
Towards fast, generic video inpainting

Alasdair Newson∗†, Andrés Almansa†, Matthieu Fradet∗
Yann Gousseau†, Patrick Pérez∗

∗Technicolor, 975 Avenue des Champs Blancs, 35570 Cesson-Sévigné, France
alasdair.newson@technicolor.com, matthieu.fradet@technicolor.com, patrick.perez@technicolor.com

†Télécom ParisTech - CNRS LTCI, 43 rue Barrault, 75013 Paris, France
alasdair.newson@telecom-paristech.fr, andres.almansa@telecom-paristech.fr, yann.gousseau@telecom-paristech.fr

ABSTRACT
Achieving globally coherent video inpainting results in reasonable
time and in an automated manner is still an open problem. In this
paper, we build on the seminal work by Wexler et al. to propose an
automatic video inpainting algorithm yielding convincing results in
greatly reduced computational times. We extend the PatchMatch
algorithm to the spatio-temporal case in order to accelerate the
search for approximate nearest neighbours in the patch space.
We also provide a simple and fast solution to the well known
over-smoothing problem resulting from the averaging of patches.
Furthermore, we show that results similar to those of a supervised
state-of-the-art method may be obtained on high resolution videos
without any manual intervention. Our results indicate that globally
coherent patch-based algorithms are feasible and an attractive
solution to the difficult problem of video inpainting.

Keywords
Video inpainting, PatchMatch, exemplar-based, patches, space-
time occlusion

1. INTRODUCTION AND PRIOR WORK
The goal of image inpainting [1], also known as disocclusion [2, 3]
is to convincingly replace a region with some other image content.
The vast majority of inpainting methods find this information in the
image itself. One of the main difficulties of this task is the correct
reproduction of both geometric structures and textures. Video
inpainting is the problem of inpainting a spatio-temporal hole in
a video. This adds new technical challenges such as inpainting
the foreground, background and moving objects. Additionally, the
execution time becomes a critical aspect, as certain video inpainting
algorithms which do not deal specifically with this aspect may take
days or even weeks to execute.

Generally speaking, video inpainting algorithms belong to either
the “object-based” or “patch-based” category. Object-based algo-
rithms usually segment the video into moving foreground and back-

ground that is either still or displays simple motion. These seg-
mented image sequences are then inpainted using separate algo-
rithms. The background is often inpainted using image inpainting
methods such as [4], whereas moving objects may be copied into
the occlusion as smoothly as possible. Unfortunately, such methods
often include restrictive hypotheses on the moving objects’ motion,
such as strict periodicity. Some such object-based methods include
[5, 6, 7].

Patch-based methods are based on the intuitive idea of copying
and pasting small video “patches” (rectangular cuboids of video
information) into the occluded area. The first patch-based method
to ensure temporal coherency in video inpainting was described
by Wexler et al. in [8]. This is an iterative method that may be
seen as a heuristic to solve a global optimisation problem. The
high dimensionality of the problem makes the algorithm very slow,
requiring up to several days for a few seconds of VGA video.
Patwardhan et al. [9] also use a patch-based approach. This is a
greedy algorithm, and therefore cannot guarantee global coherency.

Pritch et al. [10] first proposed to use the discrete optimisation
algorithm called “graph cuts” [11] for the purpose of image
inpainting. This method optimises an energy functional of the shift
map to inpaint an image. The shift map is the mapping from the
set of pixels in the occlusion to a subset of the unoccluded pixels,
which corresponds to the nearest neighbours from a patch-based
point of view. Other image inpainting methods such as [12, 13]
have also used this sort of strategy. The idea of using graph cuts
for video inpainting was recently introduced by Granados et al. in
[14]. They propose a semi-automatic algorithm which optimises
the spatio-temporal shift map. This algorithm presents impressive
results on higher resolution images than are previously found in the
literature (up to 1120x754 pixels). However, in order to reduce the
large search space and high time complexity of the optimisation
method, manual tracking of moving occluded objects is required.
To the best of our knowledge, the inpainting results of Granados et
al. are the most convincing to date, and we shall therefore compare
our algorithm with these results.

