
To the Moon and back: are Internet

bufferbloat delays really that large?

Chiara Chirichella and Dario Rossi

Telecom ParisTech, Paris, France

first.last@enst.fr

Abstract—Recently, the “bufferbloat” term has been coined to
describe very large queuing delays (up to several seconds) experi-
enced by Internet users. This problem has pushed protocol designer
to deploy alternative (delay-based) models to the standard (loss-
based) TCP best effort congestion control. In this work, we exploit
timestamp information carried in the LEDBAT header, a protocol
proposed by BitTorrent as replacement for TCP data transfer, to
infer the queuing delay suffered by remote hosts. We conduct
a thorough measurement campaign, that let us conclude that (i)
LEDBAT delay-based congestion control is effective in keeping the
queuing delay low for the bulk of the peers, (ii) yet about 1% of
peers often experience queuing delay in excess of 1 s, and (iii) not
only the network access type, but also the BitTorrent client and the
operating system concurr in determining the bufferbloat magnitudo.

I. INTRODUCTION

Sending packets over the Internet sometimes takes more than

Earth-to-Moon communication: one-way propagation delay in the

latter case takes slightly more than one second, while TCP/IP

packets sometimes gets queued for several seconds [7], [12].

Reasons under this phenomenon, for which the “bufferbloat”

term was reacently coined [7], are due to excessive buffer sizes

coupled to TCP congestion control mechansim: as TCP halves its

sending window as a reaction to losses, the buffer forcibly has to

fill. Notice that buffer sizes involved are often small in absolute

terms (few KBs), but are large relatively to capacity (few Kbps)

of the narrow cable, ADSL or WiFi links in front of these buffers,

translating into possibly very large queuing delays. Notice also

that the problem is hardly solved by reducing the buffer size: this

is clearly understood considering WiFi links, where the range of

capacities for the same AP-client pair depends on the signal to

noise ratio and may vary by orders of magnitude at any moment.

While the problem has been known for quite some years

now [8], Moore’s law has driven down manufactures cost, making

large buffer sizes cheaper. To make the point, [10] assesses the

relative popularity of different set-top-boxes. The top-10 models

account have an average buffer size of 136KB. The most popular

model, that represents nearly 40% of all samples, has the smallest

buffer among all models (48KB), that would however translate

into 1 sec worth of queuing delay for the common uplink capacity

of 384Kbps.

Clearly, bufferbloat could be worst for other models, as indeed

authors of Netalyzr [12] show. At the same time, we point out that

Netalyzr methodology exposes by design the maximum achiev-

able bufferbloat, as it saturates a link with a backlogged transfer

lasting for several seconds. However, currently little is known

about the typical bufferbloat that users experience during their

daily Internet activities: as such, while the networking community

is aware of the problem existence and of the magnitudo of its

worst case, it mostly ignores its typical instance.

In this work, we measure the typical bufferbloat by exploiting

LEDBAT, a novel delay-based protocol used by BitTorrent as

a replacement of TCP for data swarming, that has lately been

standardized at the IETF. We design our methodology such that

we are able to passively monitor the upstream queuing delay of

any remote host that is sending BitTorrent data chunks to one of

our controlled (but otherwise unmodified) BitTorrent peers. We

note that is perfectly in line with the Dasu approach [6], that

advocates to move the ISP characterization toward the network

edge. We stress that Dasu as well leverages BitTorrent for Internet

measurement: as BitTorrent is a well established and popular

application, it has the ability to reach a large user-base.

Our main contributions are as follows. First, we implement

the bufferbloat methodology in Tstat [1], a popular flow-level

logger – as we are currently in the process of merging our

patches in the main Tstat trunk, we make the software available

upon request in the meanwhile. Second, we carry on a fairly

large measurement campaign, involving probes connecting to 12

torrents, from 3 vantage points for a total of 88 experiments

in which we contacted over 25K external peers – in spirit of

the TMA workshop series, we make these traces available at

[2]. Third, we analyze the dataset in order to make a valuable

assessment of the typical bufferbloat experienced by BitTorrent

users. Our methodology is able not only (i) to accurately describe

the bufferbloat delay typically encountered by BitTorrent users,

e.g., in terms of per-peer average and percentiles, but also (ii)

to give partial explanation of its root causes, e.g., relatively

weighting the impact of the BitTorrent client, operating system,

or access type of different peers. We find that (i) while the bulk

of the users have a moderate bufferbloat, a small percentage of

users is significantly impacted and that (ii) not only the type of

access network, but also the BitTorrent client and the operating

system have a sizeable impact in determining user experience.

