ARE NATURAL IMAGES OF BOUNDED VARIATION?

YANN GOUSSEAU, JEAN-MICHEL MOREL

Abstract.

The bounded variation assumption is the starting point of many methods in image analysis and
processing. However, one common drawback of these methods is their inability to handle textures and
small structures properly. We here precisely show why natural images are incompletely represented
by BV functions. Through an experimental study of the distribution of bilevels of natural images,
we show that their total variation blows up to infinity with the increasing of resolution. To reach
these conclusions, we compute bounds on the total variation, and model convolution and sampling
under quite general assumptions.

This paper addresses the question of whether natural images may be represented
as functions of bounded variation. The question is of relevance because of the wide
use of the space BV in image modeling. Roughly speaking, the space BV is the
space of functions whose weak derivative is a measure with finite total variation,
and is a straightforward space for images since it contains characteristic functions of
simple sets, thus enabling the representation of edges. The BV assumption is the
starting point of different approaches in image restoration ([15], [17], [5],[10]), image
segmentation ([2]), image deconvolution ([16], [9]), optical flow computation ([4]) or
image compression. These methods have proven very efficient, especially in dealing
with one dimensional discontinuity in images. However, one common drawback is
their inability to handle textures properly. In particular, restoration or deconvolution
in BV leads to the smoothing out of textures, and segmentation procedures in BV fail
to isolate textured area. A recent paper ([13]) yields mathematical proofs of the stair-
casing effect, according to which BV -minimization tends to create constant patches
in images, thus eliminating textural effects.

In this paper, we show that this phenomenon can be explained by the fact that
natural images are not of bounded variation. OQur approach combines an experimental
program we performed on the distribution of homogeneous and connected regions in
images, the sections, and a theoretical result bounding from below the BV norm of
two-dimensional functions according to the distribution of their sections. We formalize
the link between experiments on discrete images and the mathematical results by using
a simple model of convolution and sampling for the formation of numerical images.
We here point out that another method to estimate the BV norm of images relies on
the study of wavelet coefficients. In order to study locally the (ir)regularity of a signal
one may investigate the decay of wavelet coefficients at a certain location (see [12],
[11] for an introduction to wavelet decompositions). More recently, the link between
the global decay of wavelet coefficients and the BV norm has been studied, so that,
in some cases, this decay permits to decide whether or not a function belongs to the
space BV, see [6], [14]. We shall compare our method and the wavelet method to
decide whether an image is in BV or not. As we shall see, the geometric measurements
we perform seem more accurate and permit to show that natural images are not of
bounded variation.

The paper is organized as follows: in Section 1, we recall our results about the
power law distribution of sections area and perimeter. In Section 2, we recall basic

*CMLA, ENS Cachan
61 av. du Président Wilson, 94235 Cachan Cedex, France.

1



2 Y. GOUSSEAU AND J.-M. MOREL

N LT T !
. 2. - &‘c\‘“ i | :
‘ \‘: Y 5 o i |
J o /N = s
. o
T S S Y 'p\wm.} }1{/\‘ l \r; |
| - T et =
Dol e e
[ R R N
I v g ‘4 )l o
‘: ‘ ‘ P\L L F 1":L]| \’,“’.‘ =
I A ! =k L')r.. Ry g e ed ;
4 LR ? P TN
oL = T, V= 1‘!4-1” fl,;“
s 3 . R "
. . | ié\
1 = - A
2 L - NN
- > N
v '\
L.
. -
S o ’
o,
—_
L] i
}\ . L

F1g. 1. airport, 510 X 348 image, with some of its sections for k = 10.Top right sections are
of size between 10 and 20 pizels; bottom left between 40 and 50 pizels;bottom right between 80 and
90 pizels. Different gray levels correspond to sections from different k-bilevels

definitions and properties related to the space BV of functions with bounded variation.
In Section 3, we establish a link between the distribution of sections size and the BV
norm of functions of R?; in Section 4, we show that by combining the experimental
results of Section 1 and the theoretical results of Section 3, we can conclude that
natural images are not of bounded variation. Eventually, in Section 5, we compare
our conclusions with recent results on the decay of wavelet coeflicients.