Another recent method by Facciolo et al. [15] deals with video
editing in the gradient domain. However, the goal of this method is
to enforce temporal consistency given a certain inpainting result,
rather than producing the inpainting result itself. Nevertheless,
such post-processing methods could be used to refine the results
of video inpainting algorithms.

The seminal work of Wexler et al. [8] is widely cited and well-

known, mainly because it ensures global coherency in an automatic
manner. However, due to extremely long execution times, it is
difficult to implement and experiment with, making the setting of
implementation details and parameters especially tedious. This is
in fact the greatest obstacle preventing the progress of research in
this direction. The goal of this work is to produce an algorithm
which is able to achieve the global coherence of the algorithm
presented in [16], while maintaining execution times which are
not prohibitive for experimentation and practical use. For this, we
build on Wexler’s central idea of iterative aggregation of nearest
neighbours in the patch space to obtain an automatic algorithm
with greatly reduced execution times. We extend the PatchMatch
algorithm to the spatio-temporal domain in order to accelerate
the search for approximate nearest neighbours. Furthermore,
we propose a simple solution to the well-known over-smoothing
problem due to the averaging of patches, and also provide specific
implementation details to make our work reproducible. The
resulting algorithm yields similar results on the low-resolution
examples from [16], with a speedup of up to 50 times, and,
furthermore, is able to successfully inpaint high resolution videos
in an automatic manner, which has not been done before. We
reduce execution times by an order of magnitude in comparison
with the most recent supervised method [14], with visually similar
results.

2. PATCH-BASED GLOBAL OPTIMISATION
Our video inpainting approach builds on the foundations laid out by
Wexler et al. in [16]. This algorithm fills a spatio-temporal volume
using the information in the unoccluded parts of the video. The
solution is obtained by the minimisation of a global patch-based
functional. To achieve this, the algorithm alternates between the
search for the nearest neighbours (NNs) of spatio-temporal patches
in the occluded region and the reconstruction of the inpainted
volume using these NNs. This process is iterated several times in
order to converge to a solution. As in many optimisation problems,
a multi-resolution spatio-temporal pyramid is used in order to avoid
local minima. We shall first of all recall the algorithmic structure
of [16], after which we present our extension of PatchMatch
to the spatio-temporal case (for NN the search) and finally our
initialisation and modified reconstruction schemes.

2.1 The Space-Time Completion algorithm [16]
We present here the algorithm of [16] in greater detail. As far
as possible, we retain the notation found in [16]. Let H be
the spatio-temporal occlusion and D the data set (unoccluded
area). Furthermore, let D̃ be the region in which all patches are
completely outside of D. The ANN search is restricted to patches
belonging to D̃. Let p = (x,y, t) be a position in the video and Np
be the spatio-temporal neighbourhood of p. This neighbourhood
is defined as a rectangular cuboid centred on p. A patch is simply
a vector of the values (grey-level, colour etc...) which are found
in the video content at the positions belonging to Np. We shall
refer to such a patch as Wp. Let us also define the NN shift
map φ : R3 → R3, which indicates that the NN (for a given patch
distance) of Wp is centred at the position p+φ(p). The NN patch of
Wp shall therefore be denoted as Wp+φ(p). Wexler et al. use 5x5x5
patches, with each position in a patch being associated with the
following vector : (R,G,B,βu,βv), where R,G and B are the colour
values, u and v are roughly estimated optical flow components, and
β is a scaling factor. The distance d(Wp,Wp+φ(p)) is the sum of
squared differences (SSD) of each of these components, for all
positions in the patch.

The inpainting algorithm of Wexler et al. and, indeed, many
inpainting algorithms in general, contain three main components:

• The search for NNs

• The reconstruction of a video using the NNs

• The implementation of the spatio-temporal pyramid.

As previously mentioned, the first two steps are iterated several
times, at each pyramid level.

