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ABSTRACT

Change detection is one of the main problems in remote sensing, and is essential to the accurate
processing and understanding of the large scale Earth observation data available. Most of the re-
cently proposed change detection methods bring deep learning to this context, but change detection
labelled datasets which are openly available are still very scarce, which limits the methods that can
be proposed and tested. In this paper we present the first large scale high resolution semantic change
detection (HRSCD) dataset, which enables the usage of deep supervised learning methods for seman-
tic change detection with very high resolution images. The dataset contains coregistered RGB image
pairs, pixel-wise change information and land cover information. We then propose several supervised
learning methods using fully convolutional neural networks to perform semantic change detection.
Most notably, we present a network architecture that performs change detection and land cover map-
ping simultaneously, while using the predicted land cover information to help to predict changes. We
also describe a sequential training scheme that allows this network to be trained without setting a hy-
perparameter that balances different loss functions and achieves the best overall results.

c� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

One of the main purposes of remote sensing is the observa-
tion of the evolution of the land. Satellite and aerial imaging
enables us to keep track of the changes that occur around the
globe, both in densely populated areas as well as in remote areas
that are hard to reach. That is why change detection is a prob-
lem so closely studied in the context of remote sensing (Cop-
pin et al., 2004). Change detection is the name given to the
task of identifying areas of the Earth’s surface that have expe-
rienced changes by jointly analysing two or more coregistered
images (Bruzzone and Bovolo, 2013). Changes can be of sev-
eral different types depending on the desired application. Ex-
amples of changes that are of interest in remote sensing images
are those caused by natural disasters (e.g. fires, floods), urban
expansion, and deforestation. In this paper we treat change de-
tection as a dense classification problem, aiming to predict a
label for each pixel in an input image pair, i.e. semantic seg-
mentation.
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The search for ever more accurate change detection comes
from the value of surveying large amounts of land and analysing
its evolution over a period of time. Detecting changes manually
is a slow and laborious process (Singh, 1989). This is why the
problem of automatic change detection using image pairs or se-
quences is a problem that has been studied for many decades.
The history of change detection algorithms and overviews of
the most important methods are described in the reviews writ-
ten by Singh (1989) and Hussain et al. (2013). Throughout
the years, change detection benefited a lot from computer vi-
sion and image processing advances. In recent years, computer
vision made tremendous progress thanks to machine learning
techniques, and these were used for solving a wide range of
problems related to image understanding (LeCun et al., 2015).

The rise of these techniques is explained by three main fac-
tors. First, the hardware required for doing the large amounts of
calculations that are often required for machine learning tech-
niques is becoming cheaper and more powerful. Second, new
methods are being proposed to exploit the data in innovative
ways. Finally, the amount of available data is increasing, which
is essential for many machine learning techniques.

In this paper we propose a versatile supervised learning
method to perform pixel-level change detection from image
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pairs based on state-of-the-art computer vision ideas. The ideas
presented here are extensions of the ones first published in
Daudt et al. (2018a), where fully convolutional networks were
used in the context of change detection for the first time. This
extension is able to perform both binary and semantic change
detection, and now addresses very high resolution (VHR) im-
ages at 50 cm per pixel. Binary change detection simply
attempts to identify which pixels correspond to areas where
changes have occurred, whereas semantic change detection at-
tempts to further identify the type of change that has occurred at
each location. The proposed method is able to perform change
detection using high resolution images from sources such as
WorldView-3, Plèiades and IGN’s BD ORTHO. As was de-
scribed by Hussain et al. (2013) and Bruzzone and Bovolo
(2013), high resolution change detection involves several extra
challenges.

A new high resolution semantic change detection dataset of
unprecedented size is also presented in this paper. This dataset
will be released publicly to serve as a benchmark and as a re-
search tool for researchers working on change detection. The
methods used to create this dataset, as well as the limitations
of the available data, will be described later on. Until now, the
most advanced ideas brought to computer vision by deep learn-
ing techniques could not be applied to change detection due to
the lack of large annotated datasets. This dataset will enable the
application of more sophisticated machine learning techniques
that were heretofore too complex for the amount of change de-
tection data available.

2. Related work

The work presented in this paper is based on several different
ideas coming from two main research areas: change detection
and machine learning. This section contains a discussion about
the works hat have more heavily influenced this work, provid-
ing details about unsupervised methods, supervised learning,
and fully convolutional networks for semantic segmentation.

Change detection algorithms usually comprise two main
steps (Singh, 1989; Hussain et al., 2013). First, a difference
metric is proposed so that a quantitative measurement of the
difference between corresponding pixels can be calculated. The
image generated from this step is usually called a difference
image. Second, a thresholding method or decision function is
proposed to separate the pixels into ”change” and ”no change”
based on the difference image. These two steps are usually in-
dependent. Post-processing and pre-processing methods, such
as radiometric and atmospheric correction of the input images,
are sometimes used to improve results. Many algorithms use
out-of-the-box registration algorithms and focus on the other
main steps for change detection (Hussain et al., 2013). Most
papers on change detection propose either a novel image differ-
encing method (Bovolo and Bruzzone, 2005; El Amin et al.,
2016, 2017; Zhan et al., 2017) or a novel decision function
(Bruzzone and Prieto, 2000; Celik, 2009). A well established
family of change detection methods is change vector analy-
sis (CVA), consists of considering the multispectral difference
vector in polar or hyperspherical coordinates and attempting

