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ABSTRACT

In this paper, we introduce a novel Conditional Random
Field (CRF) system that detects the downbeat sequence
of musical audio signals. Feature functions are computed
from four deep learned representations based on harmony,
rhythm, melody and bass content to take advantage of the
high-level and multi-faceted aspect of this task. Downbeats
being dynamic, the powerful CRF classification system al-
lows us to combine our features with an adapted temporal
model in a fully data-driven fashion. Some meters being
under-represented in our training set, we show that data
augmentation enables a statistically significant improve-
ment of the results by taking into account class imbalance.
An evaluation of different configurations of our system
on nine datasets shows its efficiency and potential over a
heuristic based approach and four downbeat tracking algo-
rithms.

1. INTRODUCTION

Musical rhythm can often be organized in several hierar-
chical levels. These levels don’t always correspond to mu-
sical events and have a regular temporal interval that can
change over time to follow the musical tempo. One of
these levels is the tatum level and is at the time scale of
onsets. The next one is often the beat level and can be in-
tuitively understood as the hand clapping or foot tapping
level. Then in several music traditions there is the bar level
that groups beats of different accentuation together. The
first beat of the bar is called the downbeat. The aim of this
work is to automatically find the downbeat positions from
musical audio signals. The downbeat is useful to musi-
cians, composers and conductors to segment, navigate and
understand music more easily. Its automatic estimation is
also useful for various applications in music information
retrieval, computer music and computational musicology.
This task is receiving more attention recently. With
the increasing number of annotated music files and refined
learning strategies, methods using probabilistic models and
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machine learning algorithms tend to be the most success-
ful [4, 13, 18]. Once a downbeat detection function has
been extracted, most systems use a temporal model to take
advantage of the structured organization of downbeats and
output the downbeat sequence. It includes heuristics [3],
dynamic programming [25], hidden Markov models [23]
and particle filters [18] among others.

In this work, we propose for the first time a Conditional
Random Field (CRF) framework for the task of downbeat
tracking. First, four complementary features related to har-
mony, rthythm, melody and bass content are extracted and
the signal is segmented at the tatum level. Adapted convo-
lutional neural networks (CNN) to each feature character-
istics are then used for feature learning. Finally, a feature
representation concatenated from the last and/or penulti-
mate layer of those networks is used to define observation
feature functions and is fed into a Markovian form of CRF
that will output the downbeat sequence.

1.1 Related work

A CREF framework is used in [7] and [16] for the field of
beat tracking. However, the optimal weights of the ob-
servations and transitions feature functions are not directly
learned from the data.

The system presented in [14] uses an interesting idea
of limiting engineered hypotheses by segmenting the data
in onsets and learning the activation of downbeats with a
Support Vector Machine classifier. Contrary to our work,
it requires manual annotation of either the first part of the
tested song or of a very similar song and outputs an in-
termediary downbeat activation function as opposed to the
final downbeat positions.

In [6], the same segmentation, low-level feature extrac-
tion and complementary CNNs are used. However, the
proposed system includes three main differences:

e We are not only using an individual output per down-
beat candidate but a detailed high-level representa-
tion also coming from the penultimate layer of the
neural networks. Besides, we don’t optimize indi-
vidual features on isolated downbeat occurrences,
but features from all the deep networks simultane-
ously on a whole structured downbeat sequence.

e We are using another type of classifier, namely CRF,
known to be more effective than Hidden Markov
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Models especially in high dimensional settings due
to being a discriminative classifier.

e A fully data driven approach, after extracting low-
level features, is adopted. It takes advantage of data
augmentation procedures to allow for a proper train-
ing of the CRF classifiers, limiting the use of ad-hoc
heuristics and hand-crafted data transformations.