An exhaustive search for exact NNs is obviously far too time-
consuming, especially in the spatio-temporal case. Therefore, in
order to make the algorithm feasible, the work of Arya et al. [17] is
used in [16] to find approximate nearest neighbours (ANNs), rather
than exact nearest neighbours.

Concerning the reconstruction of the solution, Wexler et al. pro-
pose a scheme in which the colour value c of a pixel p ∈H is ob-
tained with a weighted mean of all the colours given by the ANNs
of the patches which contain p :

cp =
∑i∈Np

α i
psi

pci

∑i∈Np
α i

psi
p

(1)

with

si
p = exp

(
−

d(Wi,Wi+φ(i))

2σ2

)
,

where ci is the colour value at the position p+ φ(i). The value
α i

p is a weight given to the pixel i which reflects the distance
from i to the occlusion boundary. More precisely, α i

p = γdist(p),
where dist(p) is the distance from p to the occlusion boundary,
and γ is set to 1.3. Finally, σ is defined as the 75th percentile
of all the distances d(Wi,Wi+φ(i)), i ∈ Np. One drawback of the
previous weighted mean is a blurred inpainting result. Therefore,
Wexler et al. propose another reconstruction method which is a
robust estimation of the value of cp using the mean-shift algorithm.
This mean-shift is carried out on points in the RGB colour space,
provided by ci. Each point is weighted by α i

psi
p, and the dominant

mode (the cluster with the most votes) is found in this space. Only
the colours which belong to the dominant mode are used for the
reconstruction of the pixel. During the algorithm, the bandwidth
used for the mean shift is gradually reduced. The goal of this
scheme is to gradually decide on the best ANN for each Wp. The
mean shift algorithm is used in order to make the reconstruction
robust to poor ANNs found by the ANN search, and also reduces
the blurring effect in the final result.

Finally Wexler et al. use a spatio-temporal Gaussian pyramid
in order to improve the optimisation results, as is common in
inpainting algorithms. The downsampling scheme is not precisely
defined in [16]. The upsampling of a solution from one level to
another is done by propagating the current ANNs to the finer level.
The finer solution is then produced with the same reconstruction
scheme, using the new ANNs.

We now proceed to explain the details of the proposed algorithm.

“Beach Umbrella”

“Crossing Ladies”

“Jumping girl”

Original frames Inpainting result from [16] Our inpainting result

Figure 1: Comparison of our results with the those of [16]. Visually, the obtained inpainted is very similar, but we are able to reduce the
ANN search time by a factor of up to 50 times. Result videos are viewable at http://www.enst.fr/~gousseau/videoinpainting_cvmp

2.2 Approximate nearest neighbour search
The search for ANNs is the most time-consuming part of the
algorithm, and thus the most important to work on to obtain faster
execution times. Relatively recently, a very efficient ANN search
algorithm named “PatchMatch” was proposed by Barnes et al.
[18], specifically for the task of finding perceptually close patches
in images. PatchMatch’s efficiency comes from the observation
that ANN shift maps are often very regular between images (in
fact they are piecewise constant), if the same image content is
present. Barnes et al. suggested the use of PatchMatch for image
inpainting purposes, and this algorithm was subsequently used in
the “Content Aware Fill” tool by Photoshop CS5 [19], and more
recently by Darabi et al. [20]. To the best of our knowledge
it has never been proposed for video inpainting. We propose to
extend the PatchMatch algorithm to the spatio-temporal setting, in
order to reduce the search times obtained with the ANN search
described in [17]. It seems quite natural to use PatchMatch for
video inpainting, as videos are even more repetitive than images,
and this suits the piecewise constant nature of the ANN shift maps
found by PatchMatch very well.