to characterise the changes based on the associated vectors
at each pixel (Lambin and Strahlers, 1994; Bovolo and Bruz-
zone, 2007; Hussain et al., 2013). Most methods that pro-
pose image differencing techniques followed by thresholding
assume that a threshold is chosen based on the difference image,
i.e. the difference image goes trough an adaptive thresholding
method (Singh, 1989; Hussain et al., 2013). This means there
is an assumption that in every image pair given as input, there
is a fraction of the pixels that have changed. This assumption
does not scale to large datasets where images may contain no
change at all, or contain any number of changed pixels. Some
methods avoid this problem by setting a fixed threshold during
training and maintaining that threshold value regardless of the
properties of the test images. Hussain et al. (2013) and Rosin
and Ioannidis (2003) noted that the performance of such algo-
rithms is scene dependent.

Hussain et al. (2013) categorise change detection algorithms
into two main groups: pixel based and object based change de-
tection. The former are attempts to identify whether or not a
change has occurred at each pixel in the image pair, while the
latter methods attempt to first group pixels that belong to the
same object and use information such as the object’s colour,
shape and neighbourhood to help determine if that object has
been changed between the acquisitions. Change detection algo-
rithms can also be split in supervised and unsupervised groups.

As noted by Hussain et al. (2013) and Bruzzone and Bo-
volo (2013), change detection on low resolution images and on
VHR images face different challenges. In low resolution im-
ages, pixels frequently contain information about several ob-
jects contained within its area. In such cases, a pixel in an
image pair may contain both changed and unchanged surfaces
simultaneously. VHR images are more susceptible to prob-
lems such as parallax, high reflectance variability for objects
of the same class, and co-registration problems (Bruzzone and
Bovolo, 2013). It follows that algorithms that perform change
detection on high resolution images must be aware of not only
a given pixel’s values, but also of information about its neigh-
bourhood.

Machine learning algorithms have had great impact in the
problem of change detection. These techniques have been
widely used for image analysis for many years (Hussain et al.,
2013; LeCun et al., 2015), including for remote sensing prob-
lems (Mnih and Hinton, 2010). These techniques consist of
algorithms that learn patterns from the provided data and avoid
manually designing feature extractors. Most notably, convolu-
tional neural networks (CNNs) are a family of algorithms that
are especially suited for working with images (LeCun et al.,
1998). The usage of CNNs for comparing image pairs has al-
ready been studied before (Chopra et al., 2005; Zagoruyko and
Komodakis, 2015). The usage of such techniques usually re-
quires large amounts of training data. Larger amounts of train-
ing data allow more elaborate models to be trained, which often
leads to better results. He et al. (2016) proposed using residual
modules in CNNs so that convolutional layers attempt to learn
residual functions, which improve performance for deep net-
works. It is often challenging to train such networks due to the
vanishing gradient problem (Hochreiter et al., 2001).
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(a) Image 1. (b) LCM 1. (c) Image 2. (d) LCM 2. (e) Change map.

(f) Image 1. (g) LCM 1. (h) Image 2. (i) LCM 2. (j) Change map.

Fig. 1. Examples of image pairs, land cover maps (LCM) and associated pixel-wise change maps from the HRSCD dataset. In the depicted LCMs, blue
represents the ”artificial surfaces” class, and orange represents the ”agricultural areas” class.

Unsupervised methods have been used for change detec-
tion in many different ways (Hussain et al., 2013; Vakalopoulou
et al., 2015; Liu et al., 2019). In the context of change detec-
tion, annotated datasets are extremely scarce and often kept pri-
vate. Thus, unsupervised methods are extremely useful, since
they do not need labelled data for training, which is required
for many modern supervised methods. Many of these methods
automatically analyse the data in difference images and detect
patterns that correspond to changes (Bazi et al., 2005; Bruzzone
and Prieto, 2000). Other methods use unsupervised learning
approaches such as iterative training (Liu et al., 2016), autoen-
coders (Zhao et al., 2014), and principal component analysis
with k-means clustering (Celik, 2009) to separate changed pix-
els from unchanged ones.

Convolutional neural networks (CNNs) for change detec-
tion have been proposed by different authors in the recent years.
The majority of these methods avoid the problem of the lack of
data by using transfer learning techniques, i.e. using networks
that have been pre-trained for a different purpose on a large
dataset (El Amin et al., 2016, 2017). While transfer learning
is a valid solution, it is also limiting. Firstly, end-to-end train-
ing tends to achieve the best results for a given problem when
possible. Transfer learning also assumes all images have the
same nature. As most large scale datasets contain RGB images,
this means that extra bands contained in multispectral images
must be ignored. It has been shown that using all available
multispectral bands for change detection leads to better results
(Daudt et al., 2018b).

Several works have used CNNs to generate the difference im-
age that was described earlier, followed by traditional thresh-
olding methods on those images. El Amin et al. (2016, 2017)
proposed using the activation of pre-trained CNNs to gener-
ate descriptors for each pixel, and using the Euclidean distance
between these descriptors to build the difference image. Zhan
et al. (2017) trained a network to produce a 16-dimensional de-
scriptor for each pixel. Descriptors were similar for pixels with
no change and dissimilar for pixels that experienced change.
Liu et al. (2016) used deep belief networks to generate pixel

descriptors from heterogeneous image pairs, then the Euclidean
distance is used to build a difference image. Zhao et al. (2014)
proposed a deep belief network that takes into account the con-
text of a pixel to build its descriptor. Daudt et al. (2018b) was
the first work in which CNNs were trained end-to-end to per-
form change detection for earth observation. Mou et al. (2019)
proposed using patch based recurrent CNNs to detect changes
in image pairs. CNNs for change detection have also been stud-
ied outside the context of remote sensing, such as surface in-
spection (Stent et al., 2015).