1. The distribution of bilevels in natural images. In previous papers, see
[1], [8], we explored the statistics of homogeneous and connected regions of natural
images. The most remarkable fact is that the distributions of their area and perimeter
are very well approximated by a power law. More precisely, we consider a digital image
I, whose gray levels are between 0 and N. For an integer k, we call a k-bilevel of T
any of the binary images defined by

L) = 1 if I(i,j) € [(1—1)3,15),
)= 0 otherwise,

for | varying from 1 to k. We then define a section to be a connected component of
a set {(4,5)/L;(i,j) = 1}, for some . For each integer a, we define f(a) to be the
number of sections with area a (in pixels). Our experiments show that

fa)~ o, (1)

where C' and a are image dependent constants. Moreover, in most images, « is close
to 2.

We will not recall here all the experimental results, and we refer to the previously
mentioned papers for more details, but we will give some examples. For each image,
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F1G. 2. Function f (section area distribution) for the airport image, Figure 1, in log-log coor-
dinates.

we fit a straight line with slope « to the function f in log-log coordinate, minimizing
the least squares distance. We also compute the least squares error E. In Figure 1,
we display a digital image and some of its sections, and in Figure 2 the corresponding
fit for f. Similar graphics are obtained for all considered digital images (either from a
digital camera, scanned, or calibrated images). In Table 1, we display results averaged
over hundred calibrated images from a database collected by van Hateren, freely
available at http://hlab.phys.rug.nl/imlib/, see [18]. The most noticeable fact here
is the proximity of a to 2, and the fact that for all images and some value of k, « is
larger than 1.5, fact that will be proven relevant in the following for estimating the
BV norm of images.

In [1], [8], we also studied the distribution of the perimeters of sections, which
are also distributed according to a power law, with an exponent 8 usually between 2
and 3. In Table 2, we display results similar to those in Table 1 for the values of g
(still computed by minimizing the least squares error in log-log coordinates) on the
previously mentioned images database.

Are small sections due to noise or microtextures ? In Figure 1, we have
shown some of the small sections from which the size statistics are estimated. We do
that for the following purpose : it might be objected to the observed size laws that
their small scale behaviour is due to the caption device and not to the underlying
”natural” image. Thus, it is very relevant to look at the sections and decide whether
they are due to digitization noise, to some microtexture, or to the inherent geometric
structure of the image. In Figure 1, we can check that most small sections arise on
contrasted parts of the image (the so called "edges”) and that their shape coincides
with those edges. We can also rule out a Gibbs phenomenon : It multiplies the edge
contribution to the BV norm by a fixed constant factor. We have only shown one
example, but we have chosen a kind of example for which the BV model should be
very likely, since the whole scene is a geometric human made scene, with as little
texture as possible. All other images we have checked confirm this interpretation :
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TABLE 1
Average results for the distribution of area of sections on 100 images from the van Hateren
database. We denote by < a > and < E > the mean values of o and E respectively; std o the
standard deviation of a; min(a) and maz(a) the minimum and mazimum values for c.

k <a> |stda | maxa | mina | < E> | max E

16 1.85 0.19 2.20 1.39 0.37 0.49

14 1.83 0.19 2.18 1.36 0.37 0.54

12 1.83 0.19 2.15 1.37 0.37 0.54

10 1.81 0.18 2.12 1.27 0.37 0.50

8 1.80 0.17 2.26 1.32 0.38 0.59
TABLE 2

Average results for the distribution of perimeter of sections on 100 images from the van Hateren
database. Notations are the same as for Table 1.

k <B>|stdf | maxf | minf | <E> | max E
16 2.35 0.28 2.57 2.04 0.36 0.42
14 2.42 0.29 2.60 2.10 0.29 0.35
12 2.38 0.33 2.63 1.99 0.42 0.51
10 2.46 0.15 2.62 2.10 0.31 0.39
8 2.36 0.14 2.49 2.04 0.37 0.41

small sections correspond to objects or pieces of objects, or pieces of contours. They
are not at all uniformly distributed over the image, as would happen with noise.