2. FEATURE LEARNING

The feature learning part of our system is the same as
in [6]. We first segment the audio signal in tatums as seen
in figure 1. We then simplify the downbeat detection task
to a classification problem where the goal is to find which
tatums are at a downbeat position. Human perception of
downbeats depending on several musical cues, we then
extract four low-level features related to melody, rhythm,
harmony and bass content. Each low-level feature input,
shown in figure 2, is fed to a convolutional neural net-
work adapted to its characteristics. The bass content neu-
ral network (BCNN) targets melodic and percussive bass
instruments. The melodic neural network (MCNN) targets
relative melodic patterns which are known to play a role
in human perception of meter regardless of their absolute
pitch [29] with max pooling. The harmonic neural network
(HCNN) learns how to detect harmonic change in the in-
put and is trained on all different harmony transposition by
data augmentation. Finally, the rhythmic neural network
(RCNN) aims at learning length specific rhythmic patterns
with multi-label learning, instead of sudden changes in the
rhythm feature that are not very indicative of a downbeat
position. For more details about the motivations behind the
design choices made for each network the interested reader
is referred to [6].

3. CRF SYSTEM FOR DOWNBEAT TRACKING

Two high-level feature representations coming from the
last and penultimate layer of each network are then used
as input to a Conditional Random Field (CRF) classifier.

3.1 CRF-based classification

CRF [19] are a powerful class of discriminative classi-
fiers for structured input—structured output data prediction,
which have proven successful in a variety of real-world
classification tasks [26, 27] and also in combination with
neural networks [24]. They model directly the posterior
probabilities of output sequences y = (y1, - ,¥yn) given
input observation sequences x = (xh -++,Xp,) according

to:
D

p(ylx; 0) = Z(; o) exp Y 0;Gj(x,y)
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where G;(x,y) are feature functions describing the ob-
servations, 9;are the model parameters (assembled as
60 = [0;]1<j<p), and Z(x) is a normalizing factor that
guarantees that p(y|x) is a well defined probability, which
sums to 1. B

Owing to the sequential nature of the downbeat classi-
fication problem, we use a Markovian form of CRF, where
the transition feature functions, denoted by ¢;, are defined
on two consecutive labels, in a linear-chain fashion, and
observation feature functions, denoted by v;, depend on
single labels, so that:
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More specifically, the transition feature functions we
use are such that t;(y;—1 = k,y; = ,x,1) = I(y; =
DI(y;—1 = k), where I(.) is the indicator function (equal
to 1 if its argument is true and otherwise equal to 0). As
for the observation feature functions they are chosen to be
of the form v;(y; = I,x,i) = e;I(y; = ) where e; are
obtained by the feature representation learned by the net-
works presented in section 2. Actually, two schemes are
envisaged here. In the first variant, the e; features are taken
to be directly the final outputs of the bass, melodic, har-
monic and rhythmic networks. Alternatively, we added the
output of the penultimate layer ! which can be viewed as
lower level features that were optimized, as part of the net-
work training processes, to discriminate downbeats from
tatums. The deep network penultimate layer output is a
powerful feature representation that can be used as an in-
put to a dedicated classifier to improve accuracy [9]. The
last layer of our networks being essentially a linear com-
bination of the penultimate layer features followed by a
normalization to map them to probabilities, the CRF clas-
sifier is a good fit for the final weighting of those features,
based on the more optimal output-sequence level maxi-
mum a posteriori criterion p(y|x; ), compared to the static
criterion optimized in the last layer of the networks. The
harmonic network penultimate layer dimension is of 1000
and each of the other networks penultimate layer dimen-
sion is of 800.

3.2 Defining the output-space

The set of output labels Yij represents the position ¢ of
a tatum in a j tatum-long bar, with ¢ € {1...j} and
j € {3,4,5,6,7,8,9,10,12,16}. We consider an addi-
tional label for bars containing more than 16 tatums for a
total of 81 labels. This way, the feature function weights
depend on the bar length, in tatums, and the position in-
side the bar. For instance, the sixth tatum of a 6 tatum-long
bar Y and the sixth tatum of a 8 tatum-long bar Y have
different musical properties. In the first case, we want the
transition feature functions to emphasize the next output
to be the first tatum of a 6 tatum-long bar Y. In the sec-
ond case, we want to emphasize the next output to be the
seventh tatum of a 8 tatum-long bar instead Y. The ob-
servation features, taking into account one or two bars of