Fully convolutional neural networks (FCNNs) are a type of
CNNs that are especially suited for dense prediction of labels
and semantic segmentation (Long et al., 2015). Unlike tradi-
tional CNNs, which output a single prediction for each input
image, FCNNs are able to predict labels for each pixel inde-
pendently and efficiently. Ronneberger et al. (2015) proposed
a simple and elegant addition to FCNNs that aims to improve
the accuracy of the final prediction results. The proposed idea
is to connect directly layers in earlier stages of the network to
layers at later stages to recover accurate spatial information of
region boundaries. FCNNs currently achieve state-of-the-art
results in semantic segmentation problems, including those in
remote sensing (Volpi and Tuia, 2017; Maggiori et al., 2017;
Chen et al., 2018a).

Fully convolutional networks trained from scratch to perform
change detection were proposed for the first time by Daudt
et al. (2018a). Both Siamese and early fusion architectures were
compared, expanding on the ideas proposed earlier by Chopra
et al. (2005) and Zagoruyko and Komodakis (2015). A similar
approach was simultaneously proposed by Chen et al. (2018b)
outside the context of remote sensing. To the best of our knowl-
edge, the only other time a fully convolutional Siamese network
has been proposed was by Bertinetto et al. (2016) with the pur-
pose of tracking objects in image sequences.

3. Dataset

Research on the problem of change detection is hindered by a
lack of open datasets. Such datasets are essential for a method-
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ical evaluation of different algorithms. Benedek and Szirányi
(2009) created a binary change dataset with 13 aerial image
pairs split into three regions called the Air Change dataset.
A dataset, called ONERA Satellite Change Detection (OSCD)
dataset, composed of 24 multispectral image pairs taken by the
Sentinel-2 satellites is presented in (Daudt et al., 2018b). Both
of these datasets allow for simple machine learning techniques
to be applied to the problem of change detection, but with
these small amounts of images overfitting becomes one of the
main concerns even with relatively simple models. The Aerial
Imagery Change Detection (AICD) dataset contains synthetic
aerial images with artificial changes generated with a render-
ing engine (Bourdis et al., 2011). These datasets do not contain
semantic information about the land cover of the images, and
contain either low resolution (OSCD, Air Change) or simulated
(AICD) images.

For this reason, we have created the first large scale dataset
for semantic change detection, which we present in this section.
The High Resolution Semantic Change Detection (HRSCD)
dataset will be released to the scientific community to be used
as a benchmark for semantic change detection algorithms and
to open the doors to the usage of state-of-the-art deep learn-
ing algorithms in this context. The dataset contains not only
information about where changes have taken place, but also se-
mantic information about the imaged terrain in all images of the
dataset. Examples of image pairs, land cover maps (LCM) and
change maps taken from the dataset are depicted in Fig. 1.

3.1. Images
The dataset contains a total of 291 RGB image pairs of

10000x10000 pixels. These are mosaics of aerial images taken
by the French National Institute of Geographical and Forest In-
formation (IGN). The image pairs contain an earlier image ac-
quired in 2005 or 2006, and a second image acquired in 2012.
They come from a database named BD ORTHO which contains
orthorectified aerial images of several regions of France from
different years at a resolution of 50 cm per pixel. The 291 se-
lected image pairs are all the images in this database that sat-
isfy the conditions for the labels, which will be described be-
low. The images cover a range of urban and countryside areas
around the French cities of Rennes and Caen.

The dataset contains more than 3000 times more annotated
pixel pairs than either OSCD or Air Change datasets. Also,
unlike these datasets, the labels contain information about the
types of change that have occurred. Finally, labels about the
land cover of the images in the dataset are also available. This
is much more data than was previously available in the context
of change detection and it opens the doors for many new ideas
to be tested. The amount of labelled pixels and surface area
for land cover classification is also about 8 times larger in the
proposed HRSCD dataset than in the DeepGlobe Land Cover
Classification dataset (Demir et al., 2018), both of the datasets
containing RGB images of the same spatial resolution (50 cm
per pixel).

3.2. Labels
The labels in the dataset come from the European Environ-

ment Agency’s (EEA) Copernicus Land Monitoring Service -

Table 1. Urban Atlas land cover mapping classes at hierarchical level L1
Code Class
0 No information
1 Artificial surfaces
2 Agricultural areas
3 Forests
4 Wetlands
5 Water

Urban Atlas project. It provides ”reliable, inter-comparable,
high-resolution land use maps” for functional urban areas in
Europe with more than 50000 inhabitants. These maps were
generated for the years of 2006 and 2012, and a third map
is available containing the changes that took place in that pe-
riod. Only the images in the regions mapped in the Urban Atlas
project and with a maximum temporal distance of one year were
kept in the dataset.

The available land cover maps are divided in several seman-
tic classes, which are in turn organised in different hierarchical
levels. By grouping the labels at different hierarchical levels
it is possible to generate maps that are more coarsely or finely
divided. For example, grouping the labels with the coarsest hi-
erarchical level yields five classes (plus the ”no information”
class) shown in Table 1. This hierarchical level will henceforth
be referred to as L1.

