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ABSTRACT

This paper presents a feature learning approach for speaker

identification that is based on nonnegative matrix factorisa-

tion. Recent studies have shown that with such models, the

dictionary atoms can represent well the speaker identity. The

approaches proposed so far focused only on speaker variabil-

ity and not on session variability. However, this later point is

a crucial aspect in the success of the I-vector approach that is

now the state-of-the-art in speaker identification.

This paper proposes a method that relies on group nonneg-

ative matrix factorisation and that is inspired by the I-vector

training procedure. By doing so the proposed approach in-

tends to capture both the speaker variability and the session

variability. Results on a small corpus prove that the proposed

approach can be competitive with I-vectors.

Index Terms— Nonnegative matrix factorisation, spec-

trogram factorisation, feature learning, speaker variability,

speaker identification

1. INTRODUCTION

The main target of speaker identification is to assert whether

or not the speaker of a test segment is known and and if he/she

is known, to find his/her identity. Applications of speaker

identification are numerous, among which are speaker depen-

dent automatic speech recognition and subject identification

based on biometric information. The sentence pronounced by

the subject can be unknown and the recordings can be of vari-

able quality. The speaker identification then becomes a highly

challenging problem.

Since their emergence almost five years ago, the I-

vectors [1] have become the state-of-the-art approach for

speaker identification [2]. A typical speaker identifica-

tion system is composed of I-vector extraction, normalisa-

tion [3, 4] and classification with probabilistic linear dis-

criminant analysis (PLDA) [5]. Research on the tandem

I-vector/PLDA has focused a lot of attention during the past

years and speaker identification systems have reached a high

level of performance on databases such as those from the

National Institute of Standards and Technology (NIST) [2, 6].

On the other hand, recent studies have shown that ap-

proaches such as nonnegative matrix factorisation (NMF) [7]
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can be successfully applied to spectrogram factorisation [8, 9,

10] or to multimodal co-factorisation [11] to retrieve speaker

identity. These results tend to indicate that the activations of

NMF dictionary atoms can represent well the speaker iden-

tity [10]. Besides, exploiting group sparsity on the activa-

tions has then proven to improve further the performance of

NMF-based approaches [9]. NMF therefore offers a credible

alternative to I-vectors that takes advantage of the intrinsic

sparsity of speech [9, 12]. However, to our best knowledge,

none of the approaches proposed until now take the recording

sessions variability into account. Yet this is a crucial point in

the success of I-vectors.

This paper proposes an approach to speaker identification

that relies on group-NMF and that is inspired by the I-vector

training procedure. Given data measured with several sub-

jects, the key idea in group-NMF is to track inter-subject

and intra-subject variations by constraining a set of com-

mon bases across subjects in the decomposition dictionaries.

This has originally been applied to the analysis of electroen-

cephalograms [13]. The approach presented here extends this

idea and proposes to capture inter-speaker and inter-session

variabilities by constraining a set of speaker-dependent bases

across sessions and a set of session-dependent bases across

speakers. This approach is inspired by the joint factor anal-

ysis [14] and I-vectors as it takes both speaker variability

and session variability into account. In this sense, it differs

from previous approaches based on NMF [8, 9, 12] that take

only speaker variability into account. Besides, in these previ-

ous works similarity constraints were imposed on activations

while in the approach proposed here the constraints are on

the dictionaries.

The paper is organised as follows. The problem, the no-

tations and the general NMF approach for speaker identifica-

tion are introduced, in Section 2. The proposed approach is

described in Section 3. Experiment results are presented in

Section 4. Finally, conclusions and directions for future work

are exposed in Section 5.

2. PROBLEM STATEMENT

2.1. Notations

Consider the (nonnegative) time-frequency representation of

an audio signal V ∈ R
F×N
+ (this could be for example a mel-

frequency spectrogram), where F is the number of frequency



components and N the number of frames. V is composed

of data collected during S recording sessions with speech

segments originating from C speakers. In each session sev-

eral speakers can be present and a particular speaker can be

present in several sessions. Let C denote the set of speak-

ers and S the set of sessions. The number of elements in an

ensemble is denoted Card(.), such that Card(C) = C and

Card(S) = S. Let Cs denote the subset of speakers that ap-

pear in the session s (Cs ⊂ C) and Sc the subset of sessions

in which the speaker c is active (Sc ⊂ S). In the remainder of

this paper, superscripts c and s will denote the current speaker

and session, respectively.

