
A Fistful of Pings: Accurate and Lightweight
Anycast Enumeration and Geolocation

Danilo Cicalese∗, Diana Joumblatt∗, Dario Rossi∗, and Marc-Olivier Buob†, Jordan Augé†, Timur Friedman†
∗Telecom ParisTech, Paris, France – first.last@telecom-paristech.fr

†UPMC Sorbonne Universités, Paris, France – first.last@lip6.fr

Abstract—Use of IP-layer anycast has increased in the last
few years: once relegated to DNS root and top-level domain
servers, anycast is now commonly used to assist distribution of
general purpose content by CDN providers. Yet, the measurement
techniques for discovering anycast replicas have been designed
around DNS, limiting their usefulness to this particular service.

This raises the need for protocol agnostic methodologies, that
should additionally be as lightweight as possible in order to
scale up anycast service discovery. This is precisely the aim
of this paper, which proposes a new method for exhaustive
and accurate enumeration and city-level geolocation of anycast
instances, requiring only a handful of latency measurements
from a set of known vantage points. Our method exploits an
iterative workflow that enumerates (an optimization problem)
and geolocates (a classification problem) anycast replicas.

We thoroughly validate our methodology on available ground
truth (several DNS root servers), using multiple measurement
infrastructures (PlanetLab, RIPE), obtaining extremely accurate
results (even with simple algorithms, that we compare with
the global optimum), that we make available to the scientific
community. Compared to the state of the art work that appeared
in INFOCOM 2013 and IMC 2013, our technique (i) is not bound
to a specific protocol, (ii) requires 1000 times fewer vantage
points, not only (iii) achieves over 50% recall but also (iv)
accurately identifies the city-level geolocation for over 78% of
the enumerated servers, with (v) a mean geolocation error of
361 km for all enumerated servers.

I. INTRODUCTION

Geolocation of hosts according to their IP addresses is
widely performed, both commercially (e.g., MaxMind [1]) and
for research purposes. However there is a class of IP addresses
on which today’s geolocation methods fail: anycast addresses.
IP-layer anycast [2] allows a group of replicas, or distributed
servers that offer the same service, to share a single unicast IP
address. Traffic directed to that address gets routed to just one
replica, as determined by BGP routing. Geolocation services
incorrectly assume that each unicast IP address corresponds to
a host or set of hosts at a single location, and are unable to
flag instances where this is not the case, not to mention being
able to respond to a geolocation query with a set of hosts and
locations.

One explanation for this deficit in anycast IP geolocation is
that current services are oriented towards geolocation of client
machines, not servers. Content distributors might geolocate
clients in order to respect contractual constraints that limit
them to sending certain content to certain countries; banks
might geolocate clients for security purposes and as part of
their due diligence concerning knowledge of their customers;

advertisers might geolocate clients in order to profile popula-
tions and deliver targeted messages. However, more and more
services are being delivered through anycast. DNS root and
.ORG top level domain services [3], [4] have been anycast
pioneers, using the technique to optimize availability and
response time. The AS112 project [5], which reduces the
load on DNS root servers caused by reverse DNS lookups
for private network and link-local addresses, uses anycast.
Multicast groups implement anycast mechanisms for rendez-
vous point discovery [6]. To connect IPv6 networks across
an IPv4 infrastructure, 6-to-4 relay routers [7] advertise an
anycast IP prefix. Sinkholes [8] use anycast to detect, contain,
and analyze worm activity. And now we are seeing com-
mercial services such as content delivery networks (CDNs)
increasingly being offered through anycast. For example, the
EdgeCast CDN [9], which supports such major services as
Pinterest and Twitter, is entirely anycast. With this rise of
anycast, there is a concomitant need to understand anycast
services. Internet service providers have a large commercial
stake in managing over-the-top content flows, for example,
and want to know where these flows are coming from and
why. Businesses that rely upon services that are delivered
via anycast need adequate troubleshooting tools. The locations
from which services are provided are of interest to scientists
ranging from security researchers to economists and social
scientists, and of course network researchers.

Prior work on identifying, enumerating, and geolocating
anycast services [10], [11] has focused entirely upon DNS. The
techniques used are specific to DNS and are not generalizable
to other services, as they rely upon DNS CHAOS [11] or
EDNS [12]. The contribution of this paper is that it provides
a general technique for determining whether services are being
offered via anycast on any unicast address. Further, it shows
how to enumerate the replicas that are behind an anycast
address and how to geolocate those replicas.

The geolocation methodology described in this paper
also differs significantly from prior IP address geolocation
work [13]–[17]. Like [13], it is based upon speed-of-light con-
straints. But the technique that consists in using multilateration
to infer the location of a single host is designed for single-
host unicast and fails with anycast. We put an original twist on
the technique, to adapt it to the situation where there may be
multiple hosts. A simple image conveys the difference of our
approach: that of discs that cover areas on a map. Single-host
unicast multilateration employs discs centered around multiple

vantage points, and locates the target host somewhere in the
area formed by the intersection of the discs. In our technique,
we recognize anycast in cases where such discs do not overlap,
and we position each host at a large population center within a
disc. Our methodology consists in (i) framing the enumeration
task as a maximum independent set optimization problem,
that we optimally solve, (ii) framing the geolocation task as
a classification problem, where we exploit side information
such as population density, and (iii) solving both problems
iteratively, with output of the geolocation task fed back to the
enumeration task, which provides sizeable benefits.