II. METHODOLOGY

A. Bufferbloat inference

To gauge remote bufferbloat delay, we collect one-way delay

(OWD) samples di, establishing the minimum as a baseline

delay minj≤idj , and then equating the queuing delay qi as the

difference of the current sample with respect to the baseline

qi = di−minj≤idj . Intuitively, a packet finding an empty queue

at the bottleneck will incurr the propagation delay component

only (minj≤idj).

We point that this is a classic approach used in congestion

control to drive congestion window dynamics: early work on this

subject date back in late 1980s and more recently LEDBAT [14]

followed suit. Our innovation is to demonstrate how a passive

observer of LEDBAT traffic can exploit this approach to estimate

the uplink delays of remote hosts.

trx,i-1 ttx,i-1 -

trx,i-1

ttx,i

ttx,i-1

ttx,i+1

trx,i

trx,i+1

ttx,i+1

ttx,i

trx,i ttx,i -

A B

i:

i+1:

Fig. 1. Remote buffer measurement methodology

Fig. 1 illustrates our methodology. Based upon information

directly available in LEDBAT packet headers, once it has seen

3 packets (the moment is marked by a star), a passive observer

O is able to estimate the queuing delay experienced by packet

i of host B. These delays may result from all upstream traffic

from B, including flows other than the one being observed and

most importantly, possibly directed to other hosts than A, and of

which thus the observer has no knowledge.

In the absence of framing specification in the LEDBAT stan-

dard, our protocol parser is based on BitTorrent’s currently

implemented BEP-29 definition [3]. This specifies a header field,

named “timestamp” in Fig. 1, that the sender fills with its local

clock. On reception of a new packet, the receiver calculates the

OWD as the difference between its own local clock and the

sender timestamp, and sends this value back to the sender in

another LEDBAT header field, named “ack.delay” in Fig. 1. In

this way, each acknowledgement packet conveys the estimated

OWD incurred by the most recently received data packet: upon

reception of an acknowledgement, the sender infers the queuing

delay from simple operations on the packet headers, and uses this

information to grow/shrink the congestion window [14]. At high

level, LEDBAT strives to add a small fixed amount of additional

“target” queuing delay: once the inferred queuing delay reaches

the target, the congestion window settles and no longer increase

(unlike in the TCP case).

As the observer close to A sniffs the packets, it performs

the same state updates as does the LEDBAT congestion control

protocol running on A. Notice that there is no need for the

passive observer to estimate the clock of the probe host A: all the

needed information are carried in the LEDBAT header. At each

packet reception, the observer updates the base delay βBA as the

minimum over all OWD B → A samples:

βBA = min(βBA, t
A
rx,i − tBtx,i), (1)

qBi = (tArx,i − tBtx,i)− βBA (2)

Then, the queuing delay qBi incurred by packet i can be inferred

by subtracting βBA from the timestamp difference carried in

packet i + 1. Whereas the base delay is dependent upon the

unknown offset between the clocks at B and A, the queuing delay

is independent of the offset, as the offset cancels in the difference

operation.

B. Validation and coupling bias

In a controlled testbed, we have carefully validated the method-

ology, that yields to extremely reliable results against the ground-

truth provided by kernel-level queue length measurement. While

validating the above methodology is imperative, in this work we

focus on applying the methodology at large, so to assess the

current state of the Internet bufferbloat – a more interesting and

challenging subject. We refer the reader to [9] or to a companion

technical report available at [2] for more details of the validation.

Yet, before proceding in our analysis, an important point is

worth stressing. As our bufferbloat measurement methodology

opportunistically exploits data transmission over LEDBAT, this

implies that our bufferbloat sampling process is governed by the

very same LEDBAT window dynamics.

According to the LEDBAT standard, once the sender measures

the queuing delay qi with (2), it then reacts via the following

congestion window (cwnd) dynamics:

cwndi+1 = max(1, cwndi + γ(τ − qi)/(τcwndi) (3)

where γ and τ (respectively “GAIN” and “TARGET” in the

standard terminology) are set to 1 and 100 ms by default [14].