The original PatchMatch contains three steps : initialisation,
propagation and random search. Note that we keep the same
notation as in the spatio-temporal case. In particular, p represents
a position (x,y) in the image, and φ : R2 → R2 represents the
shift map. We use the same notation in the image and video
cases to make clarify our presentation, and assume that it will be
clear which case is being discussed. The initialisation is done
by randomly associating an ANN to each patch Wp. During
propagation, the patches are sequentially scanned from low to
high indices, first in the x and then in the y dimension. For a
given patch W(x,y), the algorithm considers the following ANNs
: W(x,y)+φ(x−1,y) and W(x,y)+φ(x,y−1). If one of these ANNs has

a smaller patch distance with respect to W(x,y) than W(x,y)+φ(x,y),
then W(x,y)+φ(x,y) is replaced with the best new ANN. The scanning
order is reversed for the next iteration of the propagation (from high
to low), and the algorithm tests W(x,y)+φ(x+1,y) and W(x,y)+φ(x,y+1).
In the two different scanning orderings, the important point is
obviously to use the neighbours which have already been tested
in the current propagation step. The motivation for this step is the
idea that objects in images are spatially coherent, and therefore that
offsets which lead to good ANNs for a given patch are likely to
produce good ANNs in the proximity of this patch. The third step,
the random search, consists of randomly looking for better ANNs
of each Wp in an increasingly small area around Wp+φ(p), starting
with a maximum search distance. The random ANNs are centred
at the following positions :

q j = p+φ(p)+wρ
jR j, (2)

for all j ∈ N such that wρ j > 1, where w is the maximum search
radius around the Wp+φ(p), R j is a pair of random variables in
[−1,1]× [−1,1] and ρ is the reduction factor of the search window
size. In the original PatchMatch, ρ is set to 0.5. This random search
avoids the algorithm getting stuck in local minima.

We now detail our extension of PatchMatch to the video setting. Let
W(x,y,t) be a spatio-temporal patch centred at (x,y, t). We initialise
the ANNs randomly in any position p ∈ D̃.

For propagation, we need to define a scanning order of the patches.
As in [18], we scan in the x dimension and then the y dimension.
Lastly, we scan in the temporal dimension. For each W(x,y,t), we test
W(x,y,t)+φ(x−1,y,t), W(x,y,t)+φ(x,y−1,t) and W(x,y,t)+φ(x,y,t−1). As in
[18], the scanning order is reversed between propagation iterations,
and W(x,y,t)+φ(x+1,y,t), W(x,y,t)+φ(x,y+1,t) and W(x,y,t)+φ(x,y,t+1) are

Original frame : “Crossing ladies” Weighted average

Mean shift Best patch

Figure 2: Comparison of different reconstruction methods. We observe that the reconstruction using the best patch at the end of the algorithm
produces similar results to the use of the mean shift algorithm. Please note that the blurring effect is best viewed in the pdf version of the
paper.

tested. For this propagation step, it is important to know whether
the scanning order of the video dimensions has any influence on
the quality of the resulting ANNs. In particular, the regularity
properties (upon which the PatchMatch algorithm is based) may
be different for different dimensions. For example, if we suppose
that there is greater information redundancy along the t axis, then it
is preferable to analyse the ANNs along this axis before analysing
the others. This sort of consideration was not taken into account in
[18], since there is no reason a priori to suppose that the x and y
axes present different degrees of coherence. For a visual illustration
of the neighbours used during the propagation step, see Figure 3.

Table 1 compares the average ANN error (in terms of the sum
of square differences) per patch component, for all the scanning
orderings (nine in total). The three standard sequences of Wexler
et al. [16] are analysed in this manner. We observe that the patch
error is very stable with respect to the scanning order. Therefore,
we have chosen (arbitrarily) to maintain the original scanning order
of PatchMatch, and add the t dimension afterwards.

The extension of the random search step is straightforward. Instead
of searching in a square around current ANNs, we search in a
cube, for all p ∈ D̃. We keep the original window size reduction
parameter β = 0.5. In the current work, we allow the random
search to search the entire video, however this could possibly be
tuned to accelerate the algorithm further. We set the number of
iterations of propagation and random search to 10, which gives
good results on all the videos we tested. Between iterations of
ANN search and reconstruction, we initialise PatchMatch with the
previous ANNs.

In [16], the patches include rough estimations of an optical flow, u
and v. Having experimented with and without these elements, we
found that their influence was very small. Therefore, we only use
the colour components in our patch comparisons.