2. Functions of bounded variation and sets of finite perimeter. In this
section, we recall some basic facts about functions of bounded variation. Let I be a
bounded function defined on a domain (e.g. rectangular) Q C R%. [ is in BV (2), the
space of function with bounded variations, if

def
1|5y = /|DI|<+oo,
Q

where the gradient DI is to be understood in a weak sense (see [19]):

[ 101 :sup{/ Idivé | ¢ € CLQ),|¢] < 1},
Q Q

where C1(Q) is the space of continuously differentiable functions with compact sup-
port, defined from Q to R?. Actually the usual BV norm is defined as the sum of
[ |DI|, the total variation, and the L' norm, [ |I|. We only consider here the total
variation (which is not a norm), and write it ||.||By .

We will be interested in a more geometric characterization of BV (). For A € R,
define the level set of I with level A by

Xl = {o, 1) > A}.

Now (see [7]) recall that a set E €  is of finite perimeter per(E) if

def
per(E) € ||Lg||pv < +oo,

where 1 g is the characteristic function of the set E. This definition generalizes
the usual definition of the boundary length, in the sense that both definitions are
equivalent in the case of a set with piecewise regular boundary. If a function has
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bounded variation then, for almost every A € R, x,[ is a set with finite perimeter
and (coarea formula, see [7]),

1] 8v Z/Rper(xﬂ)dk (2.1)

Conversely, if per(xa[) is finite (for almost all A\) and the preceding integral is finite,
then I has bounded variation. We also recall that, by the classical isoperimetric
inequality, we have for every set O with finite perimeter,

per(0) > 2r21(0)?, (2.2)

where v(0) denotes the Lebesgue measure of O.

The BV space is a very straightforward space for images. First, if images are
neither continuous nor strictly differentiable, it seems reasonable to assume them to be
in a space where they are weakly differentiable. Moreover, the occlusion phenomenon
is responsible for one-dimensional discontinuities which prevent the weak derivatives
of images to be integrable, thus forcing images out of any Sobolev space. Such a simple
image as a white disk on a black background belongs to the space BV, which is the
natural space to perform calculus of variations on functions whose one-dimensional
discontinuities have finite length (see [2]). Now, a first way for an image not to be in
this space is to have level lines with infinite length. For instance, the characteristic
functions of two-dimensional sets with fractal boundaries will not be of bounded
variation. There is also another way for a function not to be in BV. Each of its
level lines may be of finite perimeter, while the sum of these level lines’ perimeters
is infinite. As we will see in the next two sections, this is what happens for natural
images, in which, in a precise sense, small objects are too numerous for the function
to be of bounded variation.

3. A lower bound for the BV norm. In the following, we shall consider
sections of the image. We always assume that the image I satisfies 0 < I(z) < C. We
first fix two parameters v, A, with 0 < A <+. For any n € N, we consider the bilevel
sets of 1

{x7)‘ + (n - 1)7 < I(.CL') <A+ n7} = X)\-l-(n—l)'yI \ X)\+n'yI-

We call (v, \)-section of I any set which is a connected component of a bilevel set
Xa+(n—1)yI \ Xa4n,I for some n. We denote each one of the components by S, x ;
for i € J(,A), a set of indices. Notice that the (v, A)-sections are disjoint and their
union is the image domain €,

U Syi=0 (3.1)

i€J(7,M)

There are several ways to define the connected components of a set with finite
perimeter, since such a set is defined up to a set with zero Lebesgue measure. One can
prove ([3]) that a definition of connected components for a set with finite perimeter
permits the following statements (recall that v is the 2-dimensional Lebesgue measure
and per is the perimeter):

DEFINITION 3.1. Let X be a set with finite perimeter in R2. We say that X is
not decomposable if we cannot write it as X =Y U Z, with v(Y) > 0, v(Z) > 0,
v(X) =v(Y)+v(Z) and per(X) = per(Y) + per(Z).
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THEOREM 3.2. Each set of finite perimeter X admits a unique decomposition
X =U, X,

where the union is finite or countable, and such that
(i) each X,, is not decomposable,

(i) for each n, v(X,) >0,

(iii) per(X) = Y, per(Xn).

