
Interactive Broadcast Digital Television

The OpenTV Platform versus the MPEG-4 Standard Framework

Frederic Bouilhaguet, Jean-Claude Dufourd, Souhila Boughoufalah,
Christophe Havet *

ENST Paris, dept ComElec - 46 rue Barrault – 75013 Paris, France
* OpenTV Europe – 160 bis, rue de Paris – 92645 Boulogne Cedex, France

E-mail: {bouilhaguet, dufourd, souhila}@enst.fr, chavet@opentv.com

Abstract

The last years have seen a vast increase in Interactive
Broadcast Digital TV systems featuring proprietary
platforms coupled with the standard MPEG-2. OpenTV is
an example of a proprietary platform present on the
market. The study of the OpenTV multimedia delivery
framework and our involvement in MPEG-4 normalisation
works give us the occasion to compare the OpenTV
system architecture with the MPEG-4 one to address 2D
interactivity in Broadcast Digital TV applications. We
study their respective approaches to define 2D user
interfaces and to manage dynamic interactive audio-visual
contents.

1. Introduction

Changes in the nature, scope and extent of multimedia on-
line applications are very rapid, due to the major
developments in computing and telecommunications
technology. Broadcast Television has undergone important
evolutions since it started to be digital. After broadcast
digital channels with only audio and video (MPEG-2), the
growing tendency is to develop technologies for
interactive contents based on push/pull scenarios. Starting
from the only video and audio model standardised by
MPEG-2, the Broadcast Digital TV industry has provided
new systems using objects description techniques to afford
the bases for developments of interactive services. The
transport structure of MPEG-2, called Transport Stream
(TS), allows to multiplex with the MPEG audio and video
signals any other type of digital stream, the so-called
“private data”. So the market didn’t wait for a new version
of MPEG standard to provide new system architectures for
the development of interactive programs compatible with
MPEG-2 TS. The definitions of these system architectures
consisted in specifying structures of new streams, as
shown in the figure 1, and their corresponding codecs to
transport the spatio-temporal descriptions needed for
interactivity.
The OpenTV platform provides one of these system
architectures. It is based on a new opentv stream added to
MPEG2_audio and MPEG2_video ones. The opentv

stream transmits OpenTV applications that are computer
programs. The OpenTV applications are currently
developed in ANSI C and compiled with a special
development kit compiler. The output from the compiler is
called o-code and consists of a private byte code that is
interpreted by the o-code interpreter and executed on the
digital interactive decoder. OpenTV applications make o-
code function calls to OpenTV library. The library routines
initiate operations or requests. The implemented
Application Programming Interface (API) of this library
determines the structure and rules of composition of the
visual and audio objects.

Today, the Quality of Service (QoS) is starting to suffer
from serious problems of incompatibilities between all the
multiple system architectures provided by different
companies. Final users must have several decoders to
decode interactive channels provided by different
broadcasters who chose different system architectures.
Content producers must redevelop the same interactive
audio-visual application to suit all the platforms.
MPEG with the new MPEG-4 standard version aims at
specifying an open system architecture adaptable to
potential future platforms of Broadcast Digital TV and
suppressing previous sources of incompatibility. The first
component of the MPEG-4 system architecture to fit the
requirements is two new elementary streams: the Binary
description Scene Format (BiFS) stream and the Object
Descriptors stream. An MPEG-4 scene is a set of
organised audio and visual objects with behaviours that
constitutes a part of a 2D interactive application. BiFS is
the compressed format in which scenes are defined and
modified. BiFS is composed of 2D and 3D profiles. Our
interest here is 2D only.

In this paper, we show how OpenTV and MPEG-4 differ
in their common requirements for:

- Composing interactive user interfaces from object
description techniques (section 2)
- Communicating events between objects (section 3)
- Having access to multiple audio and video data
sources (section 4)

III-626

0-7803-5482-6/99/$10.00 ©2000 IEEE

ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

Figure 1: typical transmission chain of broadcast interactive channels

2. Gadget tree versus scene graph

OpenTV and MPEG-4 describe objects and their
behaviour in hierarchical models. MPEG-4 uses the
concept of a scene graph with object nodes, while
OpenTV prefers a gadget tree with gadgets.