From (3), it is evident that the number of qi samples gathered

in a RTT will be affected by the value of the queuing delay qi
itself. More precisely, when the queuing delay exceeds the target

(qi > τ) due, e.g., to other traffic crossing the same bottleneck,

LEDBAT reduces the window (when τ − qi < 0 then cwndi+1 <
cwndi): if the cross traffic persists and the delay grows, LEDBAT

reduces its sending rate down to a minimum1 of 1 packet per RTT.

This means that, whenever the queuing delay is large, we expect

to receive few packets: hence, in case every sample is equally

weighted, large queueing delays are undersampled.

Conversely, when no other traffic than LEDBAT is active on

the bottleneck link, by definition LEDBAT strives to yield a target

τ queuing delay and settles the congestion window growth when

the target is reached. We thus expect to receive many samples2

carrying values close to τ : hence, in case every sample is equally

weighted, τ -long queueing delays are oversampled.

Illustrative examples of this phenomenon are shown in Fig. 2

and Fig. 3. In more details, Fig. 2 examplifies the temporal

evolution of (i) the number of samples in a ω = 1 s window

(left y-axis, with empty point ◦) vs (ii) the value of queuing

delay qi (logarithmic scale, right y-axis, with filled point •). Top-

right plot shows the example of a controlled testbed experiment

used in our validation, where we artificially inject cross TCP

traffic at periodic times, by transferring files of exponentially

increasing size at each subsequent period. In this particular case,

it is possible to observe that congestion window stays often at

its maximum value (in absence of TCP traffic) or drops to the

minimum value (in presence of TCP traffic). The other plots

report the case of peers in our Internet experiments. Top-left peer

achieves very steady queuing delay, unlike peers in the bottom

plots (right: ADSL; left: WiFi), whose queuing delay however

fluctuates around τ =100 ms as expected.

1Minimum sending rate ensures that the LEDBAT sender continues to period-
ically measure the queuing delay, and opportunistically grow the window again
when the other traffic slowsdown or stops.

2The exact number of samples depends on the bandwidth-delay product: e.g.,
for instance, to fill a 1Mbps link about cwnd=4 packets are needed when
RTT=50ms and cwnd=21 when RTT=250ms.

 1

 10

 100

 1000

l
 Q

u
eu

in
g
 d

el
ay

 [
m

s]

 1

 10

 100

 1000

 0 20 40 60

 0
 10
 20
 30
 40
 50

m
 N

u
m

b
er

 o
f

sa
m

p
le

s
d
u
ri

n
g
 ω

=
1
s

Qi delay
samples

 0 20 40 60
 0

 10

 20

 30

 40

 50

Time [s]

Fig. 2. Examples of temporal evolution of (i) the number of samples in ω = 1 s
windows vs (ii) the value of queuing delay qi samples

 0

 10

 20

 30

 40

 50

 10 100 1000

S
am

p
le

s
in

 ω
=

1
s

Queuing delay [ms]

Absence
of TCP

Presence
of TCP

 1 10 100 1000

Few samples,
small queue

Many samples
target queue

Few samples,
large queue

Fig. 3. Scatter plot of the per-packet queuing delay versus the number of samples
in ω = 1 s windows. Controlled testbed peer (left, corresponding to Fig. 2 top-left)
vs Internet peers (right, corresponding to Fig. 2 top-right).

Fig. 3 shows instead a scatter plot representation of peers in

the top plots of Fig. 2. For each ω = 1 s window, where a

number s of samples are carried by individual LEDBAT packets,

all qi samples with i ∈ [0, s] ⊂ N gathered in that window are

shown in the plot as (qi, s) pairs. Left plot of Fig. 3 refers to

the controlled testbed peer of top-left plot of Fig. 2: in this case,

LEDBAT is continuously transmitting, with periodic TCP cross-

traffic interference. Two regions can be identified: either (i) a

full window worth of packets carries queuing delay close to the

LEDBAT target (absence of TCP), or (ii) due to excessive queuing

the number of samples falls down to about one per RTT (presence

of TCP). Right plot of Fig. 3 instead refers to the Internet peer

of top-right plot of Fig. 2. Three regions can be discerned in this

case: (i) a low-delay sample-sparse zone, when peers send few

traffic in non-backlogged mode (e.g., at the beginning of a flow,

see Fig. 2 toward t = 0), then (ii) a moderate-delay samples-

dense zone (around queuing delay target τ , where oversampling

possibly occurr) and (iii) a high-delay sample-sparse zone (where

undersampling possibly occurr).