This definition matches the usual requirements of connectivity, in particular, if
for x € X, cc(x,X) is the component relative to X that contains x, X C Y implies
ce(z, X) C ce(z,Y).

We need this definition because (iii) will enable us to use the distribution of
sections, as experimentally observed in Section 1, to bound the BV norm of images
from below. We denote by J(n) C J(v,A) the set of indices of sections which are
connected components of Xx4(n—1)y1 \ Xa+n-I. Note that by classical results on BV
functions, for each v, X4 (n—1)yI \ Xa4+n~ I has finite perimeter for almost every A. As
an obvious consequence of Proposition 3.2, we have

COROLLARY 3.3. Let I belongs to BV . Then for almost every A,

per(Xnt (netpy T \ Xogmy D) = D per(Sxy.i)-
i€J(n)

In order to estimate the BV norm of I, we shall need
LEMMA 3.4. If B C A are two sets with finite perimeter, then

per(A\ B) < per(A) + per(B).

Proof. Recall that per(A) = ||La||py. Then by the subadditivity of the BV
norm, we deduce from

1ap=14-1p
that
per(4\ B) < per(4) + per(B).

a
In the following theorem, we analyze the statistics of sizes of sections as follows.
We fix v, that is, the overall contrast of considered sections and for each 0 < A < v,
we count all sections S, » ; which have an area between s; and sz, with 0 < 51 < s5.
That is to say we consider the integer

Card{i, s1 < v(Syai) < s2}

Note that this number is bounded since 2 is bounded and the sections are disjoint.
We average this number over all X’s in [0,], to obtain the function

v
f(v,81,82) z/ Card{i,s1 < [Sy.ail < s2}dA
0

Remark: To be able to define f, we made the assumption that

Card{i, s1 < v(Sy,,:) < 82} is a measurable function of A (3.2)
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We will suppose that for some v > 0, this average number has a density f(, s)
with respect to s. That is:

. f(’7751732)
Vs >0 1 DD — f(y, 8). 3.3
8 i e f(v,s) (3.3)

Then we have the following bound for the BV norm of I:

THEOREM 3.5. Let I bein BV (Q). Assume that there exists some y > 0 such that
(3.2) and (3.3) hold (i.e. the average number of sections with area s, for 0 < A <~,
has a density f(v,s)), then

L)
|y >t / s¥ £ (v, 8)ds. (3.4)
0

Proof. Applying Corollary 3.3 and Lemma 3.4,

T|lpy = / per{z, I(z) > A}dA
R

% (/R per{z,I(z) > \}d\ + /Rper{:c,f(a:) >A- ’Y}d)‘>

1
Z3 /Rper(x,\—'yf\xﬂ)d/\
1 (n+1)y
D) Z/ per(xa—I \ xal)dA
nez"” ™Y
1 Y
D) / Y perOn-1r T \ Xotng DA
0 neZ
1 Y
- 5/ Z per(Sy,a,i)dA.
0 ied(v.n)

By the isoperimetric inequality (2.2), we therefore obtain

Y
Moy 27t [© Y w(S,a0idx
0 sei(v,N)
Then, for any n € N*

sy > 74 S (@k) Y (% X D 1)) . (3.5)

n
k=1

We introduce the functions

hex (%’“) K (% Tk S 1)) o) 1 k0 )

n
k=1

We have

)
sy > =t / Fuls)ds,
0
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and

Vso > 0 In(s0) | 3., (50)*7/ (7, 0),

thanks to Hypothesis (3.3). Therefore, by Fatou’s lemma

v
/ s} f(y,5)ds.
0

M=

1|y > m

a
We can repeat the preceding analysis by assuming now that

,
9(v,p1,p2) =/ Card{i,p1 < per(Sy,x;:) < p2}dA
0

has an average density g(v,p) with respect to p (once more assuming the cardinal we
integrate is measurable). That is to say

lim g(’)’,p1,p2)

= ,P)- 3.6
pitpp2ip P2 — P1 g(’y p) ( )

Then we have the analog of Theorem 3.5 for the perimeters of sections:

