3D image and video compression standards: past, present, future

Prof. Dr. Touradj Ebrahimi
EPFL
Introduction

- Evolution of cinema and television towards greater realism
 - “We went from standard definition to high definition, and [3D] is the natural next step.“ (Jim Spinella, HDlogix)

- Major factors for success
 - Affordable 3D technology for pros and consumers
 - Attractive content considering the new media
 - Improved quality of experience with respect to traditional media
Quality of Experience is the Key

- "As much as it pains me to say this - I love 3-D, I really do - these films are unpleasant to watch."

- "In any event, the 3D experience doesn’t at all feel natural, much less immersive."

- "I don't get motion sickness from a car or sea yet 3D movies tend to give me headache."

- "The 3D trend is annoying…what’s so bad about a really beautiful 2D composition? Even the best 3D still darkens the picture and muddies the color ever so slightly"

- "The 3D glasses offered to me ruined my movie-watching experience to say the least. They were uncomfortable to wear as they only had a one-size-fits-all."
3D perception cues

Accommodation

Binocular Disparity

Pictorial Cues

Motion Parallax

~10^{-1}m ~10^1m ~10^2m ~10^3m + inf
History of 3D

- **1840**: Invention of stereoscopy and stereoscope by C. Wheatstone
- **1890**: First patent for 3D motion pictures using stereoscope
- **1915**: First 3D footage in cinema using anaglyph glasses
- **1922**: Invention of „Teleview“ a shutter based technique
- **1936**: First demonstration of polarization based projection
- **1952**: Golden era of 3D movies due to invention of television
- **1961**: Single film solution „Space-Vision 3D“ using polarization
- **1980**: IMAX 70mm projectors for non-fiction short films
- **2003**: First full length 3D feature film for IMAX screens by J. Cameron
- **2004**: Animation „Polar Express“ makes 14 times more revenue in 3D than 2D
- **2009**: Movie „Avatar“ with a budget of 237 M$ becomes the biggest success of all times
3D Video coding approaches

- Simulcast
- Stereo (MPEG-4 AVC Stereo SEI)
- Mixed Resolution Stereo
- Video+Depth (MPEG-C Part 3)
- Multiview video (MPEG-4 MVC)
- Multiview video+depth (3DV)
Multiview video coding (MVC)

- Exploits redundancy between views using inter-camera prediction to reduce required bit-rate
Multiview + Depth coding

- Disconnecting the 3D video representation/coding from the captured video representation, and the displayed video representation
- Particularly interesting for auto-stereoscopic displays
- The current focus of MPEG 3D video coding standardization

Multimedia Signal Processing Group
Swiss Federal Institute of Technology
3DV test campaign

- **MPEG Call for Proposal (CfP) on 3D video coding (2011)**
 - “to define a data format and associated compression technology to enable the high-quality reconstruction of synthesized views for 3D displays”
 - Target: stereoscopic and auto-stereoscopic multi-view displays

- **Formal subjective quality evaluation test campaign (3DV tests)**
 - MPEG invited the European COST Action QUALINET
 - 12 evaluation laboratories *from around the world*
Test Scenarios and Requirement on Submissions

- **Test classes**
 - Class A: 1920x1088p@25fps
 Poznan Street, Poznan Hall2, Undo Dancer, GT Fly
 - Class C: 1024x768p@30fps
 Kendo, Balloons, Loverbird1, Newspaper

- **Test scenarios**
 - 2-view: refers to the 2-view input configuration
 - 3-view: refers to the 3-view input configuration

- **Test categories and anchors**
 - AVC-compatible: MVC encoder JMVC 8.3.1
 - HEVC-compatible: HEVC encoder HM 2.0

- **Coding conditions**
 - 4 different bit rates for each sequence, for each test scenario, for each test category
 - Pre-processing only for data format conversion (ex: down-sampling)
 - No optimization or processing steps using non-automatic means
Timeline and Responses to Call for Proposals

- **Timeline**
 - 2011/01/28: Draft CfP (public)
 - 2011/04/15: Final CfP
 - 2011/09/01: Submission of decoded test material
 - 2011/10/01: Subjective assessment starts
 - 2011/11/01: Submission of documents
 - 2011/11/26-12/02: Evaluation of proposals at 98th MPEG meeting