The remainder of this paper is organized as follows. We
first state our objectives in Sec. II, and then explain both our
overall workflow as well as the enumeration and geolocation
techniques in Sec. III. Validation and calibration of these
techniques over a dataset gathered in PlanetLab is the object
of Sec. IV. We then run our algorithm on a fully fledged mea-
surement campaign from multiple measurement infrastructures
in Sec. V, comparing our results to state of the art techniques.
We make these datasets available to the scientific community
at [18]. Finally, Sec. VI overviews related work and Sec. VII
gathers conclusive remarks and discusses our ongoing work.

II. PROBLEM STATEMENT

The problem that we are trying to solve is: given a target
unicast IP address, t, determine if there is an anycast service
being offered via this address, enumerate the replicas that are
offering this service, and geolocate those replicas. The means
at our disposal are a relatively low number (in the hundreds) of
measurement agents situated at m different locations around
the world.

We assume that we can launch latency measurements from
the vantage points and that we have accurate knowledge of
their positions, expressed as latitude and longitude (lat, lon).
Such infrastructures are realistic to obtain, as evidenced by
PlanetLab and RIPE Atlas, among others. The geolocation of
each vantage point in such services is typically reported by the
person who hosts the measurement agent, and these reports can
be verified through unicast geolocation services [13]–[17], to
check for initial accuracy and to catch cases when an agent is
moved to another location.

We use latency measurements to identify discs (circles
centered around the vantage points) where anycast replicas lay.
While constraint-based geolocation is not a new technique as
far as single-host unicast geolocation is concerned, we face a
very different problem, as we need to identify and geolocate
an unknown number of replicas as opposed to locating a single
host. The identification problem is an optimization problem,
in which an optimal solution consists in identifying all of the
replicas. The geolocation problem is a classification problem,
in which we try to select, from a set of discrete locations within
each disc, the most likely position of the anycast replica in that
disc.

Our design goals are:
• completeness: to fully enumerate anycast replicas
• accuracy: to geolocate replicas with city-level precision

• reliability: to avoid false positive by design
• flexibility: to avoid relying upon or exploiting service- or

protocol-specific information
• low overhead: to use the smallest possible number of

vantage points
Completeness and accuracy are obvious goals, necessary

to achieve sound results. Sec. V compares the results of our
technique to the most recent state of the art [11], [12].

Reliability by design (i.e., absence of false positive detec-
tion) is a desirable property that contributes to flexibility of
use. For instance, an accurate and lightweight anycast identifi-
cation technique could be applied to the detection of IP prefix
hijacking: it could monitor IP addresses within an address
prefix that are expected to be single-host unicast addresses,
raising an alarm if anycast behavior is detected. Avoiding false
alarms by design would be a necessary condition for such a
service.

Flexibility allows the technique to adjust to recent trends in
anycast deployment, such as its increasing use for CDNs, and
to continue working in the face of new and unprecedented
trends. As anycast deployment has until very recently been
limited to DNS, it is understandable that that most available
techniques are bound to this specific protocol [11], [19], [20]
or exploit new developments in DNS [12]. This is in contrast
to our protocol- and service- agnostic technique.

Low overhead makes it easier to design and operate contin-
uously running services. Most of the initial studies on DNS
anycast characterization [19], [20] relied on a comparable
number of vantage points to ours (e.g., about 200 PlanetLab
nodes), however more recent studies have employed from 20k
vantage points [21] up to 200k recursive DNS resolvers [12]
plus 60k Netalyzr datapoints [11]. Our results show this
increased overhead to be unjustified, as we achieve similar
completeness and accuracy to the most recent state of the
art [11], [12] with less than 1/1000th of the vantage points.

III. METHODOLOGY

We illustrate our workflow with the help of Fig. 1. From a
high level viewpoint, starting from a dataset of latency mea-
surements D, that we gather from controlled vantage points
(Sec. III-A), we illustrate the anycast detection condition
(Sec. III-B). Our enumeration approach consists in identifying
areas on the globe (the set E) for which we are confident they
contain at least one anycast instance (Sec. III-C). For each such
area, we then perform a geolocation step by identifying the
most probable city hosting the instance in a set G (Sec. III-D).
To enhance our coverage, we adopt an interative approach, by
feeding the solution to the geolocalization G(k) at step k back
to modify the selection of vantage points in the input dataset
D(k + 1) at step k + 1 (Sec. III-E). We now describe each
step in more details.

A. Latency measurement

For any given target t, we conduct latency measurements
from PlanetLab [22] and from the RIPE infrastructure [23].
For each vantage point p, the measurement infrastructure

Fig. 1. Methodology workflow

yields a delay measurement δ(p, t) representing the round trip
propagation delay required for a packet to travel from p to the
closest instance of t and back to p.

As an individual latency measurement δi(p, t) can be af-
fected by queuing delay, we estimate δ(p, t) = miniδi(p, t)/2
by halving the minimum value of successive round trip time
(RTT) measurements (10 in this work). Since network op-
erators generally keep their links to a low load, it is highly
probable that at least one of those probes traverses the network
without facing congestion in router queues. Although forward
and backward paths are not necessarily symmetric, by halving
the RTT we make the worst case assumption of maximal
distance from the vantage point.

Despite our measurement campaign (Sec. V) includes mul-
tiple kind of RTTs measurement (e.g., ICMP, DNS), without
loss of generality we focus our attention on ICMP measure-
ments (i.e., the most general) for the remainder of this paper.

B. Anycast Detection

Prior to enumerating anycast instances, we must detect
whether there are indeed anycast replicas behind a given
unicast IP address. We do so by detecting speed-of-light
violations in our dataset by comparing latency measurements
δ to the expected propagation time due to speed-of-light con-
siderations. Next, we consider pairs of latency measurements
δ(p, t) and δ(q, t) for the same target. Specifically, given
two vantage points p, q we compute their geodesic distance
dg(p, q) according to Vincenty’s formulæ. Since packets can-
not travel faster than light, if

dg(p, q) > d+(p, t) + d+(q, t) ≥ d(p, t) + d(q, t) (1)

then our measurements indicate that p and q are in contact
with two separate anycast replicas.