THEOREM 3.6. Let I be in BV (). Assume that there exists some v > 0 such
that (3.6) holds, i.e. the average number of sections with perimeter s, for 0 < A <,
has a density g(vy,p). Then

1 [t
Mllav 25 [ poro)ip. (37)

Proof. In the same way as before (without using the isoperimetric inequality),
and fixing some p,,, > 0

1 2l
Mlav 25 [ % per(Syandn

O ier(v.N)

(2 (022w 2o
As before this implies

1 [t
I|||Bv > 5/ pg (7, p)dp.
0

d

4. Application: natural images are not of bounded variation.
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4.1. The continuous framework. In this section, we draw the consequences
of Theorems 3.5 and 3.6 for the images analyzed in Section 1, by assuming that the
observed distribution of sections approximates the distribution in continuous images.
According to our experimental results, we suppose that the considered images satisfy

C

f(y,8) = s (4.1)
C
9(v,p) = ] (4.2)

for some constants a > 0, § > 0, where f is the density for the area distribution of
the sections, and g the density for the perimeters. This law has been experimentally
checked for several values of v = % (the grey level width of the sections), k ranging
from 8 to 20, see Section 1 and [8]. We also checked that the value of o was almost
unchanged when the bilevels were not defined from gray level 0, but from some gray
level less that % (that is to say, in the continuous model, for different values of A),
and that when averaging the experimental density function over integer values of A
between 0 and v = %, f and g still are power laws with the same exponent. Thus,
Hypotheses 4.1 and 4.2 are valid. We here emphasized that the shapes and locations
of small sections indicate that these are not due to noise, but to small structures
and objects clearly present in the image, particularly pieces of edges, see Figure 1.
Moreover, Gaussian white noise leads to quite different statistics, see [8].

Then, by Theorem 3.5, we have

v(Q2) C 1
||I||szc/ 5 ds,
0

Sa

and in the same way,

+ooC
/4
I Zc/ —=dp.
[[1]|Bv .

Thus, if we admit that (4.1) and (4.2) indeed hold for natural images when s — 0, as
is indicated by the experiments recalled in Section 1, we obtain that the considered
images are not in BV if a > %, or # > 2, since the corresponding integrals are not
finite. These values of a and § have been checked for all images of the database
studied in Section 1, for some value of k, except for some (3 out of 100) blured
images. The assumption that Formulae 4.1 and 4.2 hold for small scales, below the
scale of pixelisation, is a strong one, but the experiment of Section 1 indicates that the
distribution is the same at all scales. Moreover, the next section will analyze the effect
of pixelisation on the BV norm. Of course, there exists a cut-off scale in images, but
the lower bounds we found for the BV norm indicate that the contribution of small
scales to the value of this norm is unexpectedly large compared to the contribution of
larger scales. As mentioned in the introduction, this should be related to the problem
of the erasing of textures by variational methods minimizing the total variation of
images. Indeed, the BV -norm gives a large weight to small scales textures, that are
known to disappear in the process of restoration (debluring or denoising for instance)
by such variational methods, see [17], [10].
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4.2. Convolution and sampling. In this section, we draw the same conclusions
as in the previous one about the BV norm of natural images, with a more rigorous
interpretation of our experimental results. We give a practical application of the
method of Theorem 3.5, in a case where its hypotheses are satisfied. We assume
that discrete images, on which we performed the analysis of Section 1, are obtained
from continuous ones through convolution and sampling. We first show that when
we compute the BV norm of a function after convolution with a rescaled smoothing
kernel (under some regularity conditions) and sampling, we underestimate the actual
value of the BV norm of the initial function. We write G for a two dimensional
function, C for the square whose lower left corner is (0,0), and upper right corner
(1,1), n an integer, and for a real number x, [z], = [nz]/n, [nz] being the integer part
of nz.