2.2. NMF with Kullback-Leibler divergence

The goal of NMF [7] is to find a factorisation for V of the

form:

V ≈WH (1)

where W ∈ R
F×K
+ , H ∈ R

K×N
+ andK is the number of com-

ponents in the decomposition. Given a separable divergence

D, NMF model estimation can be formulated as the following

optimisation problem:

min
WH

D(V|WH) s.t. W ≥ 0, H ≥ 0.

When considering audio signals, D is often chosen to be

the Kullback-Leibler divergence (denoted DKL here) [15] or

the Itakura-Saito divergence [16]. In most cases NMF prob-

lem is solved using a two-block coordinate descent approach.

Each of the factors W and H is optimised alternatively. The

subproblem in one factor can then be considered as a non-

negative least square problem (NNLS) [17]. One of the ap-

proaches to solve these NNLS problems leads to the multi-

plicative update rules for the matrices W and H, which can be

expressed as follows for the DKL [18, 19]:

H← H⊙
WT

[

(WH)−1 ⊙ V
]

WT 1
(2)

W←W⊙

[

(WH)−1 ⊙ V
]

HT

1HT
; (3)

where⊙ is the element-wise product (Hadamard product) and

division and power are element-wise. 1 is a matrix of dimen-

sion F ×N with all its coefficient equal to 1.

2.3. NMF for feature learning in speaker identification

In this paper, NMF is used for feature learning in a speaker

identification framework. First, the factorisation is learnt on a

training set and activations are used as input features to train a

general classifier. The dictionaries W obtained on the training

set are then used to extract features (activations) on a test set.

These features are used as input to the general classifier to

perform speaker identification.

3. GROUP NMF WITH SPEAKER AND SESSION

SIMILARITY

In the approach presented above, the feature learning step is

totally unsupervised and does not account for speaker vari-

ability or session variability. The approach introduced here

intends to take these variabilities into account. It derives

from group-NMF [13] and is inspired by exemplar-based ap-

proaches [8, 9]. The idea of a decomposition across speaker

was originally used by Saeidi et al. [10] but session variability

was not considered.

3.1. NMF on speaker utterances for speaker identifica-

tion

In order to better model speaker identity, we now consider the

portion of V recorded in a session s in which only the speaker

c is active. This is denoted by V(cs), its length is N (cs) and it

can be decomposed according to (1):

V(cs) ≈W(cs)H(cs) ∀ (c, s) ∈ C × Sc

under nonnegative constraints.

We define a global cost function which is the sum of all

local divergences:

Jglobal =

C
∑

c=1

∑

s∈Sc

DKL(V
(cs)|W(cs)H(cs)). (4)

Each V(cs) can be decomposed independently with stan-

dard multiplicative rules (2, 3). The bases learnt on the train-

ing set are then concatenated to form a global basis. The latter

basis is then used to produce features on test sets.

3.2. Class and session similarity constraints

In order to take the session and speaker variabilities into ac-

count we propose to further decompose the dictionaries W

similarly as what was proposed by Lee et al. [13]. The matrix

W(cs) can indeed be arbitrarily decomposed as follows:

W(cs) = [ W
(cs)
SPK

←KSPK→

| W
(cs)
SES

←KSES→

| W
(cs)
RES

←KRES→

]

with KSPK +KSES + KRES = K and where KSPK, KSES

and KRES are the number of components in the speaker-

dependent bases, the session-dependent bases and the residual

bases, respectively.