2.1 Scene graph (MPEG-4)

The graph and its drawing order:
An MPEG-4 scene is constructed as a direct a-cyclic graph
of nodes.
The following types of nodes exist:
- Grouping nodes construct the scene structure;
- Children nodes are the children of grouping nodes that
represent the multimedia objects in the scene.
- Interpolator nodes are another subtype of children nodes
that represent interpolation data to perform key frame
animation. These nodes generate a sequence of values as a
function of time or other input parameters.
- Sensor nodes sense the user and environment changes for
authoring interactive scenes.
BiFS scenes are composed of a collection of nodes
arranged in a hierarchical tree. Each node represents,
groups, or transforms an object in the scene and consists of
a list of fields that define the particular behaviour of the
node.
The root node of a 2D BIFS scene can be an
OrderedGroup or a Layer2D node. OrderedGroup may be
used to specify the drawing order of elements of the scene
because this grouping node controls the visual layering
order of its children.

Reusing objects:
BIFS has a mechanism for reusing nodes. For example,
once a complex graphic object is defined as a collection of
geometric primitive nodes collected inside a Group node,
it is possible to reuse the object elsewhere in the scene,
rather than copying it explicitly wherever it is to appear.
Each reusable node has a binary ID, and wherever a node
can appear in the scene description, the ID of a reusable
node can be inserted.

The prototypes:
BIFS provides ways to encode PROTO and
EXTERNPROTO. These scene constructs enable the
definition of new interfaces to user-constructed scene
components. For example, a button PROTO can be
constructed which accepts a string label as an input
parameter. The body of the PROTO consists of a scene
portion that draws a button (using, say, a Box node) and
renders the string parameter on the button. The
EXTERNPROTO is similar to the PROTO, except that its

definition is not part of the scene. Instead, its definition is
referenced using a URL. This enables the construction and use
of on-line libraries of PROTOs.

2.2 Gadget Tree (OTV)

The tree and its drawing order:
OpenTV provides an object-oriented framework for defining
classes of user interface elements called gadgets. A gadget
class specifies the behaviour functions for all gadgets of the
same class. Gadgets are created and combined by an OpenTV
application to form its user interface. They are drawn on the
screen in a predictable order of a tree structure, as shown in
the figure 2. The position of a gadget in the tree determines
the order in which it is drawn. Drawing starts at the root, and
descends the left-most branch first, then traverses that branch,
then moves onto the sibling just to the right.
At any given time, the interface manager of the OpenTV
operating system recognises one gadget to be the root of the
sub-tree currently being displayed on the TV screen. This is

set by calling the
O_ui_set_root function.
The root may change over
the lifetime of the
application if it is
necessary to display a
new screen. Gadgets must
belong to the sub-tree
owned by the designated

root to be visible on the TV screen. There are functions for
creating, activating (making visible), deactivating (making
invisible), deleting gadgets. The O_gadget_attach function
attaches a new child gadget to a specified gadget.

/* Create some button gadgets and attach them to ‘this’ group. */
while (nextItem != null) {
 o_gadget next_Button = O_gadget_new_from_resource(*nextItem);
 nextItem++ ;
 O_gadget_attach(this,next_Button);
}

Reusing gadgets:
The O_gadget_new function creates new gadgets, i.e.
instances of a gadget class. A gadget can be reused in its
application scope until it is removed with the
O_gadget_delete function.

The prototypes:
There is nothing here equivalent to what MPEG-4 calls
prototypes. Each gadget class is in fact prototyped. Gadget
class’s developers define a structure for passing initial value
and support functions to supplement the functionality of the
gadget class.

3. Events communication

Figure 2: OTV gadget tree drawing order

III-627

3.1 Sensors and routes (MPEG-4)

The node fields are labelled as being of type field, eventIn,
eventOut, or exposedField. The field label is used for
values that are set only when instantiating the node. Fields
that can receive incoming events have the eventIn label,
whereas fields that emit events are labelled as eventOut.
Finally, some fields may set values but also receive or emit
events, in which case they are labelled as exposedField
To describe interactivity and behaviour of scene objects,
the MPEG-4 event architecture defined sensors and routes.
Sensor nodes generate events based on user interaction on
a trigger node or a change in the scene. An event can be
routed from any sensor node eventOut field to interpolator
or other nodes to change the attributes of these target
nodes. If routed to an interpolator, a new parameter is
interpolated according to the input value, and is finally
routed to the target node eventIn field. This target node
processes the event. The scope of a sensor is delimited to
the children of the grouping node that contains it. In other
words, routes are used to propagate events between scene
elements. They are connections that assign the value of
one field to another field.
The following figure 5 and the BIFS text of 4.2 shows an
example of how to trigger an action as the cursor rolls over
a button object.