This potential measurement bias is intrinsic to the coupling of

the measurement process with the LEDBAT cwnd dynamics: a

very simple but effective countermeasure is to make the measure-

ment process asynchronous with respect to the window dynamics.

In other word, rather than counting every packet as a sample, we

batch packets in staggered windows of short temporal duration ω.

Periodically, we compute statistics over the packets arrived during

the window: we use the average of the aggregate as bufferbloat

sample of the new process.

In more detail, denote with tOi+1 the time at which the (i+1)-

th acknowledgement packet carring information to compute the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

C
D

F

Queuing delay [ms]

qi
Qi (ω=1)
Qi (ω=5) 0.001

 0.01

 0.1

 1

 1
0

 1
00

 1
00

0

 1
00

00

V
o
IP

W
eb

Fig. 4. Cumulative distribution function of per-packet biased (q) and windowed
unbiased (Q) queuing delay statistics

queuing delay qBi incurred by the i-th data packet (i.e., tOi+1 is the

time marked with a star in Fig. 1, which is larger than tAtx,i+1, the

transmission time of the (i+1)-th packet from A). Then, denote

as QB
k the measurement sample aggregating information gathered

from samples received during the k-th window [kω, (k + 1)ω):

QB
k = E[{qBi : tOi+1 ∈ [kω, (k + 1)ω)}i] (4)

It is intuitive that in case the LEDBAT sender B is transmitting

at full bottleneck rate, multiple qBi = τ samples3 will be counted

as a single QB
k = τ sample. Similarly, when the queue is full and

the LEDBAT sender rate is minimal, the possibly unique4 qBi
sample will be counted once by QB

k , eliminating thus the bias.

We now compare the biased qi and unbiased Qk statistics, for

two values of ω = {1, 5}s. Notice that the choice of ω is guided

by the timescale of user activities and is correlated with quality

of experience estimation. For every window of duration ω, we

want to assess what are the typical delay users can expect to

wait. A ω = 1s duration is thus very relevant for both inter-

active VoIP/gaming communication and Web traffic. Concerning

VoIP/gaming, an average Qk ≥ 150ms is symptomatic of bad

QoE during the k-th window [4]. Concerning Web traffic, notice

that the serial actions performed by the browser (e.g., DNS

lookup, TCP three-way handshake at layer-4, and subsequent

HTTP GET at layer-7) all incurr the queuing delay, so that

Qk ≥ 1s is symptomatic of bad QoE.

We show in Fig. 4 the distribution of the biased qi and unbiased

Qk statistics for ω = {1, 5}s. Notice that there may be samples

Qk, obtained during the k-th window, reporting values larger than

the window ω itself. We point out these to be valid samples:

indeed, since LEDBAT minimum sending rate is 1 packet per

RTT, this happens whenever the RTT exceeds ω due to the

queuing delay. For this reason, we also consider a larger window

ω = 5s, though in this case we loose a precise time granularity (an

average Qi over ω = 5 s large windows is less telling as far as user

QoE is concerned). As Fig. 4 shows, the Cumulative Distribution

Function (CDF) of all packet-level queuing delay samples qi is, as

we early argued, biased to a systematic underestimation of high

queuing delays. This is solved in the windowed approach, that

furthermore exhibits very similar statistics for both ω = {1, 5} s.

This is even more evident in the Complementary CDF (CCDF)

depicted in the inset of Fig. 4, showing that while only about

1/1000 qi samples exceeds 10 seconds of queuing delay, a

windowed Qi estimate corrects this amount to 1/100 when for

3Whose number is cwnd · ω/RTT
4In this case cwnd=1 and due to queuing delay, RTT can grow larger than ω

TABLE I
TORRENTS DESCRIPTION

Size (GB) 0.06 0.08 0.2 0.1 1.4 1.2
Type B B S G G G
Seeds 30 86 40 50 57 65

Size (GB) 0.5 0.2 0.04 1.5 0.7 0.7
Type D D P V V V
Seeds 93 92 79 236 8132 9635

(B)ooks, (G)ames, (S)oftware, (D)ocumentary, (P)odcast, (V)ideo

ω = 1 (and to 2/100 for ω = 5). That is to say, for 1% of

1 s long windows, new browsing sessions may be terribly slow;

placing new VoIP calls may be significantly delayed, and user

may equate this with call being blocked; finally, ongoing VoIP

calls and game sessions may suffer from seldom QoE disruption.