The first target is to capture speaker variability. This is re-

lated to finding vectors for the speaker bases (W
(cs)
SPK) for each

speaker c that are as close as possible across all the sessions

in which the speaker is present, leading to the constraint:

JSPK =
1

2

C
∑

c=1

∑

s∈Sc

∑

s1∈Sc
s1 6=s

‖W
(cs)
SPK −W

(cs1)
SPK ‖

2 < α1 (5)



W
(cs)
SPK ←W

(cs)
SPK ⊙

[

(W(cs)H(cs))−1 ⊙ V(cs)
]

H
(cs)
SPK

T

+ λ1

2

∑

s1∈Sc
s1 6=s

W
(cs1)
SPK

1H
(cs)
SPK

T

+ λ1

2 (Card(Sc)− 1)W
(cs)
SPK

(8)

W
(cs)
SES ←W

(cs)
SES ⊙

[

(W(cs)H(cs))−1 ⊙ V(cs)
]

H
(cs)
SES

T

+ λ2

2

∑

c1∈Cs
c1 6=c

W
(c1s)
SES

1H
(cs)
SES

T

+ λ2

2 (Card(Cs)− 1)W
(cs)
SES

(9)

with‖.‖2 the Euclidean distance and α1 is the similarity con-

straint on speaker-dependent bases.

The second target is to capture session variability. This

can be accounted for by finding vectors for the sessions bases

(W
(cs)
SES) for each session s that are as close as possible across

all the speakers that speak in the session, leading to the con-

straint:

JSES =
1

2

S
∑

s=1

∑

c∈Cs

∑

c1∈Cs
c1 6=c

‖W
(cs)
SES −W

(c1s)
SES ‖

2 < α2 (6)

where α2 is the similarity constraint on session-dependent

bases.

The vectors composing the residual bases W
(cs)
RES are left

unconstrained to represent characteristics that depend neither

on the speaker nor on the session.

Minimizing the global divergence (4) subject to con-

straints (5) and (6) is equivalent to the following problem:

min
W,H

Jglobal+λ1JSPK+λ2JSES s.t. W ≥ 0, H ≥ 0 (7)

which in turn leads to the multiplicative update rules for the

dictionaries W
(cs)
SPK and W

(cs)
SES that are given in equations (8)

and (9), respectively. We obtained these update rules using the

well know heuristic which consists in expressing the gradient

of the cost function (7) as the difference between a positive

contribution and a negative contribution. The multiplicative

update then has the form of a quotient of the negative con-

tribution by the positive contribution. The update rules for

W
(cs)
RES are similar to the standard rules:

W
(cs)
RES ←W

(cs)
RES ⊙

[(W(cs)H(cs))−1⊙V(cs)]H(cs)
RES

T

1H
(cs)
RES

T .

Note that the update rules for the activations (H(cs)) are

left unchanged.

4. EXPERIMENTS

4.1. Experimental setup and corpus

The approach presented here is tested on a subset of the ES-

TER corpus [20], a radio broadcast corpus. Only speakers

Duration < 1min 1min – 5min > 5min

Number of speakers 25 26 44

Table 1. Speakers repartition according to the amount of

available training data.

with at least 10 seconds of training data are selected from ES-

TER to compose the subset corpus. Speaker utterances are

split in 10 seconds segments in order to obtain enough seg-

ments to train the back-end classifier. The amount of training

data is limited to 6 minutes per speaker. When there is more

than 6 minutes of speech for a speaker, 10 seconds segments

are selected randomly to compose a 6 minutes subset. The

resulting corpus is composed of 6 hours and 11 minutes of

training data and 3 hours 40 minutes of test data both dis-

tributed among 95 speakers. The training data is extracted

from the original ESTER training set and the test data is ex-

tracted from the original ESTER development set. This way,

there is no overlapping session between the training set and

the test set. The amount of training data per speaker ranges

from 10 seconds to 6 minutes (Table 1). This small dataset is

used for preliminary experiments and future work should in-

clude experiments with larger datasets such as NIST datasets.

A baseline I-vector-based system is trained with the

LIUM speaker diarisation toolkit [21]. The acoustic fea-

tures are computed with YAAFE [22]. They are 20 mel

frequency cepstral coefficients (MFCC) [23], including the

energy coefficient. They are computed on 32 ms frames with

16 ms overlap. The MFCC are augmented with their first and

second derivatives to form a 60-dimensional feature vector. A

universal background model (UBM) with 256 Gaussian com-

ponents per acoustic features is trained on the full training set

and the dimension of the total variability space is set to 100.