! before the ReLU to keep information about negative units
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Figure 1. Model overview. The signal is quantized in tatums. Four low-level features related to harmony, rhythm, melody
and bass content are extracted. High-level feature representations are learned with four convolutional networks adapted to
each feature characteristics. The networks penultimate layer, along with the downbeat likelihood, are fed in a CRF to find

the downbeat sequence among the tatums.
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Figure 2. Low-level features with their temporal and spec-
tral dimension, used as input of the melodic neural network
(a), thythmic neural network (b), harmonic neural network
(c) and bass content neural network (d).

temporal context, will also be rather different and are better
treated separately. It is therefore important to distinguish
those two outputs for a consistent decoding.

3.3 Labeling the training data

The training data being only annotated in beat and down-
beat, defining its labels is not straightforward. First, bars of
2,11, 13, 14 and 15 tatums are not present in our model for
efficiency, robustness and because they are barely present
in most music datasets but they can’t be ignored to train
the model efficiently. They are then annotated to the most
common neighbor bar-length: 14 and 15 tatum-long bars
are annotated as 16 tatum-long bars. 11 and 13 tatum-long
bars are annotated as 12 tatum-long bars. The last state of
those metrical levels is either removed or repeated to do
so0. 2 tatum-long bars are annotated as 3 tatum-long bars if
the following bar is a 3 tatum-long bar for continuity or as
4 tatum-long bar otherwise as they are the most common
neighbor for a duple meter.

Second, the beginning and end of songs are sometimes
not properly estimated or annotated and considering or
ignoring all observations before the first or after the last

downbeat can lead to training problems. For the begin-
ning of songs, we removed the samples that where more
than one bar before the first annotated downbeat as they
were not reliable enough. We then annotated the bar pre-
ceding the first downbeat with the same classes than the
bar containing the first downbeat for continuity, and finally
removed samples in this first bar randomly. It allows the
initialization of the position inside the bar to be random-
ized. The procedure is applied in reverse for the end of
songs.

Although extensive tests were not performed, we obtain
a gain in performance by about 4 percent points (pp) by us-
ing this annotation process compared to a simple represen-
tation of all these non conventional cases by an additional
label.

3.4 Handling class-imbalance with data augmentation

Not all metrical level are well represented in the used
datasets. In fact, {3,4,6,8,12,16} tatum-long bars, i.e. bars
of 3 and 4 beats, represent more than 96% of the data and
will be the focus of the CRF model. In this subset, bars
of 3 beats will be represented by 3, 6, and roughly half of
12 tatum-long bars. This represents approximately 15% of
the data. Those metrical levels are then non negligible but
under-represented. Such data imbalance is known to create
difficulties while training classifiers like CRFs. We there-
fore balance our dataset with data augmentation. We use
time-stretching by a factor of 1.1 and 0.9 and pitch shift-
ing by £1 semitone on 3-beats-per-bar songs to do so. The
implementation is done thanks to the muda package pre-
sented in [20]. We will study in the experiments the added
value of the data augmentation.

4. EXPERIMENTAL SETUP
4.1 Evaluation methods

We use the F-measure and a statistical test to assess the
performance of our system:

F-measure: The F-measure is the harmonic mean of the
precision (ratio of detected downbeat that are relevant)
and the recall (the ratio of relevant downbeat detected). It
is an instantaneous measure of performance that is used
in the MIREX downbeat tracking evaluation?. We use a

http://www.music-ir.org/mirex/wiki/2016:
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tolerance window of £70ms. The configuration with the
best F-measure with be highlighted in bold. We do not
take into account the first 5 seconds and last 3 seconds
of audio in our evaluation metric since the annotation is
sometimes missing or not very reliable there.

Statistical tests: To assess statistical significance, we per-
form a Friedman’s test and a Tukey’s honestly significant
criterion (HSD) test with a 95% confidence interval. Sys-
tem(s) with a statistically significant improvement over the
rest on the whole dataset will be underlined.