These maps are openly available in vector form online. We
have used these vector maps and the georeferenced BD ORTHO
images to generate rasters of the vector maps that are aligned
with the rasters of the images. These rasters allow us to have
ground truth information about each pixel in the dataset.

It is important to note that there are slight differences in the
semantic classes present in Urban Atlas 2006 and in Urban At-
las 2012. These differences do not affect the L1 hierarchical
grouping and therefore had no consequence in the work pre-
sented later in this paper. It may nevertheless affect future
works done with the data. We leave it up to the users how to
best interpret and deal with these differences. More information
will be provided in the dataset files.

3.3. Distribution rights

The BD ORTHO images provided by IGN are available for
free for research purposes, but not all images can be redis-
tributed by the users. That is the case for the images taken
in 2005 and 2006. Nevertheless, we will make available all
the data for which we have the rights of redistribution and the
rasters that we have generated for semantic change detection
and land cover mapping. The dataset will also contain instruc-
tions for downloading the remaining images that are necessary
for using the dataset directly from IGN’s website.

3.4. Dataset analysis

Despite its unprecedented size and qualities, we acknowl-
edge in this section the dataset’s limitations and challenges.
Nevertheless, we will show later in this paper that despite these
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(a) Image 1. (b) Image 2. (c) Inaccurate border.

(d) Image 1. (e) Image 2. (f) False negative.

(g) Image 1. (h) Image 2. (i) False positive.

Fig. 2. Examples of: ((a)-(c)) overly large change markings, ((d)-(f)) failure
to mark changes, ((g)-(i)) false positive.

limitations, the dataset allows for the boundaries of the state-of-
the-art in semantic change detection through machine learning
to be pushed.

One issue is the accuracy of the labels contained in the Ur-
ban Atlas vector maps with respect to the BD ORTHO images.
We do not have access to the images used to build the Urban
Atlas vector maps, nor to the exact dates of their acquisitions,
nor to the dates of acquisition of the images in BD ORTHO.
Hence, there are some discrepancies between the information
in the vector maps and in the images. Furthermore, EEA only
guarantees a minimum label accuracy of 80-85% depending on
the considered class. Most of the available data is accurate, but
it is important to consider that the labels in the dataset are not
flawless. Examples of false negatives and false positives can be
see in Fig. 2 (d)-(f) and Fig. 2 (g)-(i), respectively.

It is also worth noting that the labels have been created using
previously known vector maps, mostly by labelling correctly
each of the known regions. This means a single label was given
to each region, and this led to inaccurate borders in some cases.
This can be clearly seen in Fig. 2 (a)-(c).

One of the main challenges involved in using this dataset for
supervised learning is the extreme label imbalance. As can be
seen in Table 2, 99.232% of all pixels are labelled as no change,
and the largest class is from agricultural areas to artificial sur-
faces (i.e. class 2 to class 1), which accounts for 0.653% of
all pixels. These two classes together account for 99.885% of
all pixels, which means all other change types combined ac-
count for only 0.115% of all pixels. Furthermore, many of the
possible types of change have no examples at all in any of the
images of the dataset. It is of paramount importance when us-
ing this dataset to take into account this imbalance. This also

Table 2. Change class imbalance at hierarchical level L1. Row number
represents class in 2006, column number represents class in 2012. Classes
were defined in Table 1.

1 2 3 4 5
1 0% 0.011% 0% 0.001% 0.001%
2 0.653% 0% 0.001% 0% 0.077%
3 0.014% 0.002% 0% 0% 0%
4 0% 0% 0% 0% 0%
5 0.001% 0.004% 0% 0.004% 0%

No change 99.232%

means that using the overall accuracy as a performance met-
ric with this dataset is not a good choice, as it virtually only
reflects how many pixels of the no change class have been clas-
sified correctly. Other metrics, such as Cohen’s kappa coef-
ficient or the Sørensen-Dice coefficient, must be used instead.
This class imbalance is characteristic of real world large scale
data, where changes are much less frequent than unchanged sur-
faces. Therefore, this dataset provides a realistic evaluation tool
for change detection methods, unlike carefully selected image
pairs with large changed regions.

Despite these challenges, we will show in Section 5 that it is
possible to use this dataset for supervised training for change
detection, although the quality of the labels has consequences
in the quality of the results. Nevertheless, the problem of super-
vised learning using noisy labels has already been studied and
evidence suggests that supervised learning with noisy labels is
possible as long as a dataset of a large enough size is used (Rol-
nick et al., 2017). Other works attempt to explicitly deal with
the noisy labels present in the dataset and prioritise the correct
labels during training (Maggiolo et al., 2018).

Finally, we acknowledge how challenging it is to use hier-
archical levels finer than L1. First, this would result in a mas-
sive increase in the number of possible changes. Second, the
difference between similar classes becomes more abstract and
context based. For example, the difference between the ”Dis-
continuous Medium Density Urban Fabric” and the ”Discon-
tinuous Low Density Urban Fabric” classes defined in Urban
Atlas depends not only in correctly identifying the surface at a
given pixel (e.g. building or grass), but also by understanding
the surroundings of the pixel and calculating the ratio between
these two classes at a given neighbourhood that is not clearly
defined.