Some remarks are in order. First, (1) compares distances
with homogeneous dimensions, that are however gathered
with different techniques. Note that considering the geodesic
distance dg(p, q) between vantage points yields a conservative
lower bound to the expected propagation time between p and
q, as a packet will not travel along a geodesic path but will
follow a path shaped by physical and economic contraints
(i.e., the geography of fiber deployment, optoelectronic con-
version, BGP routing, etc.). Conversely, d+(p, t) = cfδ(p, t)
optimistically upper bounds the distance that a packet may
have traveled during δ(p, t).

d+(p,t) Great circle

= minimal cable

distance from d(p,q)

Anycast instance within

the Dp disk centered at p,

having radius d(p,t)

q

d+(q,t)

Real path

Dp

p

DqCandidate locations

for anycast instance

Probes

Fig. 2. Synoptic of anycast instance detection via latency measurements

As the the inequality is violated only when the conservative
lower bound exceeds the optimistic upper bound, it follows (1)
is conservative in detecting anycast instances, and by definition
avoids raising false positive anycast instances (i.e., flagging as
anycast a single-host unicast target).

C. Anycast Enumeration

From a geometric viewpoint, a sufficient condition for (1)
to be violated is that the two discs Dp and Dq do not overlap.
Any time this condition is encountered, we can be certain that
there are anycast replicas corresponding to the target unicast
IP address t. While this observation is not per se particularly
novel [10], we are the first to leverage a full set of distributed
measurements in the study of anycast deployment and its
geographical properties. Notice that this is extremely important
since, while false negatives are possible on a single inequality
(i.e., flagging as single-host unicast an anycast target), the
chances of a false negative drop with the use of multiple pairs
of vantage points.

It is possible that multiple anycast instances may be located
within a given disc. Although the aim of anycast is to offer
services from distinct locations, the locations may be distinct
from an IP routing point of view but not distant geographically
from each other. Therefore, our technique can only provide a
lower bound of the number of anycast instances that corre-
spond to our observations.

To achieve our joint goals of enumeration and geolocation,
we model the problem as a Maximum Independent Set (MIS)
problem. Our aim is to find a maximum number of vantage
points (and corresponding discs) for which we are confident
they contact distinct anycast instances (an instance being
included in the disc). To do so, we select a maximum subset
of discs E ⊂ D such that:

∀Dp,Dq ∈ E , Dp ∩ Dq = ∅ (2)

The enumeration problem is thus solved by the subset E ,
whose cardinality |E| corresponds to the minimum number of
instances that avoid latency violations, and which represents
thus a plausible explanation to our observations. Notice that |E|
is a lower bound on the number of anycast instances, since due
to the conservative definition of (1) we might have removed
discs that overlap due to noisy measurements. Additionally, a
coarse location of anycast replicas is represented by each disc

of E , that constitutes the starting point for the finer grained
geolocation of Sec. III-D.

Although the MIS problem is NP-hard, it can be solved in fi-
nite time for small number of vantage points with a brute force
approach. This allows us to compare the solution of known
greedy approximate solutions: while a simple greedy strategy
has poor performance in general ((n−1)−approximation) the
situation improves by simply sorting discs in increasing radius
size (5-approximation) as shown in Algorithm 1. We point
out that, even though more refined solutions do exist [24]
that achieve (1 − 2

k) − OPT performance, they are however
computationally very costly nO(k4) – and as we will show
later in Sec. IV, the greedy solution often performs well in
practice.

Algorithm 1 Greedy 5-approximation to MIS for anycast
instances enumeration
Require: A set of disc D
Ensure: A set of disc E such as ∀p, q ∈ E ,Dp ∩ Dq = ∅

Initialization: sort discs in D by increasing radius size
Initialization: E ← ∅
for all disc Dd of D do

for all disc De of E do
if Dd ∩ De = ∅ then
E ← E ∪ {De}

end if
end for

end for

D. Anycast Geolocation

Our aim being to provide geographic locations at city
granularity, we need to refine the preliminary location that
is output by the enumeration algorithm. We opt for city
granularity for two reasons. First, note that a 1 ms difference in
latency measurement corresponds to a 100 km disc in geodesic
distance terms. It follows that great trust should be put in
latency measurements to achieve finer-grained geolocation.
Second, notice that ISPs and system administrators often
use machine names that map to the city they are serving,
which allows us to assess the correctness of our geolocation
technique.

As opposed to classical approaches that operate in the
geodesic (or Euclidean) space by constructing density maps of
likely positions (see references in [15]), or assessing target lo-
cation to be the center of mass of multiple vantage points [12],
we transform the geolocation task into a classification problem
as in [14]. Specifically, since our output is a geolocation at
city level granularity, we shift the focus from identifying a
geographical locus (lat, lon) ∈ Dp ⊂ R2 to identifying which
city C ∈ N contained in the disk (latC , lonC) ∈ Dp is most
likely hosting the anycast instance.

This focus shift greatly simplifies the problem in two ways:
first, it significantly reduces the space cardinality, and, second,
it allows us to further leverage additional information with
respect to delay or distance measurements, namely the city

population. Our reasoning extends previous work [14], which
argues that IPs are likely to be located where humans are
located: in other words, due to the distribution of population
density, large cities represent the likely geolocation of single-
host unicast IP addresses. We further argue that, since anycast
replicas are specifically engineered to reduce service latency,
they ultimately have to be located close to where users live:
hence the bias toward large cities is again likely to hold for
server side anycast IPs as well.