4.2 Databases

We use nine different databases in this work, for a total of
1511 audio tracks of about 43 hours of audio music. Using
multiple datasets allows us to see the performance of our
system on different music styles and be robust to different
annotation strategies.

RWC Classical [10]: 60 western classical pieces, from 1
to 10 minutes. We removed the last track as the annotation
seemed inconsistent.

RWC Jazz [10]: 50 jazz tracks from 2 to 7 minutes.

RWC music genre [11]: 92 music tracks from various
music styles, from 1 to 10 minutes. We removed the tradi-
tional Japanese songs and the a Capella song as we don’t
have the corresponding audio.

RWC Pop [10]: 80 Japanese Pop music and 20 American
Pop music tracks from 3 to 6 minutes.

Beatles > : 179 songs from The Beatles.

Ballroom*: 698 30-second long excerpts from various
ballroom dance music.

Hainsworth [12]: 222 excerpts from 30 second to 1
minute from various music styles. It is to note that the cur-
rent downbeat annotation can significantly be improved.
Klapuri subset [15]: The downbeat annotations for this

dataset are lacking in some files. Full cleaning will be
done in future work but we use a subset of 4 relatively diffi-
cult genres for downbeat tracking : Jazz, Electronic music,
Classical and Blues with 10 randomly selected excerpts for
each genre.

Quaero” : 70 songs from various Pop, Rap and Electronic
music hits.

4.3 General train/test procedure

We use a leave-one-dataset-out approach, meaning that we
train and validate our system on all but one dataset and
test it on the remaining one. Compared to standard cross-
validation, this procedure was chosen to be more fair to
non machine learning methods that are blind to the test
set and to supervised algorithms using the same approach.
However, it is limiting the ability of the deep networks and

Audio_Downbeat_Estimation
3http://isophonics.net/datasets
“http://www.ballroomdancers.com
Shttp://www.quaero.org

Dataset 11 I1+da pl pl +da
RWC Jazz 65.3 66.0 65.5 66.1
RWC Class 443 443 43.8 459
Hainsworth 629 659 64.5 66.0
RWC Genre 66.2 68.1 69.1 69.3
Klapuri subset 67.1 71.2 674 715

Ballroom 78.0 77.3 79.0 80.9
Quaero 83.5 83.8 83.1 827
Beatles 84.0 84.1 84.4 852
RWC Pop 87.2 85.1 86.7 874
Mean 709 71.8 71.5 728

Table 1. F-measure results for different configurations of
the presented system. [l means the features come from
the network last layer and pl means that features from the
penultimate layer were also used. da means data augmen-
tation was used.

the CRF model to work on test data from styles not of-
ten seen in the training set. Two notable examples are the
RWC Classical and RWC Jazz music datasets.

4.4 CREF training

For CREF training we use the Pycrfsuite toolbox [21]. The
CRF parameters are learned as classically done in a maxi-
mum likelihood sense using both /5 and ¢; -regularisation,
thus in an elastic-net fashion, so as to promote sparse so-
lutions, and solved for using the L-BFGS algorithm. The
optimal values of the regularisation parameters were se-
lected by a 4-fold cross-validation on the training set. For
the last layer features, the grid for the optimal ¢ value
is [100,10,1.0,0.1,0.01,0.001,0.0001]. Since there are only
four features out of the networks, we don’t need feature se-
lection and the ¢; parameter was set to 0. When adding the
penultimate layer features, the grids for the optimal ¢; and
{5 values were [10,100] and [0.1,0.01,0.001] respectively.

5. RESULTS AND DISCUSSION
5.1 Impact of the data augmentation:

Configuration using data augmentation will be abbrevi-
ated by ”da”, and their F-measure results for each dataset
is shown in table 1. We can see an improvement on all
datasets, except on the RWC Pop and Quaero datasets. In-
deed, the number of songs containing 3 or 6 tatums per
bar is very limited there. Overall the F-measure improve-
ment is of +0.9 percent point using last layer features (ab-
breviated by ”11”) and of +1.3 pp using penultimate layer
features (abbreviated by “’pl”).