2.3 Reconstruction
As mentioned in Subsection 2.1, two reconstruction schemes are
presented in [16]: weighted averaging and a robust mean shift
colour estimation. While the mean shift has advantages such as
avoiding blurring in the final results, it complicates the algorithm
and adds new parameters, such as the speed at which the mean
shift’s band width is reduced, for which details are not given in
[16].

Dealing with this blurring problem is particularly important if video
textures are present, such as the waves in the “Beach Umbrella” and
“Crossing Ladies” examples of Wexler et al. An important question
is whether the gradual reduction of the band-width of the mean shift
throughout the algorithm is necessary, or if this may be delayed
until the end of the algorithm. In terms of Equation (1), the mean
shift band-width reduction is very similar to reducing the parameter
σ throughout the iterations of ANN search and reconstruction.

After testing and comparing various reconstruction schemes, we
propose the following method. Throughout the algorithm we use
the weighted mean of Equation (1). Then, after convergence of
this scheme at the finest pyramid level, we reconstruct the video
using only the colour value ci indicated by the ANN in Np with
the smallest patch distance. This reconstruction correctly “deblurs”
the result, and is far simpler to implement and use than the mean
shift. With respect to execution time, the mean shift algorithm

Mean ANN patch error, per component
Propagation order t,y,x y,t,x t,x,y x,t,y y,x,t x,y,t Full search
Beach Umbrella 9.22 9.61 9.49 9.54 9.57 9.11 6.83
Crossing Ladies 7.53 7.44 7.42 7.51 7.50 7.35 6.14
Jumping Girl 6.48 6.52 6.40 6.49 6.50 6.45 4.80

Table 1: Comparison of propagation scanning ordering, in terms of average component error between a patch and its approximate nearest
neighbour. On the last row is the average error of the true nearest neighbour.

has a time complexity of O(T |Wp|2no), where T is the number of
iterations of each mean shift, |Wp| is the size of a patch, and no is
the number of occluded pixels. This mean shift is repeated at each
iteration within each pyramid level. The proposed reconstruction,
on the other hand, has a time complexity of O(|Wp|no), the same
as the weighted mean. Even though the ANN search represents the
majority of computation time, it is obviously preferable to use a
reconstruction scheme which is linear, rather than quadratic, with
respect to the patch size.

Figure 2 shows some visual comparisons of the inpainting results
using different reconstruction schemes. The weighted mean, the
mean shift and the proposed reconstruction are compared. We
observe that the reconstruction using the best ANN (the proposed
reconstruction) is extremely similar to the result using the mean
shift. The proposed reconstruction is able to recreate which
corresponds to video textures.

Another crucial part of the reconstruction is the initialisation of
the inpainting solution at the coarsest pyramid resolution. This
initialisation is left unspecified in [16]. To initialise the solution,
we inpaint at the coarsest level using an onion peel approach, with
a layer thickness of one pixel. More formally, let H′ be the current
occlusion, and ∂H′ the current layer to inpaint. This layer is
obtained by morphological erosion of H′ with a 26-neighbourhood
(a 3x3x3 cube). We define the unoccluded neighbourhood N ′p of a
pixel p, with respect to the current occlusion H′. These are all the
pixels in the neighbourhood of p which are not currently occluded.

Some choices are in order to implement this initialisation method.
First of all, we only compare the unoccluded pixels during a patch
comparison. The distance between two patches Wp and Wp+φ(p) is
therefore redefined as:

d(Wp,Wp+φ(p)) =
∑i∈N ′

p
(||I(i)− I(i)||22)
|N ′p|

. (3)

We also need to choose which neighbouring patches to use for
reconstruction. Some will be quite unreliable, as only a small part
of the patches are compared. In our implementation, we only use
the ANNs of patches whose centres are located outside the current
occlusion layer. Formally, we reconstruct the pixels in the current
layer by using the following formula, modified from Equation(1):

cp,p∈∂H′ =
∑i∈N ′

p
α i

psi
pci

∑i∈N ′
p

α i
psi

p
. (4)

The pixels within a given layer of the occlusion are inpainted in

(x-1,y,t)

(x,y-1,t)

(x,y,t-1)

Neighbours tested at even

propagation iterations

(x,y+1,t)

(x+1,y,t)

(x,y,t+1)

Neighbours tested at odd

propagation iterations

t

y

x

Figure 3: A visual illustration of the neighbour whose shift
maps are tested during the propagation step of the spatio-temporal
PatchMatch. PatchMatch changes the neighbours used for testing
between odd and even iterations.

parallel, not sequentially.