LeEMMA 4.1. Let I be a function in BV (C), let G, (z,y) = G(nz,ny), define

I.=1xG,,
and for (z,y) € C
1 1
Iy (x, =1 n o o WYlnT 57)-
(@,9) = Ll + 5 [0l + 5)
Assume that there exists some functions a and b such that
Ve,ye € |G(z,y)| < a(z)b(y) (4.3)
and a constant K such that
sup Z a(z+i)b(y+j) < K. (4.4)
BY g
Then

InllBv(c) < V2K| ||y (o)
proof. For i, j integer in [0,n), define
) 1 3 1
+— L4

i
L, =L(% U
b C(n 2n’n = 2n

We have
alley =Y (i — T gl + |Tig — Tijal) -

i,J

Now, for all 4, j,

i+1 ] 1 j
=il = | [ (105 oL ) -1 =02 ) Gl

n n
Lo i+t j
[ [ r - ad -y
Lo i+t j
S//O a_x-[(T_waﬁ_y) a(nz)b(ny)

o _t
8—:51(; - ,—y)

/]

a(nz + i)b(ny + j)



ARE NATURAL IMAGES OF BOUNDED VARIATION? 11

so that

Z [LTiy1,; — Lij| < supZa(a:-l—i)b(y +j)/ 3I

& sJ P — 2,y “— am ”

.3 1,7
and thus

italley < K [ |21+ |51 < VER(|
nl|BV < 97 oy | = BV,

the last inequality resulting from |u] + |v| < V2(u? + 1)2)1/2. 0

This theorem enables us to reformulate the fact that natural images do not belong
to BV in a slightly different way. Suppose that the continuous image I is represented
by the discrete function I, of the previous theorem. Assume moreover that the
distribution of the area of the discrete connected components of bilevels for I,, is
fn(k), for values of k from 1 to n?. Then reasoning as in Theorem 3.5 leads to

THEOREM 4.2. Let I be a function in BV (C) and I, a sampling of I, defined as
in Lemma 4.1, the kernel G satisfying Hypotheses (4.3) and (4.4). Then there is a
constant C' such that

ey > €Y (k) faloib) (1.5
k=1

where fn(7v,k) is the number of connected components of I, of area k, for values of k
from 1 to n?.

proof. Since I, is a step function, all measurability conditions of Theorem 3.5 are
satisfied, and we obtain Formula (3.5) which yields

1

2
n 1 3
allay > €Y (55K) o)
k=1

By Lemma 4.1, we obtain Formula (4.5). 0
We now come to the consequences of our experiments:
COROLLARY 4.3. If for all n, there is a constant C,, such that

Ch
n(, k) > > 4.6
falv: k) (L) (4.6)
with a < 2, then
Y1 kNP
ey 20 Y5 () (@)

proof. We have (computing the area of the unit square)

2

an(7ak) i =1,

n2
k=1

so that
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Now if a < 2, the preceding Riemann sum converges, and

2-a)

CTL Z n2

Eventually, replacing Expression (4.6) into Formula (4.5) yields the result. 0
Now the same conclusions as before hold, since the right side of Formula (4.7)
tends to infinity as soon as a > 1.5. We have thus proved that if the distribution
of the (discrete) sections of the (piecewise constant) function which is obtained by
convolving I with a rescaled filter and sampling at n? points follows Formula (4.6)
with 1.5 < a < 2, then I is not of bounded variation.
Remark: The assumption of Corollary 4.3 correspond exactly to our numerical ex-
periments on natural images. Notice that we observed a variation of the constant
Ch, and that the preceding proof shows that the blow up result for the BV norm of
images is independent of this variation.

5. Wavelets and the space BV. As mentioned in the introduction, recent
results concerning the link between the global decay of wavelet coefficients and the
total variation of images permit us to address the main question of this paper in a
wavelet framework. Let (cx) be the wavelets coefficients of the image I, ordered in a
non increasing sequence. We say that the c;’s are in I! if 3~ |cx| < +oc, and that they
are in weak-I" if there exists a constant C' such that ¢, < £. Obviously I! is included
in weak-l'. It is well known that if the ¢ are in %, then I is in a Besov space included
in BV. In the other direction, Cohen, DeVore, Petrushev and Xu, [6], recently proved
that if I is in BV, then the ¢’s are in weak-I!, for the Haar wavelets. Cohen, Meyer
and Oru then generalized the result to any compactly supported wavelet basis, see
[14].