Figure 5: example of transmission of events in BIFS

3.2 Messages handlers (OpenTV)

To support input processing, OpenTV have the notion of
focus. Only one gadget in the tree is designated as having
the focus. All input will be directed to this gadget. The
gadget is notified of user input by receipt of messages of
the appropriate types. If a gadget ignores an input
message, it will propagate up to that gadget’s parent, and
so on, so processing of input is also affected by a gadget
placement in the gadget tree.

Figure 3: transmission of messages in the gadget tree

At the initialisation of a gadget class, the function that
handles events called message_handler is passed as an
argument. This message_handler function is called each
time a message (MSG_TYPE_NEW / DELETE / ACTIVATE /
DEACTIVATE) is send to a gadget of this class. A key-
pressed event is sent only to the gadget that has the focus.
If the gadget doesn’t use the key event, the event is
automatically routed to its parents recursively until its

associated message is consumed by calling the
O_ui_msg_used function.

In the following example,
navigation between buttons is
done by pressing the left arrow
key and an action is performed
when the enter “OK” key is
released on the button, as seen in
the figure 4. The ancestors of the

button gadgets may handle other keys.

/* The events handler function of the button gadget */
static void button_message_handler(button* this,o_message* msg)
{
 switch (O_msg_type(msg))
 {

 /* A key has been pressed */
 case MSG_TYPE_KEY_DOWN:
 button_key_down(this,msg);
 break;

 }
}

/* Handle key down events */
static void button_key_down(button* this, o_message* msg)
{

 switch(O_ui_msg_key(msg))
 {
 /* Handle the selection key */
 case KEY_ENTER_CODE:
 /* Draw something to show
 that the button is pressed */

 /* Letknow we consumed the key event */
 /* The message is not passed to its father */
 O_ui_msg_used(msg);
 break;

 /* Pass the focus to its left button
 (in the gadget tree) */
 case KEY_LEFT_ARROW_CODE:
 {
 next_button = O_gadget_left_brother(this);
 /* Only change focus if a left button exists */
 if (next_button!=NULL)
 O_gadget_set_focus(next_button);
 /* Let know that we consumed the key event */
 /* The message is NOT passed to its father */
 O_ui_msg_used(msg);
 break;
 }

 }

}

4. Access to Audio/Video streams

4.1 Object Descriptor (MPEG-4)

MPEG-4 defines an ObjectDescriptor (OD) stream. It is
coupled with the BIFS stream to identify and describe
elementary streams that are associated to the audio-visual
scene description. An OD is a collection of one or more
elementary stream (ES) descriptors. It is assigned an identifier
(object descriptor ID). An ES descriptor include information
about the source of the stream data and encoding format for
the decoding process.
Here is an example of how we can switch with BIFS from a
current audio source to a new one when the cursor rolls over a
button. The BIFS audio node points to the audio data stream
through the OD’s ID value contained in the url field. The
audio is switched by removing the current audio stream from
the grouping node and appending the new one.

Figure 4: remote control

III-628

BIFS text:
DEF ID_100 Group{
 children [
 # **** original sound
 Sound2D {
 source audiosource {
 url 5 # *** object descriptor ID
 startTime 0
 stopTime -1
 }}
DEF ID_211 Conditional {
 buffer {
 # **** remove the original sound
 DELETE ID_100.children[0]
 # **** switch to the new sound
 APPEND TO ID_100.children
 Sound2D {
 source audiosource {
 url 6 # *** object descriptor ID
 startTime 0
 stopTime -1
 }}}}
**** hot spot area :
Group {
 children [
 DEF I205_ TouchSensor {}
 Transform2D {
 translation pos_X pos_Y
 children [
 Shape { geometry Rectangle { size w h }
 appearance Appearance {...}
 }]}]}
**** propagate events
ROUTE I205_.isOver TO ID_211.activate
...