5.2 Impact of the penultimate layer:

F-measure results of configurations adding the penultimate
layer output as features is also shown in table 1. Using
the penultimate layer increases the results overall by 0.6
pp with the non augmented data and by 1.0 pp with the
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Dataset [23] [22] [3] [17] [6] pl +da
RWC Jazz 39.6 472 421 515 709 66.1
RWCClass 299 21.6 327 335 51.0 459
Hainsworth  42.3 475 442 517 65.0 66.0
RWC Genre 43.2 504 493 479 66.1 69.3
Klapuri 473 418 41.0 500 674 715
Ballroom 455 503 50.0 525 80.1 80.9
Quaero 572 69.1 693 713 812 82.7
Beatles 533 66.1 653 721 83.8 85.2
RWC Pop 69.8 71.0 758 721 87.6 874
Mean 476 517 522 558 726 728

Table 2. F-measure results for compared algorithms. [23],
[22] and [3] are unsupervised. [17] and [6] are supervised
algorithms also trained with a leave-one-dataset-out ap-
proach. [6] uses the same training sets and [17] uses sim-
ilar training sets, with the addition of the Boeck [1, 2],
Rock [28] and Robbie Williams [8] datasets and the sub-
traction of the Klapuri subset and the Quaero dataset.

augmented data. Its impact on the bigger datasets (Ball-
room, Beatles, RWC Pop, RWC Genre, Hainsworth), rep-
resenting 85% of the songs is more important than for the
smaller datasets. Besides, using both the data augmenta-
tion and the penultimate layer allows the CRF model to
have the best performance on all datasets but one, and to
have a statistically significant improvement over the other
configurations.

5.3 Comparison to other algorithms:

We compared our best system to the ones of Krebs et
al. [17], Peeters et al. [23], Davies et al. [3] and Papadopou-
los et al. [22]. We also compared to a system using the
same neural networks but with a different feature combi-
nation and temporal model [6]. In this system, the out-
put of the four networks is averaged and a Viterbi model
with hand-crafted transition and emission probabilities is
used to decode the downbeat sequence. Due to space con-
straints, we do not add [4] and [5] since they are close to [6]
in terms of architecture and produce worse results. Results
are shown in the table 2. With the new CRF system pro-
posed here, the improvement is substantially better in all
datasets compared to [17], [23], [3] and [22]. While the im-
provement averaged across datasets is moderate compared
to [6], we observe a statistically significant improvement .
Overall results are held back by the performance on RWC
Classical and RWC Jazz. The used training sets barely
contain these music styles while we are exploiting a fully
data-driven approach. The leave-one-dataset-out approach
might be too restrictive when dealing with very distinctive
music datasets. However, when more appropriate train-
ing data is available, the CRF model has a better potential,
as results on RWC Genre indicates. This dataset includes

61t is to note that the comparison between the data augmented system
and [6] is fair since the networks were trained on the same data, and the
feature combination and temporal model steps of the heuristic model is
blind to any data.
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Figure 3. Selected transition weights for the 6 and 8 tatum-
long bars. It corresponds to the output labels Y to V¥ and
Y to Y. (a) Weight of the transition feature function in
the presented CRF model. (b) Coefficients of the transition
matrix in [6]. As an illustration, inside the red rectangle
pointed by an arrow are all the coefficients corresponding
to a transition inside a 6 tatum-long bar. There is a weight
at the bottom left corner of this rectangle with a value close
to 1. It corresponds to the weight of the transition from Y$
to Y.

more than 30% of Jazz and Classical music songs and has
a significantly better performance with the new temporal
model (69.3% F-measure compared to 66.1% in [6]). In
this case the RWC Jazz and RWC Classical datasets were
part of the training set and the CRF system was able to
model these styles more accurately. In fact, the perfor-
mance on Classical and Jazz music pieces on RWC Genre
is improved by 6.8 pp, which is even better than the 3.1
pp overall. It highlights the potential of the data-driven
proposed system, where relevant annotated data has a big
impact on performance.