Thus, it is possible to decide whether an image belongs or not to BV by looking
at its wavelet coefficients decay, except if they decrease as %, which happens to be the
case quite often. We present in Figure 3 the ordered coefficients for four images: the
well known Lena image, a part of a baobab image, a baboon image (Figure 4), and a
Gaussian white noise. We used Daubechies’ wavelets (using filters of length 8 provided
by Wavelab), and found very similar results with Haar’s wavelets. As we see, there
is a fairly linear part in those graphs, but only for intermediate scales. Assuming the
small scales behavior is perturbed by sampling, and that the decay observed for most
of the coefficients is characteristic of what happens at small scales, we may use the
preceding results. We fitted a line to those values according to a least squares error, so
that an image should be in BV when the slope of this line is (strictly) greater than 1,
and out of BV if the slope is (strictly) smaller than 1. In the case of the baobab and
baboon images (Figure 4), we respectively found slopes of 0.76 and 0.45, and values
of a (the exponent of the power law distribution of sections area)respectively equals
to 1.9 and 2.38 (for £ = 16), so that both methods agree: those images are not in
BYV. For the well-known image of Lena, our approach gives an « of 1.9 (for k = 16),
which suggests Lena being clearly out of BV, whereas from the wavelet approach, a
slope of .95 indicates the image is not BV. Now, this result is close to the uncertainty
zone. Of course, the decay of the coefficients for the noise image is very slow (0.16)
so that this image is not in BV, whereas the distribution of the area of sections does
not follow a power law (but an exponential distribution). Note that in all four cases,
the inference of the distribution at small scales is less clear than in the morphological
approach of the previous sections.

To understand the nature of the uncertainty when the slope is 1, it is worth
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10* 10
10% 10°
10° 10°
1075 S , 1075 2 ‘
10 10 10 10 10 10
OrderedCoef baboon OrderedCoef noise
10*
102 10°
10° 10°
1075 . ; 1075 7 .
10 10 10 10 10 10

F1G. 3. Ordered wavelet coefficients (modulus against the rank in log-log coordinates) and least
squares fit for four images

F1G. 4. Lena, baobab and baboon images, on which we study the decay of wavelet coefficients
as shown in Figure 3

BV norm
*

10
10

10"
scale of image

FiG. 5. Simple plot of the BV norm as a function of the scale, for the image of the airport.
The BV norm is directly computed on the image which is successively downsampled. Abscissa equals
a half means the image has been subsampled by a factor 2
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noticing that the wavelet coefficients produced by the characteristic function of a
simple shape already decrease as %, so that the simple presence of edges in the image
implies this type of decay. In a sense, the wavelet coefficients look at the smoothness
of the edges of the image, whereas, by investigating the sections size distribution,
we investigate the number and the cumulated length of those sections. Thus, as we
mentionned already, it is not surprising that we get more precise estimates of the
image oscillations at small scales, and can therefore decide for instance that Lena is
not BV while the wavelet coefficient analysis is ambiguous [11].

Clearly, our proposed procedure and the wavelet experiments imply that the scale
behaviour of the image needs some sophisticated statistics to be correctly extrapolated
at fine scales. Thus, it is necessary to point out that less sophisticated statistics can
yield uninterpretable results on images for which the former mentionned methods yield
clearcut answers. By one of the referee’s suggestions, we performed the following
experiment (Figure 5). We simulated a zoom backward at six dyadic scales of a
natural image and computed the resulting BV norm. In several images were the
section statistics is conclusive, we get no clear scaling behaviour, as can be seen in
Figure 5. Actually, even if the dots in the just mentionned experiment had been
aligned, we could’nt have made any strong statement. The number of obtainable
samples is simply too small.

6. Conclusion. Combining experimental results about the distribution of sec-
tions in natural images and a result about the total variation of functions of R?, we
have shown that natural images are not of bounded variation. This conclusion re-
lies on the assumption that the observed images are obtained from continuous ones
through fairly arbitrary convolution and sampling. This shows precisely that even
if well adapted to the large scale geometric structures of images, modeling them as
functions with bounded variation does not account for the intricate nature of their
small details.
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