4. Methodology

4.1. Binary change detection

We have already showed in a previous work the efficacy of
using three different architectures of fully convolutional neural
networks for change detection (Daudt et al., 2018a). Chen et al.
(2018b) simultaneously proposed a fully convolutional archi-
tecture for change detection that is very similar to one of the
three initially proposed architectures. In both of these works,
FCNN architectures performed better than previous methods
for change detection.
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Fig. 3. FC-EF-Res architecture, used for tests with smaller datasets to avoid
overfitting. Using residual blocks improves network performance and fa-
cilitates training.

Building on this previous work, we have modified the FC-
EF architecture proposed in Daudt et al. (2018a) to use resid-
ual blocks (He et al., 2016). The resulting network is later re-
ferred to as FC-EF-Res, and is depicted in Fig. 3. These resid-
ual blocks were used in an encoder-decoder architecture with
skip connections to improve the spatial accuracy of the results
(Ronneberger et al., 2015). These residual blocks were cho-
sen to facilitate the training of the network, which is especially
important for its deeper variations that will be discussed later.

When testing on the OSCD dataset (Section 5.1), the size of
the network has been kept approximately the same as in Daudt
et al. (2018a) to avoid overfitting. When using the proposed
HRSCD dataset (Section 5.2), the larger amount of annotated
pixels allows us to use deeper and more complex models. In
that case, the number of encoding levels and residual blocks
per level has been increased, but the idea behind the network is
the same as of FC-EF-Res.

4.2. Semantic change detection

As was mentioned earlier, the efficiency of the proposed ar-
chitecture for binary change detection and the availability of
the HRSCD dataset enable us to tackle the problem of semantic
change detection. This problem consists of two separate but not
independent parts. The first task is analogue to binary change
detection, i.e. we attempt to determine whether a change has
occurred at each pixel in a co-registered multi-temporal im-
age pair. The second task is to differentiate between types of
changes. In our case, this consists of predicting the class of
the pixel in each of the two given images. The problem of se-
mantic change detection lies in the intersection between change
detection and land cover mapping.

Below we will describe four different intuitive strategies to
perform semantic change detection using deep neural networks.
Starting from the plain comparison of land cover maps, we then
develop more involved strategies. These strategies vary in com-
plexity and performance, as will be discussed in Section 5.

4.2.1. Strategy 1: Direct comparison of LCMs
The problem of automatic land cover mapping is a well stud-

ied problem. In particular, methods involving CNNs have re-
cently been proposed, yielding good performances (Audebert
et al., 2016). When the land cover information is available, as
it is the case in the HRSCD dataset, the most intuitive method
that can be proposed for semantic change detection would be to
train a land cover mapping network and to compare the results
for pixels in the image pair (see Fig. 4(a)).

The advantage of this method is its simplicity. In many cases
we could assume changes occurred where the predicted class
label differs between the two images, and the type of change is
given by the predicted labels at each of the two acquisition mo-
ments. The weakness of this method is that it heavily depends
on the accuracy of the predicted land cover maps. While mod-
ern FCNNs are able to map areas to a good degree of accuracy,
there are still many wrongly predicted labels, especially around
the boundaries between regions of different classes. Further-
more, when comparing the results for two acquisitions the pre-
diction errors would accumulate. This means the accuracy of
this change detection algorithm would be lower than the land
cover mapping network, and would likely predict changes in
the borders between classes simply due to the inaccuracy of the
network.

4.2.2. Strategy 2: Direct semantic CD
A second intuitive approach is to treat each possible type of

change as a different and independent label, and treating seman-
tic change detection as a simple semantic segmentation along
the lines of what has been done to binary change detection in
the past (Daudt et al., 2018a).

The weakness of this method is that the number of change
classes grows proportionately to the square of the number of
land cover classes that is considered. This, combined with the
class imbalance problem that was discussed earlier, proves to
be a major challenge when training the network.

4.2.3. Strategy 3: Separate LCM and CD
Since it has been proven before that FCNNs are able to per-

form both binary change detection and land cover mapping, a
third possible approach is to train two separate networks that to-
gether perform semantic change detection (see Fig. 4(c)). The
first network performs binary change detection on the image
pair, while the second network performs land cover mapping of
each of the input images. The two networks are trained sepa-
rately since they are independent.

In this strategy, the two input images produce three outputs:
two land cover maps and a change map. At each pixel, the
presence of change is predicted by the change map, and the type
of change is defined by the classes predicted by the land cover
maps at that location. This way the number of predicted classes
is reduced relative to the previous strategy (i.e. the number of
classes is no longer proportional to the square of land cover
classes) without loss of flexibility. This helps with the class
imbalance problem. It also avoids the problem of predicting
changes at every pixel where the land cover maps differ, since
the change detection problem is treated separately from land
cover mapping.
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(d) Strategy 4: integrated CD and LCM.

Fig. 4. Schematics for all four proposed strategies for semantic change detection. Φ represents the network branch’s learnable parameters, ”Enc” means
encoder, ”Dec” means decoder, ”LCM” means land cover mapping, and ”CD” means change detection.

Table 3. Summary of proposed change detection strategies.
Str. Description Training
1 Diff. of LCMs LCM supervision
2 Direct semantic CD Multiclass CD supervision
3 Separate CD and LCM Separate LCM and CD

4.1 Integrated CD and LCM Triple loss function
4.2 Integrated CD and LCM Sequential training

We argue that such network may be able to identify changes
of types it has not seen during training, as long as it has seen the
land cover classes during training. For example, the network
could in theory correctly classify a change from agricultural
area to wetland even if such changes are not in the training set,
as long as it has enough examples of those classes to correctly
classify them in the land cover mapping branches. The combi-
nation of two separate networks allows us to split the problem
into two, and optimise each part to maximise performance.