Our geolocation step outputs IATA airport codes as short-
hand for cities. For each of the discs that is output by the
enumeration phase, some of the over 7,000 airport codes
available worldwide may be contained in the disc. Aside from
the trivial case where a single airport is contained in the disc,
in the general case multiple airports {Ai} ∈ Dp are contained
in any given disc (represented as a cross in Fig. 2). The output
of the geolocation phase can thus be expressed with disc-
airport pairs G = {(Di, Ai)} according to the notation of
Fig. 1.

To guide our selection of the most likely location of a
site, we employ two metrics, namely: (i) the population of
the main city ci that the airport Ai serves, for the reasons
described above, and (ii) the distance between the airport and
the disc border d(p, t)− d(p,Ai), using geographic proximity
as a proxy for topological proximity in the routing space.

For a given disc Dp we compute the likelihood of each
airport {Ai} ∈ Dp for all airports in the disc, as:

pi = α
ci∑
j cj

+ (1− α)
d(p, t)− d(p,Ai)∑
j d(p, t)− d(p,Aj)

(3)

where pi ∈ [0, 1] follows from the normalization over all
airports {Ai} ∈ Dp of the ci (population of the main city
served by airport Ai) and of the d(p, t) − d(p,Ai) (the
distance of the airport i from the disc border) contributions.
A parameter α ∈ [0, 1] tunes the relative importance of
population vs distance in the decision, in between the distance
only (α = 0) vs city only (α = 1) extremes.

Based on the pi values, we devise two maximum likelihood
policies that return either (i) a single Ai = argmaxipi or (ii) all
locations (Ai, pi) annotated with their respective likelihoods.
These policies involve a trade off, as returning all locations
increases the average error (since in case argmaxipi is correct,
it pays the price of incorrect answers for 1 − pi), whereas
returning a single location possibly involves a bigger risk.

E. Iteration

Recall that the enumeration step lower bounds the number
of instances, due to the possibility of overlapping discs. Now,
consider that the geolocation decision in effect transforms a
disc Dp, irrespective of its original radius, into a disc D′

p

centered around the selected airport with arbitrarily small
radius.

Hence, we argue that, provided the geolocation technique is
accurate, it would be beneficial to transform the original set
of discs D by (i) remapping Dp to D′

p and (ii) excluding from
D those discs that contain any of the geolocated cities D′

p.

Da Db Dc

C1C2C3

a b c

Step k

Da

Db

Dc

C1C2C3

a b c

Step k+1

C0C0

Fig. 3. Synoptic of iterative workflow

Consider for the sake of the example the situation depicted
in Fig. 3, where three discs centered around vantage points a, b
and c overlap. Let the solution to the enumeration problem at
step k select vantage point b (hence the smallest disc Db),
and let furthemore the solution to the geolocation problem
select city c1. By coalescing Db around c1 (with arbitrarily
small radius), it follows that at step k + 1 disk Da no longer
overlaps with any other disc, meaning that it would be possible
to discover another anycast instance (i.e., c3 in the example)
that was previously precluded (whereas disk Dc still overlap
and discovery of c0 is still precluded).

Denoting with A(k) the subset of airports geolocated up to
step k, and with G(k) the geolocation at step k (considering
a single airport selected per disk for the sake of simplicity):

G(k) = {(Di, Ai) ∈ E(k)×A(k))} (4)

we have that the dataset D(k + 1) as input to the numeration
problem at step k + 1 would be:

D(k + 1) = D(k)\{Di : ∃(Di, Ai) ∈ ∪ki=1G(i)} (5)

This workflow can be iterated until no further disc can
be added that does not overlap. At each iteration, the set
of geolocalized cities grows, so that the set of discs that
no longer overlap diminishes, which keep the running time
reasonably bounded. Note that iterative operations can be
employed irrespectively of the underlying solver (i.e., brute
force, greedy, etc.).

IV. VALIDATION

We validate our methodology against publicly available
ground truth. For the sake of simplicity, this section considers
just 200 PlanetLab vantage points, and defers to Sec. V a
more comprehensive study with multiple measurement infras-
tructures. We first explain our ground truth dataset (Sec. IV-A),
then perform a calibration of the enumeration (Sec. IV-B), and
the geolocation (Sec. IV-C) tasks.

A. Ground truth

Our technique is not bound to a particular service. However,
we are limited in our validation to the availability of reliable
ground truth: we thus focus on DNS root servers, 12 of 13 of
which use anycast. Indeed, while in general it is challenging
to enumerate the sites of an anycast group and associate each
site with its geographic location, we are able to build a reliable
ground truth for enumeration and geolocation of root servers
F, I, K, and L that are operated by ISC, Netnod, RIPE NCC,
and ICANN respectively.

TABLE I
RECALL OF ANYCAST ENUMERATION ALGORITHMS WITH 200

PLANETLAB NODES. GAIN [%] WITH RESPECT TO THE GREEDY BASELINE
IS REPORTED.

Root server
Algorithm F I K L
Greedy 17 13 9 20
BruteForce 18 +6% 13 - 9 - 20 -
iGreedy 18 +6% 15 +15% 10 +11% 22 +10%
iBruteForce 21 +23% 15 +15% 10 +11% 22 +10%
Dataset CHAOS UB 22 23 11 33
Published GT 55 46 17 128

Operators of the root servers maintain an official website [4]
with maps annotated with the number and geographic distribu-
tion of deployed sites around the world. Additionally we use
existing techniques to reliably disambiguate between different
instances of the same DNS root server, that exploit queries of
the DNS CHAOS class. We stress that CHAOS measurements
are only required to assess the enumeration recall and the
geolocation accuracy of our proposed methodology (that only
relies on distributed delay measurements and is thus not bound
to the specific DNS use-case), but are otherwise not used for
enumeration and geolocation.