- **22 submissions**
 - Both AVC-compatible and HEVC-compatible

- **Test Model (TM) = best proposal + tools from other submissions**
 - AVC: Nokia (26% rate reduction for 2-view and 35% for 3-view)
 - HEVC: HHI (54% rate reduction for 2-view and 63% for 3-view)

- **Core Experiments (CE): investigate best proposed tools**
 - 10 CEs in AVC-compatible
 - 11 CEs in HEVC-compatible
12 evaluation laboratories
- Each laboratory was assigned a certain number of test sessions (stereoscopic, autostereoscopic, or both)
- 18 naïve viewers per test sequence

Dry runs to test common HW and SW set up
- Same monitors (native resolutions of 1920x1080 pixels)
 - 46” Hyundai S465D polarized stereo monitor
 - 52” Dimenco BDL5231V autostereo monitor
- Same evaluation methodology (screening, training, GUI, scoring sheets, etc…)
- Similar test room configuration
 - Max 3 (5) viewers seated in front of the stereoscopic (autostereoscopic) display, at 2.3m (3.5m) distance
 - Controlled light system (6500K color temperature)
 - Ambient luminance at 15% of max screen luminance
 - Each lab reported upon monitor calibration settings, gender and age statistics of the sample of viewers
Evaluation methodology

Double Stimulus Impairment Scale (DSIS) evaluation

“Rate the quality of each stimulus B, keeping in mind that of stimulus A”

11-grade numerical categorical scale
- 10: highest quality (i.e. test sequence indistinguishable from the reference)
- 0: lowest quality

Basic test session: 24 test pairs + 3 dummy pairs + 1 ref vs ref pair

- 16 sessions for Class A 2 views
- 16 sessions for Class B 2 views
- 16 sessions for Class A 3 views
- 32 sessions for Class B 3 views (include central view selection and random view selection)

16 sessions for Class B

Multimedia Signal Processing Group
Swiss Federal Institute of Technology
Overlapping data

- **4 laboratories:** NTNU, EPFL, Acreo, UBC
 - Class A 2-view stereo: 4 overlapping sessions (EPFL - UBC)
 - Class A autostereo: 4 overlapping sessions (EPFL - UBC)
 - Class B 2-view stereo: 8 overlapping sessions (NTNU - Acreo)
Scatter plots (EPFL – UBC)

Autostereo data

Stereo data

Pear: 0.98777 Spear: 0.98333

Pear: 0.95821 Spear: 0.96085
Scatter plots (NTNU – Acreo)

Stereo data
Core Experiments

AVC-compatible:
- View synthesis prediction for texture and depth
- Depth-based prediction
- Depth representation and coding
- Depth intra prediction without inter-component prediction
- Depth range compensation for inter/inter-view prediction
- In-loop depth resampling
- RD optimization through view synthesis distortion
- Global depth-and-view prediction
- Texture-based prediction for depth coding
- Depth In-loop Filtering

HEVC-compatible:
- View Synthesis Based Prediction for Texture
- View Synthesis Based Prediction for Depth
- Motion Parameter Prediction and Coding (independent of Depth)
- Transform Coding for Depth
- In-Loop Filtering for Depth
- Prediction Parameter Coding for Motion Data and Intra Prediction Modes
- Coding of Quantization Parameters
- Component Extraction
- Prediction Structures for Inter-view Prediction
- Modified Distortion Measure for Depth Coding
- View Synthesis
Standardization tracks considered

- MVC-compatible extension including depth
 - No block-level changes to AVC/MVC syntax and decoding processes
 - Add high-level syntax to enable efficient coding of depth data
 - Final Draft Amendment (FDAM): 2012/10

- AVC-compatible video-plus-depth extension
 - Change syntax and decoding process for non-base texture view and depth maps at block level
 - Expected coding efficiency improvements: 30-40% w.r.t. AVC/MVC
 - FDAM: 2013/07

- HEVC 3D extensions
 - Expected coding efficiency improvements: 40-60% w.r.t. HEVC (which itself is expected to achieve 50% rate reduction compared to AVC)
 - FDAM: 2014/01
Beyond standards

- **Stereo/Multiview image compression**
 - MPO, PNS, JPS
 - File formats based on JPEG or PNG compression

- **3D beyond binocular cues**
 - Holographic representation is still quite far-fetched
 - Holoscopic representation is more mature and probably more feasible