Since our evaluation of LEDBAT testify its low priority [13],

queuing delay is likely due to interfering TCP traffic, that is

not necessarily due to BitTorrent swarming. Still, we notice

that presence of BitTorrent TCP traffic is possible due to (i)

firewalls blocking UDP, as BitTorrent’s LEDBAT incarnates as an

application-layer protocol encapsulated in UDP at transport layer,

or (ii) legacy clients that do not implement LEDBAT congestion

control, or (iii) uTorrent clients having disabled LEDBAT/uTP by

tweaking the bt.transp_disposition parameter.

Overall, this preliminary analysis let us conclude that (i)

a non marginal fraction (1%) of 1 s windows samples incurr

queuing delay in excess of Earth-to-Moon delay, and that (ii)

batching packets in windows decouples delay statistics from the

undergoing LEDBAT dynamic cwnd adjustment process. Since

only minimal difference arise for ω = {1, 5} s in the following

we limitedly consider 1s long windows as they are more relevant

for user QoE.

III. DATASET

We apply the previously described methodology to an active

measurement campaign, involving heterogenity of torrents, clients

and vantage points. The experimental campaign was performed

over a 8-month period during 2012, principally using uTorrent

and Transmission in their default configurations, for a total of

88 experiments. Clients were run from 3 vantage points in Italy,

France and Austria, from which we obtained about 23 GB of raw

packet traces, that we make available at [2].

To avoid being biased on a specific content type, size and

popularity (the latter correlated with the swarm size), we let our

probes join several (legal) torrents gathered from Mininova. As

reported in Tab. I, torrents span different categories (2 eBooks, 2

games, 1 software, 2 documentaries, 1 podcast and 3 videos), file

sizes (ranging from 56 MB for an eBook to 1.5 GB for a video,

and number of seeds (from 30 for the least popular eBook to

9,635 for the most popular video).

Specifically, a probe under our control joined several torrents

as a leecher, end exchanged data with remote peers over either

LEDBAT (when available) or TCP (legacy clients). Though our

methodology also applies to TCP traffic [2], in the following we

limitedly focus on queuing delay samples gathered by LEDBAT

traffic. As LEDBAT has become BitTorrent default congestion

control protocol, replacing thus TCP, this choice is not detrimental

to the extent of our analysis: indeed, according to Brahm Cohen

and to our own measurements more than half of the BitTorrent

traffic is now carried over LEDBAT.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

C
D

F

Queuing delay Q
P
 [ms]

90-th
95-th
99-th

Fig. 5. Distribution of per-peer queuing delay percentiles

Overall, our BitTorrent probes exchanged with 24,678 external

peers, about half of which transferred data using LEDBAT (over

which we gathered, e.g., Fig. 4). Clearly, an host may partici-

pate into multiple swarms. Furthermore, as our experiments are

repeated with different clients, we can thus encounter the same

external peer multiple time over our experimental campaign. This

is indeed the case, as we find 8914 unique IP addresses. Among

these peers, in order to gather statistically meanignful results, we

require a minimum amount of queuing delay samples qBi per peer:

we only consider peers yielding at least 25 queuing delay samples

(or 50 packets). Notice that, in case we encounter a peer multiple

times in our experiments, we count it (at most) once per each

experiments in which it appears (for each experiment, the peer

is considered provided that it sends 50 packets). In the reminder

of the analysis, we focus on this peer subset, consisting of 6,896

peers (1,931 unique IPs).

IV. ANALYSIS

A. Bufferbloat observation

First, we start by considering the distribution of the queuing

delay percentiles over all peers. Intuitively, the 90, 95 and 99-th

percentiles statistics are related to the queuing delay experienced

by a peer during the most highly loaded 10%, 5% and 1%

observation windows respectively.