To build a reliable ground truth, we issue distributed IPv4
DNS queries of class CHAOS, type TXT, and name host-
name.bind to DNS root servers. Despite the fact that CHAOS
replies do not follow a standard format, some operators use
IATA airport codes (e.g., AMS, PRG in root severs F and L
respectively) and IXPs short names (e.g., AMS-IX, BIX, MIX
in root server K) to name their infrastructure servers. In other
few cases (e.g., root server I), operators use arbitrary codes, but
make publicly available a list that maps site codes to locations.
In sporadic cases, multiple CHAOS names are located in the
same city: as we are interested in locating geographically dis-
tinct anycast replicas, as opposite to enumerating the number
of physical or virtual servers operating on a site, we coalesce
all replicas located in the same site.

B. Anycast Enumeration

We first benchmark the performance of the anycast enumer-
ation technique. We point out that our aim in this section is
not to show the absolute performance (that will be the object
of Sec. V), but rather to relatively compare the performance
of the different solvers (i.e., greedy vs brute force), and to
additionally gauge the impact of the iterative workflow.1

Under this perspective, Tab. I reports the number of anycast
replicas found by solving the maximum independent set prob-
lem |E| for different solvers. Solvers are sorted top to bottom in
increasing performance, and the percentage gain with respect
to the greedy baseline is also tabulated. For completeness, the
table reports the dataset upper bound (UB) and the published
ground truth (GT), which represent the number of distinct
CHAOS names we were able to observe in our dataset, and
the number of distinct servers that are publicly reported on

1The performance of the iterative workflow also depends on the geolocation
policy: we fix for the time being the argmax policy with α = 0.5 and justify
this choice in Sec. IV-C.

the websites of root servers, respectively. From the table, we
gather that the greedy solver achieves in practice performance
that is, in most of the cases, as good as that of the brute
force solution (I, K, L) or anyway comparable (F). More
interestingly, the iterative workflow produces benefits that are
sizeable and consistent across datasets and solvers.

Given the strikingly similar recall performance, and consid-
ering that the running time of iGreedy (hundreds of millisec-
onds) is orders of magnitude smaller with respect to that of
the brute force approach (hundreds to thousands of seconds),
it seems reasonable to limitedly consider the iterative greedy
(iGreedy) solution in what follows. Notice indeed that while
we were able to run the brute force solution on the PlanetLab
dataset, its cost is prohibitive for larger datasets considered
in Sec. V. It also follows that, while refined solutions do
exist [24], they are not appealing due to the good recall and
short running time of the greedy solver.

Before evaluating the accuracy of our anycast geolocation
technique, we proceed with a careful manual validation of
the iGreedy enumeration of servers around the world against
the published ground truth, and encounter only three spurious
cases: one case related to a manifestly wrong location of a
PlanetLab node, as well as two cases where airports are located
few kilometres away from the discs border (which, as servers
are unlikely physically hosted in the airports, is intrisically
tied to imprecision due to the naming convention).

C. Anycast Geolocation

We then precisely assess the impact of the geolocation
parameters, i.e., the distance vs population weighting factor α
and the selection policy argmax vs proportional, by measuring
(i) the percentage of correct classification (i.e., geolocation)
and (ii) the mean geolocation error in kilometers. For any given
disk Dp, let us denote with A⋆ the airport code given by the
ground truth, and further denote with Ai the different airports
that are located in Dp. In case no airport falls in Dp, then we
remove the disk, which allows to include further disks at the
next iteration. Considering the argmax policy, in case A⋆ = Ai

(with i such that argmaxi pi), the classification is accounted
as correct and the error for this instance is Errp = 0Km. In
case A⋆ ̸= Ai, then the classification is erroneous, and off
by a distance Errp = d(Ai, A

⋆). In the proportional policy
instead, the classification is accounted as correct only for
pi (i.e., proportionally to the percentage of time the correct
instance would be selected). The geolocation error for this
instance is then computed over all airports inside the disc,
and weighted according to the respective likelihood of each
airport Errp =

∑
j d(Aj , A

⋆)pj .
Fig. 4 shows the percentage of correct geolocation (left y-

axis) and the mean geolocation error (right y-axis) in kilo-
metres for the different policies (argmax vs proportional) and
weighting factor (α) under study. Again, in this section we are
more interested in the relative comparison and the calibration
of the technique, rather than absolute performance: under
this light, it appears that argmax is preferable to proportional
policy. While this does not hold in general, in the iGreedy so-

0

20

40

60

80

100

C
or

re
ct

 g
eo

lo
ca

tio
n

(%
)

0

200

400

600

800

1000

 M
ea

n
ge

ol
oc

at
io

n
er

ro
r

(k
m

)

α=0 α=0.5
proport ional

α=1 α=0
argmax
α=0.5 α=1

Correct geolocation (%)
Mean geolocation error (km)

Fig. 4. Geolocation performance with 200 PlanetLab nodes: Percentage of
correct geolocation and mean geolocation error for different policies (argmax
vs proportional) and weighting factor (α).

Fig. 6. Enumeration and geolocation of sites for root server L with iGreedy

lution disks having small size are more represented: it follows
that distance-based criterion is already fairly accurate, and
can be additionally improved by properly taking into account
knowledge about city population. Hence, in the remainder of
this work we consider an argmax policy that equally weighs
distance and population (α = 0.5), which leads to jointly high
geolocation correctness and low error.

