
UNSUPERVISED THRESHOLDS FOR SHAPE MATCHING
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ABSTRACT

Shape recognition systems usually order a fixed number of
best matches to each query, but do not address or answer
the two following questions: Is a query shape in a given
database ? How can we be sure that a match is correct ? This
communication deals with these two key points. A database
being given, with each shape S and each distance δ, we
associate its number of false alarms NFA(S, δ), namely
the expectation of the number of shapes at distance δ in the
database. Assume that NFA(S, δ) is very small with re-
spect to 1, and that a shape S′ is found at distance δ from S

in the database. This match could not occur just by chance
and is therefore a meaningful detection. Its explanation is
usually the common origin of both shapes. Experimental
evidence will show that NFA(S, δ) can be predicted accu-
rately.

1. INTRODUCTION

Shape recognition is the field of computer vision which
deals with the problem of finding out if a query shape lies
or not in a shape database. This shape database is usually
extracted from an image or a set of images. When we refer
to “shape database”, we therefore refer to sets of images as
well, along with a shape extraction algorithm.

The shape recognition task is usually split into three
stages.

1. Features extraction, namely features detection [1, 2]
then features grouping [3, 4].

2. Pairing of the request features [3, 5]: Pre-matching then
accurate matching.

3. Decision. This step is certainly the key point of all shape
recognition algorithms. Once two shapes are likely to
match, how is it possible to come to a decision? As far
as we know, the probabilities of matching, or the result
of a voting process, are only used in order to classify the
matches; the problem of absolute recognition thresholds
has been raised by many authors [4, 6, 7].

Some authors have addressed the question of “wrong
matches” occuring purely by chance (“estimating false
alarms rates” [4], “conspiracy of random” [6], or “halluci-
nating a wrong fit” [7]). The proposed models did not lead,
however, to an automatic recognition criterion, but only to
an ordering criterion for matches.

Our plan is as follows. In section 2, we introduce the
notion of meaningful match. In section 3 we briefly de-
scribe a shape feature extraction and encoding algorithm,
based on the image level lines. A background model for the
shape database and the decision step are explained in sec-
tion 4. We test the correctness of the background model in
section 5.

2. MEANINGFUL MATCHES

We shall first dress up an empirical statistical model of
the shape database. The relevant matches will be detected
a contrario as rare events for this model. This detection
framework has been recently applied by Desolneux et al. to
the detection of alignments [8] or contrasted edges [9], and
by Almansa et al. to the detection of vanishing points [10].
It derives from a perceptual principle which states that if the
expected number of appearances of some event by chance
is very small, then it is highly meaningful. The main advan-
tage of this technique is that the only parameter that controls
the detection is the number of false alarms, a quantity that
has a handy meaning.

Suppose that the problem is to decide whether a shape
code matches some other shape code from a database of NB

codes. We assume that in our framework the shape codes are
lists of n features, each of them belonging to a metric space
(Ei, di), 1 ≤ i ≤ n.

Let X = (x1, . . . , xn) be a query shape code, and let
Y = (y1, . . . , yn) denote an element of the cartesian prod-
uct E1 × · · · × En. Given a positive real number δ, we say
that X and Y are δ-close if and only if:

∀i ∈ {1, . . . , n}, di(xi, yi) ≤ δ.



Two codes match if they are δ-close, with δ small
enough: we have to set a threshold for δ.

Assuming that all features are independent, we can com-
pute the probability (denoted by P(X, δ) in what follows)
that a shape code Y is δ-close to X:

Pr(Y s.t. Y is δ-close toX) =
n∏

i=1

Pr(y ∈ Ei s.t. di(y, xi) ≤ δ). (1)

Each term of this product can be empirically estimated
on a shape database. For each i, we compute the distri-
bution function of di(z, xi), when z spans the ith feature
of the codes in the database. By this way, we can com-
pute P(X, δ).

Definition 1 (ε-meaningful match) X = (x1, . . . , xn)
being given, we say that a shape code Y = (y1, . . . , yn)
matches X ε-meaningfully if one has NB · P(X, d) ≤ ε,
where d = maxi=1,...,n di(xi, yi).

Remark: Given ε > 0, one can compute the associated max-
imal distance d∗(ε) such that NB · P(X, d) ≤ ε. This pos-
itive real number d∗ is uniquely defined since the N func-
tions δ 7→ Pr(y ∈ Ei s.t. di(y, xi) ≤ δ) (with 1 ≤ i ≤ n)
are non-decreasing, and so is their product; consequently,
the function δ 7→ P(X, δ) is pseudo-invertible. Each posi-
tive real d such that d < d∗ also satisfies NB ·P(X, d) ≤ ε.

Notice that the empirical probabilities take into account
the “rareness” or “commonness” of a possible match; in-
deed the threshold d is less restrictive in the first case and
more strict in the other.

The following proposition shows that the number of
false detections is controlled by ε. This provides a more
intuitive way to control detections than just tuning the dis-
tance δ for each query.

Proposition 1 The expectation of the number of ε-
meaningful matches over the set of all shape codes in the
database is less than ε.

Proof: Let Yj (1 ≤ j ≤ NB) denote the possible shape
codes, and χj denote the indicator function of the event ej :
“Yj matches ε-meaningfully X”. Let R =

∑NB

j=1
χj be the

random variable representing the number of codes match-
ing ε-meaningfully X . The expectation of R is E(R) =∑NB

j=1
E(χj). With definition 1, E(R) =

∑NB

j=1
P(X, d),

so E(R) ≤
∑NB

j=1
ε · N−1

B , yielding E(R) ≤ ε.