4.2.4. Strategy 4: Integrated LCM and CD
The last of the proposed approaches is an evolution of the

previous strategy of using two FCNNs for the tasks of binary
change detection and land cover mapping. We propose to in-
tegrate the two FCNNs into a single multitask network (see
Fig. 4(d) and Fig. 5) so that land cover information can be used
for change detection. The combined network takes as input the
two co-registered images and outputs three maps: the binary
change map and the two land cover maps.

In the proposed architecture, information from the land cover
mapping branches of the network is passed to the change de-
tection branch of the network in the form of difference skip
connections, which was shown to be the most effective form

of skip connections for Siamese FCNNs (Daudt et al., 2018a).
The weights of the two land cover mapping branches are shared
since they perform an identical task, allowing us to significantly
reduce the number of learned parameters.

This multipurpose network gives rise to a new issue during
the training phase. Given that the network outputs three differ-
ent image predictions, it is necessary to balance the loss func-
tions from these results. Since two of the outputs have exactly
the same nature (the land cover maps), it follows from the sym-
metry of these branches that they can be combined into a single
loss function by simple addition. The question remains on how
to balance the binary change detection loss function and the
land cover mapping loss function to maximise performance.

We have proposed and tested two different strategies for
training the network. The first and more naive approach to this
problem is to minimise a loss function that is a weighted combi-
nation of the two loss functions. This loss function would have
the form

Lλ(ΦEnc,CD,ΦDec,CD,ΦEnc,LCM,ΦDec,LCM)
=L(ΦEnc,CD,ΦDec,CD) + λL(ΦEnc,LCM,ΦDec,LCM)

(1)

where Φ represents the various network branch parameters, and
L is a pixel-wise loss function. In this work, the pixel-wise
cross entropy function was used as loss function as is tradi-
tional in semantic segmentation problems. The problem then
becomes the search for the value of λ that leads to the best bal-
ance between the two loss terms. This can be found through
a grid search, but the test of each value of λ is done by train-
ing the whole network until convergence, which is a slow and
costly procedure. This will later be referred to as Strategy 4.1.

To reduce the aforementioned training burden, we propose a
second approach to train the network that avoids the need of set-
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Fig. 5. Detailed schematics for the integrated change detection and land cover mapping network (Strategy 4). The encoder-decoder architecture is the
same that was used for all 4 strategies.

Table 4. Definitions of metrics used for evaluating results quantitatively.
Legend: TP - true positive, TN - true negative, FP - false positive, FN - false
negative, po - observed agreement between ground truth and predictions,
pe - expected agreement between ground truth and predictions given class
distributions.

Tot. acc. (T P + T N)/(T P + T N + FP + FN)
Precision T P/(T P + FP)

Recall T P/(T P + FN)
Dice 2 · T P/(2 · T P + FP + FN)

Kappa (po − pe)/(1 − pe)

ting the hyperparameter λ. We train the network in two stages.
First, we consider only the land cover mapping loss

L1(ΦEnc,CD,ΦDec,CD,ΦEnc,LCM,ΦDec,LCM)
=L(ΦEnc,LCM,ΦDec,LCM)

(2)

and train only the land cover mapping branches of the network,
i.e. we do not train ΦEnc,CD or ΦDec,CD at this stage. Since
the change detection branch has no influence on the land cover
mapping branches, we can train these branches to achieve the
maximum possible land cover mapping performance with the
given architecture and data. Next, we use a second loss function
based only on the change detection branch:

L2(ΦEnc,CD,ΦDec,CD,ΦEnc,LCM,ΦDec,LCM)
=L(ΦEnc,CD,ΦDec,CD)

(3)

while keeping the weights for the land cover mapping ΦEnc,LCM
and ΦEnc,LCM fixed. This way, the change detection branch
learns to use the predicted land cover information to help to
detect changes without affecting land cover mapping perfor-
mance. This will later be referred to as Strategy 4.2.

5. Results

5.1. Multispectral change detection
We first evaluate the performance of the proposed FC-EF-

Res network. As explained in Section 4.1, this network is an
evolution of the convolutional architecture FC-EF proposed in
Daudt et al. (2018a), to which residual blocks have been added
in place of traditional convolutional layers.

Table 5. Change detection results of several methods on the OSCD dataset,
for the RGB and multispectral (MS) cases. Results are in percent.

Data Network Prec. Recall Tot. acc. Dice

R
G

B

FC-EF 44.72 53.92 94.23 48.89
FC-Siam-conc 42.89 47.77 94.07 45.20
FC-Siam-diff 49.81 47.94 94.86 48.86
FC-EF-Res 52.27 68.24 95.34 59.20

M
S

FC-EF 64.42 50.97 96.05 56.91
FC-Siam-conc 42.39 65.15 93.68 51.36
FC-Siam-diff 57.84 57.99 95.68 57.92
FC-EF-Res 54.93 66.48 95.64 60.15

The FC-EF-Res architecture was compared to the previously
proposed FCNN architectures on the OSCD dataset for binary
change detection, which contains Sentinel-2 image pairs with
13 multispectral bands. As expected, the residual extension of
the FC-EF architecture outperformed all previously proposed
architectures. The difference was noted on both the RGB and
the multispectral cases. On the RGB case, the improvement was
of such magnitude that the change detection performance on
RGB images almost matched the performance on multispectral
images. The results can be seen in Table 5. This corroborates
the claims made by He et al. (2016) that using residual blocks
improves the training performance of CNNs. For this reason, all
networks that are tested with the HRSCD dataset use residual
modules.

