
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Why not denoising before or after HDR imaging?

Denoising before: denoise each LDR image before combination

Disadvantages:

Need of accurate global registration.

Need of motion detection.

Removed details may be kept on multi-image denoising.

Denoising after: denoise the result of an HDR imaging method

Disadvantages:

Depending on the method:

Need of accurate global registration.
Need of motion detection.

Noise model no longer valid: unknown pixels variance and difficulty
to set denoising parameter for classical denoising approaches.



Why not denoising before or after HDR imaging?

Denoising before: denoise each LDR image before combination

Disadvantages:

Need of accurate global registration.

Need of motion detection.

Removed details may be kept on multi-image denoising.

Denoising after: denoise the result of an HDR imaging method

Disadvantages:

Depending on the method:

Need of accurate global registration.
Need of motion detection.

Noise model no longer valid: unknown pixels variance and difficulty
to set denoising parameter for classical denoising approaches.



Why not denoising before or after HDR imaging?

Denoised reference Denoised Sen et al. Our approach



Summary

We presented a new method for HDR image generation which copes
simultaneously with three important problems:

noise

camera motion (hand-held camera)

multiple objects motion (dynamic scenes)

The noise reduction capacity and robustness to camera and object
motion was experimentally verified in various real cases.

The results show good denoising performance and no ghosting
artifacts.



Thanks. Questions?
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