ObjectDescriptor of the audio stream :
{
 objectDescriptorID 6
 esdescr [
 ES_Descriptor {
 es_id 3
 decConfigDescr DecoderConfigDescriptor {
 objectTypeIndication 0x40
 streamType 5
 upStream FALSE
 bufferSizeDB 8000
 maxBitrate 0
 avgBitrate 0
 }
 slConfigDescr SlConfigDescriptor {
 ... #long sync layer parameter list
 }}]}

4.2 Station control (OTV)

OpenTV programs can switch from elementary streams via
the O_station_control function. A call to this
asynchronous function enables to open/close elementary
streams. The parameter of O_station_control is an actions
list so several actions can be performed in a single call.
When an action is completed, a message is posted in the
events queue. The different streams supported are video
(O_VIDEO), audio (O_AUDIO), opentv (O_OPENTV),
subtitle (O_SUBTITLE), and teletext (O_TELETEXT).
Here is an example of switching audio tracks by pressing a
button gadget.

Switch to a new audio stream in the C file:
/* actions list */
char switch_to_audio_1[20] = {
 C_STREAM_ON, 5,
 O_AUDIO, ’0’, ’0’, ’1’, 0,
 C_END, 0 };
......
/* Application main loop */
for (;;){
 /* Get message from the events queue */
 O_ui_get_event_wait (&msg);
 switch(O_msg_class(&msg)) {

 case audio1_button_ID:
 O_station_control(switch_to_audio_1);
 break;

}}

Description of the audio stream in the transport stream configuration file:
elementary_stream {
 stream_type = audio_mpeg2
 elementary_stream_pid = 523
 descriptor {
 descriptor_tag = iso_639_language
 language {
 language = "001"
 audio_type = 0}}}

5. Other aspects

5.1 MPEG-J

The BIFS stream offers a parametric scene representation
while OpenTV rather offers a programmatic environment.
MPEG-4 standard will also offer a programmatic
environment, in addition to its parametric capability. Java
APIs are defined and a dedicated MPEG-J stream can be
added to BIFS and OD streams. Access to an underlying
MPEG-4 engine can be provided to Java applets, called
MPEG-lets. MPEG-J forms the basis for very sophisticated
applications, opening up completely new ways for audio-
visual content creators to augment the use of their content.
MPEG-J will be available in MPEG-4 version 2.

5.2 Transparency and Composition

The composition approach in OpenTV differs from MPEG-4.
From the use of functions such as O_palette_set and
O_palette_set_transparency, the current color lookup table
(palette) is set and transparency can be applied to some of the
indexed colors. MPEG-4 has a transparency field in the
Appearance node that can be associated with any visual
object, even video or still pictures. So transparency is applied
per object and color space is not limited to a palette.

6. Conclusion

We have presented briefly two systems for Interactive
Broadcast Digital TV, OpenTV and MPEG-4. The OpenTV
environment is far from the MPEG-4 delivery framework if
we just consider BIFS and OD streams, even if we saw that
some common approaches existed in the two ways of
organising visual objects. If we consider MPEG-J, MPEG-4
moves toward the OpenTV programmatic approach. One
perspective for the OpenTV framework could be to implement
on top of the OpenTV engine the MPEG-J APIs with a Java
VM in order to provide a first MPEG-4 terminal compliant
with MPEG-J so that future MPEG-lets can execute on the
OpenTV platform.
There are pros and cons for both: on paper, MPEG-4 is much
more powerful but OpenTV is here now.

References :

[1] “MPEG-4 Systems FDIS”, Document ISO/IEC
JTC1/SC29/WG11/N2501, Atlantic City MPEG meeting, October
1998

[2] “MPEG-4 Visual FDIS”, Document ISO/IEC JTC1/SC29/WG11/N2502,
Atlantic City MPEG meeting, October 1998

[3] “MPEG-4 Audio FDIS”, Document ISO/IEC JTC1/SC29/WG11/N2503,
Atlantic City MPEG meeting, October 1998

[4] “MPEG-4 DMIF FDIS”, Document ISO/IEC JTC1/SC29/WG11/N2506,
Atlantic City MPEG meeting, October 1998

[5] MPEG Requirements Group, “Overview of MPEG-4 Profile and Level
Definitions”, Document ISO/IEC/JTC1/SC29/WG11/N2458, Atlantic
City MPEG meeting, October 1998

[6] MPEG Requirements Group, “MPEG-4 Version 2 Overview”, Document
ISO/IEC/JTC1/SC29/WG11/N2324, Dublin MPEG meeting, July 1998

[7] OPEN TV, “Software Developer’s Kit 2.0 - SoftwareDeveloper’s,
Mountain View, March 1999

[8] OPEN TV, “Software Developer’s Kit 2.0 – Software Developer’s
Reference Manual, Mountain View, March 1999

III-629