5.2. High resolution semantic change detection
To test the methods proposed in Section 4.2 we split the

HRSCD images into two groups: 146 image pairs for training
and 145 image pairs for testing. By splitting the train and test
sets this way we can ensure that no pixel in the test set has been
seen during training. Class weights were set inversely propor-
tional to the number of training examples to counterbalance the
dataset’s class imbalance. The results for each of the proposed
strategies can be seen in Table 6, and illustrative image results
can be seen in Fig. 6.

As is the case for most deep neural networks, the training
times for the proposed methods are significantly larger than the
testing times. Once the network has been trained, its fast infer-
ence speed allows it to process large amounts of data efficiently.
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The proposed methods took 3-5 hours of training time using a
GeForce GTX 1080 Ti GPU with 11GB of memory. Inference
time of the proposed methods were under 0.04 s for 512x512
image pairs using the same hardware.

In Strategy 1, which naively attempts to predict change maps
from land cover maps, we can see that the network succeeds
in accurately classifying the imaged terrains, but this is not
enough to predict accurate change maps. The change detection
kappa coefficient for this strategy is very low, which means this
method is marginally better than chance for change detection.

The results for Strategy 2 are a fair improvement over those
of Strategy 1. The change detection Dice coefficient and the
land cover mapping results for this method are not reported due
to its nature, since Dice coefficients can only be calculated for
binary classification problems, and this strategy bypasses the
land cover mapping steps. Despite achieving a higher kappa
coefficient, the network learned to always predict the same type
of change where changes occurred. This means that despite us-
ing appropriately tuned class weights, the learning process did
not succeed in overcoming the extreme class imbalance present
in the dataset. In other words, the network learned to detect
changes but no semantic information was present in the results.

For Strategy 3, the land cover mapping network that was used
was the same as that of Strategy 1, which achieved good per-
formance. A binary change detection network was trained to
be used for masking the land cover maps. The performance of
this network was better than that of Strategy 1 but worse than
that of Strategy 2. The results show that this is due to an over-
estimation of the change class. This shows once again how
challenging dealing with the extreme class imbalance is.

The results of Strategy 4 are the best ones overall. The si-
multaneous training strategy (Str. 4.1) achieves excellent per-
formance in both land cover mapping and change detection,
proving the viability of this strategy. The reported results were
obtained with λ = 0.05, which is a value that prioritises the
training of the change detection branch of the network. We then
see that the same network trained with sequential training (Str.
4.2) obtained even better results in both change detection and
land cover mapping without needing to search for an adequate
parameter λ. This, according to our results, is the best semantic
change detection method. By comparing the results for Strate-
gies 3 and 4 we can see the improvements that result directly
from integrating the change detection and land cover mapping
branches of the networks. In other words, Strategy 4.2 allows
us to maximise the change detection performance without re-
ducing the land cover mapping accuracy.

The best performing land cover mapping method was the sin-
gle purpose network that was trained and used for Strategies 1
and 3. The fact that it achieves a better kappa coefficient than
Strategy 4.2 is merely due to the randomness of the initiali-
sation and training of the network, as the land cover mapping
branches of Strategy 4.2 are identical to those used in Strategies
1 and 3. This also explains why their results are so similar. By
comparing these results to those of Strategy 4.1 it emphasises
once again the fact that attempting to train the network shown
in Fig. 5 all at once damages performance in both change de-
tection and land cover mapping.

Table 6. Change detection (CD) and land cover mapping (LCM) results
of all four of the proposed strategies on the HRSCD dataset. Compari-
son with the methods proposed by El Amin et al. (2016) (Otsu [CNNF-O]
and fixed [CNNF-F] thresholding) and by Celik (2009) ([PCA+KM]) are
included. Results are in percent.

CD LCM
Kappa Dice Tot. acc. Kappa Tot. acc.

Str. 1 3.99 5.56 86.07 71.92 87.22
Str. 2 21.54 - 98.30 - -
Str. 3 12.48 13.79 94.72 71.92 87.22

Str. 4.1 19.13 20.23 96.87 67.25 85.74
Str. 4.2 25.49 26.33 98.19 71.81 89.01
CNNF-O 0.74 2.43 64.54 - -
CNNF-F 3.28 4.84 88.66 - -

PCA+KM 0.67 2.31 83.95 - -

In Fig. 6 we can see the results of the proposed networks on
a pair of images from the dataset. Note the amount of false de-
tections by Strategy 1 due to the lack of accuracy of prediction
of the land cover maps on region boundaries. The second row
shows the predicted classes at each pixel for each image. The
semantic information about the changes comes from compar-
ing these two predictions. For example, comparing the images
in Fig. 6 (k) and (o) we can say that the changes predicted in
(g) were from the ”Agricultural areas” class to the ”Artificial
surfaces” class.