While Fig. 4 contrasted per-packet qi vs windowed Qi queuing

delay considering all samples over all peers, Fig. 5 instead

considers each peer once per each experiments. Let us consider

the 90-th percentile statistics for the sake of the example. During

a single experiment, for each remote peer P we gather multiple

observations of windowed queuing delay statistics QP
i , based on

which we compute the 90-th queuing delay percentile for peer

P : Fig. 5 reports the CDF distribution of 90-th queuing delay

percentile over all peers, over all experiments.

First, notice that part of the samples report a very low queuing

delay (i.e., below 1ms): these corresponds to cases where external

leechers receive data from our probes, and we are receiving in turn

only an acknowledgement stream. In this case, since queuing is in

our upstream, the low-bandwidth acknowledgement stream is not

incurring any access bottleneck and thus traverse an empty queue.

Notice that, additionally, the remote peer is also not sending data

to other peers either, as otherwise we would observe a rise in

queuing delay.

Otherwise, we gather that 99% of the windows of the median

peer have a queuing delay below 60 ms. Moreover, only 10%

of the peers experience a 90-th (99-th) percentile above 100 ms

(200 ms). In other words, for the 10% of peers that are most

affected by bufferbloat, only 10% (1%) of their 1-second windows

incurr more than 100 ms (200 ms) queuing delay. Finally, only 1%

TABLE II
FEATURE DESCRIPTION:ACCESS TYPE(AT), OPERATING SYSTEM(OS),

BITTORRENT CLIENT(BC)

Feature Class Details Cardinality

AT
Low-speed DSL 2660
High-speed Cable 245

Fiber 152

Total 3057

Unclassified 1144

OS

Windows WinXP/200x/Vista/7 5668
Win95 897

Other MacOS/Linux<2.x/BSD 254
Linux>2.x 77

Total 6896

BC

uTorrent uTorrent 3552
Other Vuze 345

Transmission 14
Azureus 11

Total 3937

of peers have a 90-th (99-th) queuing delay percentile above 1 s

(2 s).

Summarizing, from Fig. 5 we gather that (i) the bulk of peers

experience queuing delays that are generally non-harming for

interactive traffic: i.e., for 90% of peers, 90% of windows have

a queuing delay smaller than 100 ms. At the same time (ii) some

users may perceive the rest of their activities annoyed by the

ongoing BiTorrent transfers, since about 1% of the peers have at

least 10% of windows have a queuing delay exceeding 1 s.

Coupling findings in Fig. 5 and Fig. 4 (showing that 1% of

all windows over all peers can reach up to 10 s worth of delay),

we understand that these high-delay windows mostly concern a

small population of very active BitTorrent users, whose Internet

activities can suffer from significant bufferbloat. Since a single

TCP connection is able to fill the buffer, LEDBAT transfers to

our probe are however not the cause of their bufferbloat, which

is rather tied to TCP uploads to some other peers in the swarm.

B. Root cause analysis

We now adopt the user viewpoint, and assess the importance of

different choices she can make to relieve her bufferbloat problem.

At high level, users can select an ISPs and access technology (e.g.,

subscribing DSL or Fiber contracts depending on her budget), are

free to adopt one of the several operating systems available on

the market (some of which free of charges), and can install one of

the many BitTorrent clients (most of which are free of charges).

We thus now formally analyze the impact on the bufferbloat

of external factors such as the BitTorrent client (BC), the host

Operating System (OS) and access type (AT). To do so, we

need to correlate queuing delay statistics, gathered by applying

our methodology to the raw packet-level traces, with additional

information. To this purpose, during the BitTorrent transfer the

probe also collected complementary data for each contacted peers.

In more details, we infer (i) the access type from reverse DNS

queries, (ii) the operating system type by OS fingerprinting based

on the IP TTL field [5] and (iii) the BitTorrent client by parsing

the L7 BitTorrent handshake message.

For instance, reverse DNS queries sometimes provide us clues

about the peers’ access network type (e.g., when domain label

explicitly contains keywords such as ftth, fttc, cable,

adsl, vdsl, etc.), letting us compare the typical bufferbloat

incurred by DSL vs Cable vs Fiber users. For the sake of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

Queuing delay Qi [ms]

KL(DSL, W) = 0.226
HD(DSL, W\DSL)=0.459

World W
Cable
Fiber
DSL

 0

 0.2

 0.4

 0.6

 0.8

 1

KL(A, W) = 0.023
HD(A, W\A)=0.176

World W
Random A

W \ A

Fig. 6. Breakdown of queuing delay CDF according to random splitting feature
(R, top) or access type (AT, bottom). Plots are annotated with HD and KL
statistics.

example, we report a breakdown of the queuing delay statistics

according to the access type in the bottom plot of Fig. 6, and

label as World the statistics over all samples irrespectively of their

access type. As expected, DSL peers experience worse queuing

delay with respect to Cable and especially Fiber users.