Remark: The key point is that we control the expectation
of R. Since dependences between events ej are unknown,
we are not able to estimate the probability law of R. Never-
theless, the linearity still allows to compute the expectation.

Authors that have tried to deal with this problem [4, 7] have
arbitrarily assumed that the events are independent.

To end with these definitions, we provide a measure for
the quality of matching.

Definition 2 (Number of false alarms) Given a shape
code X and a distance d > 0, we call number of false
alarms of a match with X at distance d the number

NFA(X, d) = NB · P(X, d).

The framework we presented provides a way to detect
matches while controlling the number of objects that match
purely by chance.

If we want that “random matches” between a query
shape code and a database code appear only once on the
average, we simply put ε = 1. If the query is made of NQ

equally relevant shape codes, and if we want to detect on
the average at most one random match over all query codes
(that is what we will do in section 5), we still put ε = 1
after replacing NB by NB ·NQ in definition 1 (in this case,
proposition 1 obviously still holds).

Let us explain briefly the practical usefulness of for-
mula (1): Our aim is to estimate the very small probability
that a shape S′ in a given database happens just by chance
to look like a query S. This probability is intuitively very
small if S is complicated enough. Thus, we cannot estimate
empirically the probability of this event by just counting the
shapes S′ which are δ-close to S: there will simply be none.
Thus, the trick is to decompose the computation of this very
small probability into a product of observable probabilities.
In order to do that, we shall in section 4 simply split the
complicated shape S into a few simpler parts (in practice 5
parts). By doing so, we are able to oberve for each single
part, pieces of shapes in the database which are δ-close. In
that way, we shall be in a position to learn from the database
the probabilities on the right-hand side of (1).

3. SHAPE NORMALIZATION

Although this is not at all the aim of this communication, we
have to briefly explain the coding procedure of shapes we
used. This procedure provides structured information with
as few arbitrary stages and thresholds as possible. See [3],
for further details. Given an image:
1. Extract the maximal meaningful level lines (based on

contrast [9]).

2. Smooth them by the Geometric Affine Scale Space [11].
We use a fast implementation [12].

3. Build invariant codes (up to either similitude or affine
transforms). Following [3], we define local frames for
each curve, based on robust directions (tangent line at
inflexion points, or bitangent lines). A code is obtained
by uniformly sampling a piece of curve in this frame.



4. BACKGROUND MODEL

We now explain how a code can be processed in order to fit
the framework of section 2. Each code C is split into five
pieces of equal length. This will lead us to define five inde-
pendent variables associated with each code. This number
five will be sufficiently large to attain very low values of the
NFA. Each of these pieces is normalized by mapping the
chord between its first and last points on the horizontal axis,
the first point being at the origin: the resulting “small pieces
of curve” are five features C1, C2, . . . C5. For the sake of
completeness, a sixth, global, feature C6 is computed from
the endpoints of the five previous pieces of the code.

The distances di between features, introduced in sec-
tion 2, are the Hausdorff distance. Our a contrario model
assumes that these six features are independent. Since the
five pieces are separately normalized, this assumption is
sound for random curves.

According to this model, if we observe that two codes
match (in the sense of section 2), then a rare event has oc-
curred. Now, in order to establish the link between the de-
tected matches and shape recognition, we need to clearly
identify and explain matches that are detected. There are
two kinds of detections:

• False Detections. The detected matches are well de-
scribed by the background model. These matches are
realizations of the event: “the sets of independent fea-
tures of the two codes are close enough”. False Detec-
tions are just detected because all their features are close
“by chance”. According to definition 1, there should be,
on the average, at most ε many of them.

• Identifying (ID) and Non Identifying Detections (NID).
Any other detection should be an outlier of the back-
ground model. Therefore, it must be explained as a vio-
lation of the independency assumption. This violation is
due to two factors:

– Similar codes match because they were extracted
from two similar (or identical) objects. We call de-
tected matches of this type Identifying Detections.

– Many shapes in images derive from natural or man-
made objects having a common structure. For in-
stance, many objects exhibit parallelism or width
constancy, which yield strong deviations from the in-
dependency model. These Non Identifying Detec-
tions can be frequently detected (see figure 1).

Although being semantically different, these two types
of detections cannot be distinguished from our point of
view. Our method cannot control the number of NIDs
since they are not False Detections, in the sense that if
we take both shape codes out of their context, we would
consider their match as correct.

5. EXPERIMENTS

As an experiment we check the detection thresholds on a
very simple model: we take as database and query some
random walks with independent increments. For size of
databases in a wide range of values (from 100 to 106), the
NFA is very well predicted. If we now make the same exper-
iment on quantized level lines of an image of white noise,
we find more than one false alarm, a few of which having a
NFA close to 10−2. This is a consequence of a violation of
the independence assumption, due to the fact that level lines
obey a global non-intersection constraint. In consequence,
we shall only consider detections as valid if their NFA is
below 10−2, since detections with a NFA higher than 10−2

can be due to a slight violation of independence caused by
the non-intersection constraint. Moreover, IDs always ex-
hibit NFAs lower than 10−2.

Figure 2 shows an example of shape matching with the
presented method. The images can differ in such a way that
a level line extracted from one of them could not be present
or could be slightly different in the other one. That is why
for example Saint George’s shoulder is not found.
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Fig. 1. Non Identifying Detection on a book edge. 10−3-meaningful match.

Fig. 2. Two different photographies from the same painting (“Saint George and the Dragon” by Uccello). Top: considered
level lines. Left level lines (976 codes) are searched among right ones (38, 669 codes). Bottom: 10−2-meaningful matches.
All are Identifying Detections (ID) as predicted by the theory.