5.4 Analysis of the transition features:

The output space being similar with the one defined in [6],
we can compare the transition coefficients. Due to space
constraints, we limit our analysis to bars of 6 and 8§ tatum
of the pl + da CRF model. They correspond to the most
common bars in the used datasets. The transition coeffi-
cients can be seen in figure 3. The first observation is that
the general intuition of moving circularly inside a bar is in-
deed learned by the CRF model as seen with the stronger
weights of the transition feature function close to the diag-
onal of the figure. We also see that the proposed learned
CRF model transition coefficients are more detailed while
they seem more binary in [6]. The proposed system is less
restrictive in metrical changes as can be seen by the coef-
ficient of the output transitions Y2 — Y® and Y& — Y
in particular. It can be because the observation features are
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11.3 42.1 9.0 37.7
Table 3. Mean impact of each feature representation on
the pl + da CRF model.

reliable enough to avoid false metrical changes between 6
and 8 tatum-long bars. Finally, we see that some transitions
have strong negative weights in the CRF model. Y, — Y
and Y — Y2 have the top negative weights, both at -
3.9. In the first case, it corresponds to going back to the
downbeat after 4 tatums and in the second case to going
back to the downbeat after 16 tatums while being in a 8
tatum-long bar. Finding the difference between a 4, 8 and
16 tatum-long bar is indeed quite difficult perceptively and
for the networks. There can be one part of the song where
the chords or the rhythmic patterns change twice as fast or
twice as slow, which could misled the observation features.
The negative weights can therefore emphasize a metrical
continuity in the decoding.

5.5 Ability to find the correct metrical level:

To evaluate the ability of the system to find the correct met-
rical level, we use the continuity-based metric focusing on
the total proportion of correct regions at the correct met-
rical level (CMLt) with a tolerance window of +17.5% of
the inter-beat-interval 7. The proposed system obtains a
CMLt of 61.5% while [6] obtains a CMLt of 56.6%. The
CRF model is therefore more efficient to find the correct
metrical level compared to [6]. It can be explained by the
fact that every downbeat and non downbeat outputs have a
different observation features while all the non downbeat
states and all the downbeat states had the same observation
feature respectively in the compared system. Besides, as
seen above, the transition coefficients of the CRF model
are better to avoid octave errors on duple meters while the
compared system makes more errors there.

5.6 Analysis of the selected features:

We looked at the weight of the pl + da CRF model to see
if a feature representation had more impact than others to
detect the downbeat sequence. To do so we calculated the
sum of the absolute learned weight value belonging to each
feature representation:

> 1651 2

JEXCNN

with X € {H, R, M, B}. Results are shown in table 3 af-
ter a normalization inside and across datasets. It is to note
that they are consistent for each dataset and each label. We
can see that the rhythmic and bass content networks have
a larger impact on the CRF model. It can be surprising
knowing that the harmonic network is the best performing
network in [6]. However, the rhythmic and bass content
networks were trained to recognize the downbeat sequence

Ixcnn =

7We don’t consider +17.5% of the inter-downbeat-interval since it
would be too permissive.

on the whole input and not a single downbeat per input
only. It allows them to encode information about the met-
rical level that is useful for the CRF model.

6. CONCLUSIONS

We presented a Conditional Random Field system based
on multiple deep learned feature representations for the
task of downbeat tracking. Using the networks penultimate
layer feature representation with 3 beats per bar augmented
data, we outperformed 5 compared downbeat tracking al-
gorithms overall. While we need the training and test data
to come from similar music styles to make full use of our
powerful temporal model, it holds more potential com-
pared to heuristic based approaches and could be more eas-
ily adapted to different music styles.

Future work will focus on learning the deep networks
and the conditional random field models jointly and on re-
fining the initial temporal segmentation.
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