Finally, in [16] the number of iterations in a pyramid level is
fixed. In the interest of robustness, we use the average pixel
colour difference in each channel between iterations as a stopping
criterion. If this falls below a certain threshold, we stop the iteration
at the current level. We set this threshold to 0.1.

2.4 Spatio-temporal subsampling
The last part of the algorithm concerns the implementation of
the multi-resolution spatio-temporal pyramid. As noted in [14],
temporal subsampling may produce undesirable effects. We do
not temporally subsample either, apart from cases where objects
are occluded for a long time, which was done on only one video
(“Jumping girl”) in this paper. Before downsampling, we filter the
video by averaging 2x2 image blocks.

The use of a spatio-temporal pyramid implies two further details:
the upsampling of the current solution and whether or not to pass
an upsampled version of the current ANNs as an initialisation to
the PatchMatch at the finer level. We keep the same solution
upsampling procedure as in [16], which is able to preserve fine
details. However, we do not initialise PatchMatch at a finer level
using the coarse level ANNs. This avoids biasing the finer ANNs
towards certain spatio-temporal positions. Since certain details
may not be visible at coarser levels, we prefer to let PatchMatch
find the best ANNs at each level independently.

3. RESULTS
Since the main goal of our work is to achieve generic video
inpainting with good results in reduced time, we evaluate our
algorithm in terms of both execution time and visual quality. In
this section, we shall compare our work to that of Wexler et al.
[16] and the most recent video inpainting method of Granados et
al. [14].

In all of our experiments, we have retained the parameters as they

Original frame : “Duo” Original frame : “Museum”

Inpainting result from [14]

Our inpainting result

Figure 4: We achieve similar results to those of [14] in an order of magnitude less time, without user intervention. The occlusion masks are
highlighted in green. Result videos are viewable at http://www.enst.fr/~gousseau/videoinpainting_cvmp

Algorithm
Approximate nearest neighbour execution times, for all occluded pixels at full resolution.
Beach Umbrella Crossing Ladies Jumping Girl Duo Museum

264x68x200 170x80x87 300x100x239 960x704x154 1120x754x200
Wexler 985 s 942 s 7877 s - -
Ours 50 s 28 s 155 s 2515 s 3958 s

Algorithm Total execution time
Granados 11 hours - - - 90 hours

Ours 21 mins 6 mins 62 mins 7.1 hours 8.64 hours

Table 2: Partial and total inpainting execution times on different examples. The partial inpainting times represent the time taken for the ANN
search for all occluded patches at the full resolution. Note that for the “museum” example, Granados’s algorithm is parallelised over the
different occluded objects and the background, whereas ours is not.

are presented in the main body of the paper. In particular, we keep
the patch size of 5x5x5 as used in [16]. We use ten iterations
of propagation/random search during the PatchMatch algorithm
and set the window size reduction factor β to 0.5. During the
construction of the spatio-temporal pyramid, we do not subsample
temporally in any of the videos, apart from “Jumping girl”.

In [16], neither the initialisation of the occluded area nor the
number of iterations per pyramid level are precisely defined. Since
total execution time greatly depends on these details, we shall only
compare our algorithm to Wexler’s in terms of ANN search time.
This represents the majority of total time (in [16], it takes up 95
percent of execution time), thus it makes sense to compare these
timings. While our reconstruction scheme also reduces execution
time, it will not represent as great a speed-up as the ANN search
time, so we do not compare reconstruction timings. We also
provide our total execution times, for reference.