V. MEASUREMENT CAMPAIGN

We now report results of our measurement campaign, that
include multiple datasets gathered at different times, and using
different measurement infrastructure (Sec. V-A). Specifically,
our main aim is to critically compare our results to the state
of the art (Sec. V-B) and to further assess the robustness of
our methodology to vantage point location (Sec. V-C). All our
results are browsable at [18].

A. Datasets

We collect datasets from multiple measurement infrastruc-
tures (PlanetLab, RIPE) and protocols (ICMP ping, DNS
CHAOS application layer measurements). In this section, we
consider ICMP measurements over both PlanetLab and RIPE,
and build our ground truth as early explained in Sec. IV-A.

In the case of PlanetLab [22], we perform measurements
from about 200 nodes located in 26 countries. Node geoloca-

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Overhead

iGreedy CHAOS [1]CCG [2]

N
um

be
r

of
 v

an
ta

ge
 p

oi
nt

s

200 VPs
RIPE

310x

1000x

0

10

20

30

40

50

60

70

80

90

100
Recall

iGreedy CHAOS [1]CCG [2]

R
ec

al
l (

%
)

↓

53%

72%
UB CHAOS

86%

N/A
0

10

20

30

40

50

60

70

80

90

100
Geolocation accuracy {Err = 0}

iGreedy CHAOS [1]CCG [2]

C
or

re
ct

 c
la

ss
ifi

ca
tio

n
(%

) 78%

N/A ∼0%
0

100

200

300

400

500

600

Geolocation error

iGreedy CHAOS [1]CCG [2]

M
ed

ia
n

(k
m

)

271 km

N/A

556 km
CCG not filtered

26 km

Fig. 5. Performance of iGreedy: Comparison of probing overhead, recall, geolocation accuracy, and geolocation error for misclassified instances with the
state of the art [11], [12]. Notice that while [11] are directly quantitative comparable, comparison with [12] can be qualitative at best.

tion is provided by PlanetLab, and the PlanetLab Europe nodes
position is validated with unicast geolocation techniques.

In the case of RIPE [22], we perform measurements from
over 6000 nodes located in 350 ASes and 122 countries.
Geolocation of RIPE nodes is provided by the users hosting a
node. If this information is missing, RIPE finds the location
using MaxMind [1] over the IP address of the node.

Since the full RIPE infrastructure comprises 30 times more
nodes than PlanetLab, we also consider a subset having
approximately the same size, where we select nodes in a
stratified sampling as a function of the distance (to ensure
geographic vantage points diversity). Unless otherwise stated,
results reported in the following are gathered with this dataset,
that we denote RIPE200.

B. Comparison against state of the art

1) Eye candy: For the sake of illustration, Fig. 6 reports
an example of results for root server L (iGreedy, argmax,
α = 0.5). The map reports vantage points (black dots) and the
results of iGreedy as shaded disks that contain either correct
X or erroneous × geolocation markers (and in the last case the
location of the ground truth P as well). The map additionally
reports instances that are missed M , either because they are
not observed in our measurement, or because they are observed
in disks that overlap (represented as circles with no shading).

Several interesting observations are worth making. First,
note that despite the very large discs around some vantage
points, the MIS formulation factors them out so that no false
positives are raised. Second, notice an example of vantage
points that our iterative workflow allows to include (i.e., discs
of the Bruxelles and Paris vantage points intersect). Third,
population bias yields to misclassification for the point located
in Porto, Portugal: this vantage point exhibits a relatively large
latency (6 ms) to hit a target also located in Porto, so that the
disk is large enough to include Madrid (population of 3.3M)
which is an order of magnitude more populated than Porto
(population of 250K). Refinement of the classification tech-
nique is part of our future work (e.g., using logarithmic instead
of linear weighting of city population, including distance in
the AS space [25], etc.).

2) Comparison at a glance: Fig. 5 summarizes the results
discussed in this section. As references for comparison, we
take [11], [12]. Notice that the enumeration results of [11]
are directly quantitatively comparable, as [11] employs F and
other root servers as a case study. Geolocation results of
the Client-Centric Geolocation (CCG) technique recently pro-
posed in [12] are instead only qualitatively comparable, as they
target the Google infrastructure. Yet, qualitative comparison
allows to gain some interesting methodological insights, that
are worth illustrating.

At a glance, Fig. 5 shows that iGreedy (a) reduces the mea-
surement overhead by several orders of magnitude with respect
to [11], [12], (b) has comparable yet lower enumeration recall
than [11], (c) is able to correctly guess instance location 3/4
of the time unlike [11], [12], (d) has a comparable geolocation
error to [12] for the misclassified anycast instances. Not shown
in the picture, our methodology is protocol agnostic, unlike
[11], [12] that both rely on DNS.

3) Enumeration: Enumeration results are directly compara-
ble, as [11] employs root servers as a case study. We therefore
dig further the comparison in Fig. 7. Interestingly, while [11]
achieves 100% recall for root servers F and I and 94% and
73% recall for root servers K and L, it does so by issuing
DNS CHAOS queries from 62K vantage points (the Netalyzr
dataset). In contrast, using only 200 RIPE nodes and the same
type of queries, we achieve close recall values for root servers
I, K and L (93%, 88%, and 63% respectively). Intuitively,
anycast detection relies on the availability of geographically
dispersed vantage points. Intrinsically, this means that the
datasets used in [11] are highly redundant. Specifically, while
the Netalyzr [26] dataset contains over 62k data points, these
include possible multiple trials from the same users; similarly,
if Netalyzr is popular in a given region, the availability of
several points is not useful to increase the overall recall. The
same goes for the 200k recursive DNS resolvers exploited
by [11], [12] – a clear overkill.