The parameter values are in the range of the values commonly

found in the literature for datasets of similar size. Eigen fac-

tor radial normalisation (EFR) is applied on I-vectors before

classification [4].

NMF-based systems are trained on GPGPU with an in-

house software1 based on the Theano toolbox [24]. The

acoustic features are 64 mel-spectrum coefficients computed

on 32 ms frames with 16 ms overlap. To cope with the

1Source code is available at https://github.com/rserizel/

groupNMF
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Fig. 1. Convergence of the different criteria depending on the weights λ1 and λ2

well-known non-uniqueness of the NMF solution, NMF and

group-NMF are initialised randomly 6 times and trained inde-

pendently for 1000 iterations. In each case, the factorisation

with the lowest cost function value at the end of the training

is selected to extract features. After preliminary tests, the

number of components for the NMF is set to K = 100. The

number of component for each bases of the group-NMF is set

to K = 8 (KSPK = 4, KSES = 2,KRES = 2) such that the

size of the concatenated basis remains reasonably low. There

are 236 unique couples (speaker, session) so the dimension

of the feature vectors extracted with the group-NMF is 1888.

The weights λ1 and λ2 are scaled such that for λ1 = 1 the

contributions from (4) and (5) to (7) are equivalent, respec-

tively for λ2 = 1 the contributions from (4) and (6) to (7) are

equivalent. The features extracted with NMF are scaled to

unit variance before classification.

Normalised I-vectors and feature vectors extracted with

NMF are classified with a multinomial logistic regression.

The logistic regression is preferred to PLDA as the latter is

known to perform quite poorly when the number of samples

becomes small compared to the feature dimensionality, which

is the case here. In order to mitigate the effect of the imbal-

ance between speakers in the test set, the classification per-

formance is measured with weighted F1-score [25] where the

F1-score is computed for each class separately and weighted

by the number of utterances in the class. Both logistic re-

gression and F1-scoring are performed with the scikit-learn

toolkit [26]. Variations in identification performance are val-

idated using the McNemar test [27] with significance levels

.01 and .001.

4.2. Discussion

The first important test is to control that the constraints im-

posed on the speaker bases and the session bases do not de-

grade the stability of the NMF algorithm. Indeed, conver-

gence can quickly become problematic when imposing con-

straints on NMF. The KL-divergence still varies uniformly

even with constraints on the cost function (7) (Figure 1 (a)).

Yet the constraints are effective at reducing the distance be-

tween the speaker bases (Figure 1 (b)) and between the ses-

Group-NMF

Features I-vector NMF λ11 = 0 λ1 = 0.33
λ2 = 0 λ2 = 0.06

F1-score 76.1% 70.7% 77.8% 80.2%

Table 2. Weighted F1-scores obtained for a classification

with multinomial logistic regression.

sions bases (Figure 1 (c)).

In a second experiment, the systems described above and

the I-vector baseline are compared on the subset of ESTER

(Table 2). The group NMF has been tested for different val-

ues of the weight applied to the constraints and two differ-

ent configurations have been selected. The first configura-

tion is fully unconstrained (λ1 = 0 and λ2 = 0) and both

constraints are active in the second configuration (λ1 = 0.33
and λ2 = 0.06). The first remark is that all systems perform

reasonably well even if standard NMF is clearly behind the

other approaches (p < .001). The unconstrained group-NMF

and the I-vector approach perform similarly (the difference

is not statistically significant). Imposing constraints on both

the speaker bases and the session bases improves significantly

the performance compared to the I-vector approach and the

unconstrained group-NMF (p < .01 in both cases).

5. CONCLUSIONS

This paper introduced a new feature learning approach for

speaker identification that is based on NMF. Recent works on

exemplar based speaker identification have shown that dic-

tionary atoms in an NMF system can represent well speaker

identity. Capitalising on this statement, the authors proposed

an approach based on group-NMF that is inspired by the state-

of-the-art I-vector approach and tries to capture both speaker

variability and session variability. The central idea is to im-

pose similarity constraints on speaker-dependent bases and

session-dependent bases in the decomposition dictionaries.

The proposed approach has proven to be competitive with I-

vectors on a small corpus and future works should include

extensive tests on larger corpora and on a wider range of con-

figurations.
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