In our tests we observed that the trained networks had the
tendency to overestimate the size of the detected changes. It
is likely that this happens simply due to the nature of the data
that was used for training. The labels in the HRSCD dataset,
which come from Urban Atlas, mark as a change the whole ter-
rain where a change of class happened. This means that not
only the pixels associated with a given change are marked as
change, but the neighbouring pixels that are in the same parcel
are also marked as change. This leads to the networks learn-
ing to overestimate the boundary of the detected changes in an
attempt to also correctly classify the pixels surrounding the de-
tected change. This once again reflects the challenges of the
HRSCD dataset.

The performance of two state-of-the-art CD methods are also
shown in Table 6. The first method, proposed by El Amin et al.
(2016), is based on transfer learning and uses features from a
pretrained VGG-19 model (Simonyan and Zisserman, 2015) to
create pixel descriptors, whose Euclidean distance is used to
build a difference image. The original method uses Otsu thresh-
olding to perform CD, but we have found that such approach
leads to overestimating changes. We therefore tuned a fixed
threshold (T = 2300) using a few example images and used
that value to test the algorithm on all test data, which signif-
icantly increased its performance by reducing false positives.
Also included are the results by the method proposed by Celik
(2009), which performs principal component analysis (PCA)
and k-means clustering on the pixels to detect changes in an
unsupervised manner. Both algorithms perform worse than the
proposed method on the HRSCD dataset.

To evaluate the size of the dataset, we have also tested Strat-
egy 4.2 using reduced amounts of data for training the net-
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(a) Image 1 (b) Image 2 (c) CD - GT (d) Str. 1 (e) Str. 2 (f) Str. 3 (g) Str. 4.1 (h) Str. 4.2

(i) LCM 1 - GT (j) Str. 1/3 (k) Str. 4.1 (l) Str. 4.2 (m) LCM 2 - GT (n) Str. 1/3 (o) Str. 4.1 (p) Str. 4.2

Fig. 6. Illustrative images of the obtained results: (a)-(b) multitemporal image pair; (c) ground truth change detection map; (d)-(h) predicted change
maps; (i)-(l) ground truth and predicted land cover maps for image 1; (m)-(p) ground truth and predicted land cover maps for image 2.

Table 7. Change detection results on Eppalock lake test images. Results
are in percent.

ReCNN-LSTM EF

B
in

ar
y

C
D Tot. acc. 98.67 99.35

Kappa 97.28 98.67
No change 98.83 99.47

Change 98.46 99.19

Se
m

an
tic

C
D

Tot. acc. 98.70 98.48
Kappa 97.52 97.10

No change 98.49 97.73
City exp. 84.72 100

Soil change 100 86.07
Water change 99.25 99.93

work. The kappa coefficient obtained by using the whole train-
ing dataset is 25.49. This value is reduced to 23.34 by using
half the training data, and is further reduced to 22.18 by using
a quarter of the data. This shows that, as expected, using more
data for training the network leads to better results. Nonethe-
less, it also shows that the dataset is large enough to allow for
even more complex and data hungry methods to be trained us-
ing the HRSCD dataset in the future.

Finally, it is important to note that the label imperfections
in the HRSCD dataset occur not only in the training images,
but also in the test images. This means that the performance
of the proposed methods may be even higher than the numbers
suggest, since some of the disagreements between prediction
and ground truth data are actually due to errors in the ground
truth data.

5.3. Eppalock lake images
We compare our method in this section to the one proposed

by Mou et al. (2019), which used recurrent convolutional neu-
ral networks for change detection. In that work, pixels were
randomly split into train and test sets. We believe that this split
leads to overfitting since neighbouring pixels contain redundant
information. This is especially true when using CNNs, which
take as inputs patches centred on the considered pixels, mean-
ing the network sees the same information for training and test-
ing. It is likely that overfitting takes place, since an accuracy

of over 98% is achieved by using only 1000 labelled pixels to
train a network with 67500 parameters (for their long short-
term memory (LSTM) architecture, which performed the best).
The data consists of a single image pair of 631x602 pixels only
partially annotated, with a total of 8895 annotated pixels which
is much less data than what is required for deep learning meth-
ods. The HRSCD dataset presented in Section 3 contains over 3
million times more labelled pixels than the Eppalock lake image
pair. Despite the flaws of this testing scheme, we have followed
it to achieve a fair comparison between the methods.

Using the CNN architecture labelled EF by Daudt et al.
(2018b), we have achieved excellent numeric results which dis-
couraged the usage of more complex methods which would
lead to even more extreme overfitting. The results achieved
by the EF network were better for binary change detection and
equivalent for semantic change detection compared to ReCNN-
LSTM. The results can be seen in Table 7.

6. Conclusion

The first major contribution presented in this paper is the first
large scale high resolution semantic change detection dataset
that will be released to the scientific community. This dataset
contains 291 pairs of aerial images, together with aligned
rasters for change maps and land cover maps. This dataset al-
lows for the first time for deep learning methods to be used in
this context in a fully supervised manner with minimal con-
cern for overfitting. We have then proposed different meth-
ods for using deep FCNNs for semantic change detection. The
best among the proposed methods is an integrated network that
performs land cover mapping and change detection simultane-
ously, using information from the land cover mapping branches
to help with change detection. We also proposed a sequential
training scheme for this network that avoids the need of tuning
a hyperparameter, which circumvents a costly grid search.

The automatic methods used to generate the HRSCD dataset
resulted in noisy labels for both training and testing, and how
to deal with this problem is still an open question. It would also
be interesting to explore ways to explicitly deal with parallax
problems which are present in high resolution images which
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sometimes lead to false positives due to the different points of
view and the geometry of the scene.
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