As expected, iGreedy enumerates then only a subset of the
CHAOS upper bound (UB) with a recall that remains above
55% (except for root server L). While these results are already
satisfactory as they are performed from only a handful of

F I K L
0

20

40

60

80

100

R
e
c
a
ll

(%
)

CHAOS − 62k VPs Netalyzr [1]

CHAOS UB − 200 VPs RIPE

iGreedy − 200 VPs RIPE

Fig. 7. Enumeration of anycast servers: Comparison of recall with iGreedy
over 200 RIPE nodes vs method in [11] from 62k Netalyzr vantage points.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Error (km)

C
D

F

iGreedy

CCG − with filtering

CCG − no filtering

Fig. 8. Geolocation: Comparison of distance error with iGreedy over 200
RIPE nodes vs CCG [12] methodology issuing 4M requests over 200k open
recursive DNS resolvers. As previously explained, this comparison has to be
interpreted in qualitative terms.

vantage points, and additionally allow precise geolocation of
the anycast instances, as future work, we aim at increasing
iGreedy recall. A promising direction is to merge multiple
iGreedy solutions (which is possible due to the very low
running time of iGreedy), performed over several selections
of fewer vantage points from the same dataset (as chances of
overlap reduce, each selection hopefully yields to discovery
of some new instances; and since selections are independent,
the expected overall recall would increase as well).

4) Geolocation: We finally qualitatively compare geoloca-
tion accuracy against CCG [12] in Fig. 8, where it is worth
stressing once more that [12] focuses on the geolocation of
Google front-end servers, so that the results are not directly
comparable in quantitative terms. Yet, as our study is the first
to propose anycast geolocation, [12] is the closest technique
we can compare with.

First, CCG [12] leverages 200k recursive DNS resolvers to
issue over 4M special EDNS-client-subnet queries including
IPv4 ranges that would be typical of real Internet clients –
hence the Client-Centric Geolocation (CCG) name. Depending
on the IPv4 range, the Google DNS server returns a specific
replica to be contacted: CCG geolocates such replica in the
center of mass of all client IPs directed to this replica, where
each client IP is geolocated via MaxMind. As it can be seen
from Fig. 8, the CCG has a non negligible error that is
intrinsically tied to the accuracy of the MaxMind database
[17]. In contrast, in expressing the geolocation task as a

TABLE II
ROBUSTNESS WITH RESPECT TO VANTAGE POINT SELECTION

RIPE PlanetLab
Subset full rand strat full
Dataset cardinality 6000 500 200 200
iGreedy / CHAOS UB 76% 52% 73% 73%
iGreedy / GT 61% 28% 53% 26%
CHAOS UB / GT 80% 54% 72% 36%
Geolocated 76% 63% 78% 74%
Mean geolocation error (km) 333 569 361 162
iGreedy 149 68 127 65
Dataset CHAOS UB 196 132 174 89
Published GT [F,I,K,L] 246 246 246 246

classification problem, our technique yields 0 km error for 78%
of the enumerated servers and 271 km median error for the
misclassified instances.

Additionally, to get rid of noise, CCG proposes to filter out
from the cluster vantage points having a distance that exceeds
the average by one standard deviation (over each cluster).
While this filtering step improves significantly the accuracy of
the geolocation, as it can be seen from Fig. 8, iGreedy is still
better for the majority of the cases (notice the crossover of the
two curves), despite the tail of the error distribution is higher
(that could be upper-bounded with filtering, say all circles
whose radius exceeds the average by one standard deviation
– which we prefer to avoid).

Additionally, CCG filtering also leads to squander of net-
working and processing resources. In other words, not only are
a huge number of vantage points used (200k, which is 1000x
more than in our approach), but also quite a significant number
of the results from these points (e.g., about 20% or 44k in case
delays were normally distributed) are discarded a posteriori. In
contrast, our geolocation technique starts from a parsimonious
number of vantage points. It then selects only a single reliable
vantage point as output of the enumeration phase (i.e., likely
among the closest to the instance), after which it performs
an informed decision (biased on the city population and the
distance from the border).

C. Robustness with respect to vantage point selection

Finally, we assess the robustness of the methodology to
changes in the vantage points selected. Tab. II summarizes the
performance of iGreedy across 4 datasets of different cardinal-
ity. Interestingly, we observe that the number of vantage points
has little effect on the recall. By applying a naive selection
policy on the 6000 RIPE vantage points which consists in
selecting 200 vantage points that are at least 100 km distant
from each other, we are able to enumerate 127 servers out of
the 149 discovered by the full set of vantage points (with a
mean geolocation error of 361 km). The recall declines with
the PlanetLab dataset which hints that the 200 vantage points
selected there do no have good geographical coverage. Clearly,
since the number of anycast instances does not exceed 246
for the selected root servers, it is enough to choose hundreds
of vantage points that cover the top ASes and the highly
populated areas for the enumeration task. A systematic study

of vantage point selection is on our research agenda.

VI. RELATED WORK

There has been much research on geolocation [13]–[17].
While both measurement-based geolocation techniques [13]–
[15] and databases [16], [17] have been thoroughly studied in
the unicast field, geolocation of anycast instances is, to the
best of our knowledge, a green field so far. While anycast has
been the object of much research, most studies either evaluate
the performance of IP anycast deployments [20], [21], [27] or
propose architectural improvements [20], [28], [29]. Hence, to
date only very few studies addressing anycast detection [10],
[11], enumeration [11], and especially geolocation [12] of the
infrastructure of anycast services exist. Yet, with no exception,
despite the fact that anycast is increasingly used for CDNs
[9], all the above studies exploit protocol specific information
(DNS CHAOS queries in [11] or EDNS extension [12]), unlike
our work.