Comparisons with Granados’s results are more difficult, as it is
semi-automatic. However, several execution times are provided in
[14] and we compare our timings to these.

We recall that Wexler uses the method of [17] to search for ANNs.
This method uses a parameter, ε , which determines the accuracy
of the ANNs. As this parameter is not given in [16], we set it
to produce the same average error per component as the spatio-
temporal PatchMatch. This is the same evaluation method used by
Barnes et al. in [18]. Specifically, we set ε to 10. In Table 2, the
ANN search time comparisons may be seen. We obtain a speedup
of 20-50 times over the method of [17].

In comparison to the work of [14] our method took 8h38m on the
longest example (“Museum”), while Granados et al. report a total
execution time of 90 hours, with a similar computer architecture
to ours. We used a 64-bit machine with a 2.67 GHz Intel Xeon
processor. For fairness, only one core of the processor was used
(as in [14]). However, in Granados’s work each occluded object
and the background are inpainted separately, in parallel, whereas
we treat all objects simultaneously. In the “Museum” example
Granados reports [21] seven objects plus the background, meaning
that the real workload is roughly several times greater.

We now compare the time complexity of our algorithm with that of
[21]. The patch match algorithm runs in O(6Qnodp+Qnolog2(N))
time, where (as above) no is the number of occluded pixels, dp is
the dimension of the patches, N is the maximum random search
space size, and Q is the number of iterations of propagation/random
search. The reconstruction runs in O(nodp) time. In comparison,
Granados et al. report a time complexity of O(n3

oN). This explains

the quite long execution times reported in [14] and in particular the
need to restrict the search space manually.

It is interesting to note that the search space restriction used in [14]
may not only reduce execution times, but might in fact improve
inpainting results. Liu et al. [13], who used graph cuts for the
purpose of image inpainting, have reported that inpainting results
are often degraded when the entire image is used as a search space.
In the case of image inpainting, restricting the search space is
not a significant problem, since in the vast majority of cases the
necessary information is situated around the occlusion. On the
other hand, this is not the case for video inpainting. For example, if
an object displays periodic motion with a particularly large period,
then the video information may be situated at a correspondingly
large spatio-temporal distance. In the proposed algorithm, we do
not restrict the search space and we are able to produce coherent
results. Finally, in the case of graph cut based inpainting schemes
such as [10, 13, 14], it is not possible to use patches of arbitrary
size, due to execution time issues. This is an extremely limiting
factor, and is a strong argument in favour of inpainting schemes
such as that which has been presented in this work.

Figure 1 and Figure 4 present visual comparisons of our results with
those of [16] and the high resolution results of [14]. We observe
that our results are qualitatively very similar. These results were
obtained in highly reduced execution times, and in a generic man-
ner, without manual user intervention, validating the initial goal of
our work. The comparison videos may be viewed at the following
address : http://www.enst.fr/~gousseau/videoinpainting_cvmp.

4. FURTHER WORK
There are several points in the proposed algorithm which could
be improved upon. In particular, the use of a spatio-temporal
pyramid means that certain comparisons may be ambiguous at
coarse resolutions. Liu et al. [13] introduce new components
in the patch comparison to avoid this problem, and this could
possibly be extended to the video context. Furthermore, we have
not exploited the parallel aspect of both the random search step
and the reconstruction. A parallel implementation of these steps
could further decrease the execution times, making results available
more quickly and increasing experimental possibilities. Finally,
recent work [12] on nearest neighbour searches claims to accelerate
PatchMatch by a factor of 10-20 in the 2D case, by using a kd-
tree and dimensionality reduction. Extending these ideas to spatio-
temporal patches presents new challenges, such as choosing a
basis which is effective in terms of dimensionality reduction and
computational cost.

5. CONCLUSION
We have shown that automatic video inpainting with global optimi-
sation of a patch-based functional in reasonable execution times is
possible, even for high resolution videos. By extending the Patch-
Match algorithm to the case of spatio-temporal patches, we are able
to provide a fast, useable video inpainting algorithm. Furthermore,
we have proposed a fast, simple solution to the problem of over-
smoothing of video inpainting results which is particularly prob-
lematic in the case of video textures. We have compared our results
with those of [16] and [14] and found that our algorithm produces
very similar results in an order of magnitude less time.

6. ACKNOWLEDGEMENTS
The authors would like to express their thanks to Miguel Granados
for his kind help and for answering their questions concerning his
work.

7. REFERENCES
[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester,

“Image inpainting,” SIGGRAPH, pp. 417–424, 2000.
[2] S. Masnou and J.-M. Morel, “Level lines based

dissoclusion,” ICIP, vol. 3, pp. 259–263, 1998.
[3] S. Masnou and J.-M. Morel, “Disocclusion: a variational

approach using level lines,” IEEE Trans. Image Processing,
vol. 11, no. 2, 2002.

[4] A. Criminisi, P. Perez, and K. Toyama, “Object removal by
exemplar-based inpainting,” CVPR, pp. 721–728, 2003.

[5] J. Jia, Y-W. Tai, T-P. Wu, and C-K. Tang, “Video repairing
under variable illumination using cyclic motions,” PAMI, vol.
28, no. 5, pp. 832–839, 2006.

[6] M. V. Venkatesh, S-C. S. Cheung, and J. Zhao, “Efficient
object based video inpainting,” ICIP, vol. 30, pp. 168–179,
2006.

[7] C-H. Ling, C-W. Lin, C-W. Su, Y-S. Chen, and H-Y. Liao,
“Virtual contour guided video object inpainting using
posture mapping and retrieval,” IEEE Trans. Multimedia,
vol. 13, no. 2, pp. 292–302, 2011.

[8] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video
completion,” CVPR, vol. 1, pp. 120–127, 2004.

[9] K. A. Patwardhan, G. Sapiro, and M. Bertalmio, “Video
inpainting of occluding and occluded objects,” ICIP, vol. 2,
pp. 69–72, 2005.

[10] Y. Pritch, E. Kav-Venaki, and S. Peleg, “Shift-map editing,”
ICCV, pp. 151–158, 2009.

[11] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts,” IEEE Trans. PAMI, vol.
23, no. 11, pp. 1222–1239, 1999.

[12] K. He and J. Sun, “Computing nearest-neighbor fields via
propagation-assisted kd-trees,” CVPR, pp. 111–118, 2012.

[13] Y. Liu and V. Caselles, “Exemplar-based image inpainting
using multiscale graph cuts,” IEEE Trans Image Process.,
vol. 22, pp. 1699–1711, 2013.

[14] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and
C. Theobalt, “How not to be seen – object removal from
videos of crowded scenes,” Eurographics, vol. 31, pp.
219–228, 2012.

[15] G. Facciolo, R. Sadek, A. Bugeau, and V. Caselles,
“Temporally consistent gradient domain video editing,”
EMMCVPR, vol. 6819, pp. 59–73, 2011.

[16] Y. Wexler, E. Schechtman, and M. Irani, “Space-time

completion of video,” IEEE Trans. PAMI, vol. 29, no. 3, pp.
463–476, 2007.

[17] S. Arya and D. Mount, “Approximate nearest neighbor
queries in fixed dimensions,” SODA, pp. 271–280, 1993.

[18] C. Barnes, E. Schechtman, A. Finkelstein, and D. B.
Goldman, “Patchmatch: A randomized correspondence
algorithm for structural image editing,” SIGGRAPH, vol. 28,
no. 3, 2009.

[19] “http://www.photoshopessentials.com/photo-editing/content-
aware-fill-cs5/,” July
2013.

[20] S. Darabi, E. Schechtman, and C. Barnes, “Image melding :
Combining inconsistent images using patch-based
synthesis,” SIGGRAPH, vol. 31, 2012.

[21] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Katuz, and
C. Theobalt, “How not to be seen – inpainting dynamic
objects in crowded scenes,” Tech. Rep., Max-Planck Institute
für Informatik,
http://domino.mpi-inf.mpg.de/internet/reports.nsf/, February
2011.