Additionally, a trend towards an increasing number of
vantage points was inititated at 20k points [21] and has
culminated at 200k recursive DNS resolvers + 60k Netalyzr
datapoints [11], [12]. While the earlier work acknowledges that
“measurements from a smaller set of PlanetLab nodes [. . .]
were consistent with the larger-scale measurements” [21],
the more recent work states that “10,000 vantage points are
required to reach a recall of 80%” and that “90% recall is pos-
sible on-demand [...] with 300k recursive DNS servers” [11].
Our results show this increase to be unjustified.

VII. CONCLUSION

We propose a novel methodology to reliably and accu-
rately enumerate and geolocate IP-level anycast replicas. An
enumeration task efficiently solves a maximum independent
set optimization problem, and a geolocation task successfully
exploits side information such as city population to identify
the city hosting the instance, feeding back this information
in an iterative workflow. As our methodology does not rely
on protocol specific information, its scope of application is
larger than that of existing methodologies. Additionally, as our
methodology is lightweight, it enables large scale continuous
anycast discovery services. As a side note, due to our design
choice to avoid false alarms, the very same service could
be useful in detecting IP hijacking. We validate our method
and contrast it to state of the art techniques, showing that a
handful of vantage points suffices to provide recall [11] and
accuracy [12] similar to large-scale techniques.

As we have shown, vantage point location is crucial: we
argue that the choice of these points should leverage Internet
(e.g., AS number, or IP address) and BGP (e.g., routing
distance [25]) knowledge beyond the geographical information
exploited in this paper. A related open question concerns
the attainable degree of parallelism: i.e., while accuracy is
unchanged when 200 vantage points are carefully selected out
of 6000, it is unclear how many orthogonal subsets of these
200 points share the same properties. Finally, we argue that
an even more efficient approach would be to start from a very

small set of vantage points (say, 10) and incrementally add
points, using statistical tests on the expected residual number
of instances not discovered yet as a stop criterion. These
questions are on our research agenda.

XIÈXIE

This work has been carried out at LINCS
(http://www.lincs.fr). The research leading to these results
has received funding from the European Union under the FP7
Grant Agreements no. 318627 (Integrated Project ”mPlane”).

REFERENCES

[1] https://www.maxmind.com.
[2] C. Partridge, T. Mendez, and W. Milliken, “Host anycasting service,”

IETF RFC 1546, 1993.
[3] T. Hardie, “Distributing Authoritative Name Servers via Shared Unicast

Addresses,” IETF RFC 3258, 2002.
[4] http://www.root-servers.org.
[5] https://www.as112.net.
[6] D. Kim, D. Meyer, H. Kilmer, and D. Farinacci, “Anycast Rendevous

Point (RP),” RFC 3446, 2003.
[7] C. Huitema, “An Anycast Prefix for 6to4 Relay Routers,” IETF RFC

3068, 2001.
[8] B. R. Greene and D. McPherson, “Sink holes: A swiss army knife isp

tool,” Nanog, 2003.
[9] http://www.edgecast.com.

[10] D. Madory, C. Cook, and K. Miao, “Who are the anycasters,” Nanog,
2013.

[11] X. Fan, J. S. Heidemann, and R. Govindan, “Evaluating anycast in the
domain name system.” in Proc. IEEE INFOCOM, 2013.

[12] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govin-
dan, “Mapping the expansion of google’s serving infrastructure,” in Proc.
ACM IMC, 2013.

[13] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, “Constraint-based
geolocation of internet hosts.” in Proc. ACM IMC, 2004.

[14] B. Eriksson, P. Barford, J. Sommers, and R. Nowak, “A learning-based
approach for IP geolocation,” in Proc. of PAM, 2010.

[15] B. Eriksson and M. Crovella, “Understanding geolocation accuracy using
network geometry,” in Proc. IEEE INFOCOM, 2013.

[16] Y. Shavitt and N. Zilberman, “A geolocation databases study,” IEEE
Journal on Selected Areas in Communications, vol. 29, no. 10, 2011.

[17] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP
geolocation databases: Unreliable?” ACM SIGCOMM CCR, 2011.

[18] http://www.enst.fr/∼drossi/anycast.
[19] S. Sarat, V. Pappas, and A. Terzis, “On the use of anycast in DNS,” in

Proc. ICCCN, 2006.
[20] H. Ballani and P. Francis, “Towards a global IP anycast service,” in

Proc. ACM SIGCOMM, 2005.
[21] H. Ballani, P. Francis, and S. Ratnasamy, “A measurement-based de-

ployment proposal for ip anycast.” in Proc. ACM IMC, 2006.
[22] https://www.planet-lab.org.
[23] https://atlas.ripe.net.
[24] K. Jansen, “Approximation algorithms for geometric intersection

graphs,” in Graph-Theoretic Concepts in Computer Science, 2007.
[25] G. Gürsun, N. Ruchansky, E. Terzi, and M. Crovella, “Routing state

distance: A path-based metric for network analysis,” in Proc. ACM IMC,
2012.

[26] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: illumi-
nating the edge network,” in Proc. ACM IMC, 2010.

[27] Z. Liu, B. Huffaker, M. Fomenkov, N. Brownlee, and K. C. Claffy, “Two
days in the life of the DNS anycast root servers.” in Proc. of PAM, 2007.

[28] M. J. Freedman, K. Lakshminarayanan, and D. Mazières, “Oasis:
Anycast for any service,” in Proc. USENIX NSDI, 2006.

[29] D. Katabi and J. Wroclawski, “A framework for scalable global ip-
anycast (gia),” in Proc. ACM SIGCOMM, 2000.