We point out that this additional information is not always

available. We report the exact cardinalities of the annotated

dataset per each feature in Tab. III. Notice for instance that DNS

reverse information were available for only a subset of IPs (3057

hosts), and that furthermore some of the domain names provided

by DNS response did not provide labels that were explicitly tied

to the access type of an host (1144 unclassified).

To make the analysis simpler, for each of the AT, BC and OS

features, we consider two classes: namely, we divide AT in low

vs high speed access, OS in windows vs other operating systems,

and BC in uTorrent vs other clients. For the sake of comparison,

we additionally consider a World set (W), that is representive

of all samples, irrespectively of any feature or class, and that is

based on the full peer population.

We then compute queuing delay statistics for each class, as in

Fig. 6, and resort to standard metrics to compare differences in

the distribution. More precisely, we make either (i) class-to-class

comparison using the Hellinger Distance or (ii) class-to-world

comparison using Kullback-Leibler divergence.

HD(A,B) =

√

1−
∑

x∈X

√

A(x)B(x) (5)

KL(A,W) =
∑

x∈X

A(x) ln
A(x)

W (x)
(6)

Let us denote with A, B and W the probability distribution

functions of the windowed queuing delay metric for classes A,

B and world respectively. Hellinger distance (HD), defined in

(5), is a score of similarity between distributions. Values of

distance between two classes ranges in HD(A,B) ∈ [0, 1], with

lower values corresponding to higher similarity. Additionally, HD

is a symmetric function, so that a single value HD(A,B) =
HD(B,A) quantifies the distance between classes. The Kullback

Leibler (KL) divergence, defined in (6), is a measure of the

difference between two probability distribution, and is related to

the amount of information encoded in A, W . Since KL is non-

TABLE III
FEATURE ANALYSIS: HELLINGER DISTANCE(HD), KULLBACK LEIBLER

(KL), MEDIAN (P50) AND 90-TH (P90) QUEUING DELAY PERCENTILES

Feature Class HD KL p50 [ms] p90 [ms]

R
Rand A

0.176
0.023 70 230

W\A 0.023 70 240

AT
Low-speed

0.459
0.227 94 240

High-speed 0.333 30 120

OS
Windows

0.341
0.141 55 220

Other 0.308 31 190

BC
uTorrent

0.349
0.135 77 220

Other 0.291 39 190

symmetric, we compute both KL(A,W) and KL(B,W).

For the sake of the example Fig. 6 reports the HD and KL
scores in two cases. For reference purposes, top plot consider

two randomly generated classes (namely, a random subset A and

its complement W\A): the HD and KL scores obtained in this

case are representive of the lowest possible level of correlation

between the feature and the queuing delay distribution. As it can

be seen, queuing delay CDFs for random classes A and W\A
overlap with the world set W , that yield to the minimum distance

scores of HD = 0.176 and KL = 0.023. Bottom plot of Fig. 6

reports instead HD and KL scores for the access type feature: in

this case, differences in the CDFs are evident and translate into

higher values of HD = 0.459 (about 3 times bigger than in the

random case) and KL = 0.226 (about 10 times bigger).

Tab. III reports HD and KL scores and queuing delay

percentile for all features, including random partitioning as a

reference. To avoid a class imbalance bias (recall Tab. II), we

compute average HD and KL over 10 samples of the largest

class having the same cardinality of the smallest class. For the

sake of clarity, consider the access type feature, where the low-

speed class have 2660 samples, whereas the high-speed class has

only 397 samples: in this case, we compute HD and KL over 10

subsets of 397 samples from the low-speed class. From Tab. III

it can be seen that, as expected, the access type feature plays the

biggest role in determining the bufferbloat extent: the class-to-

class difference scores HD = 0.459, median delays are 3 times

higher in the low-speed class, and 90-th delay percentiles are 2

times higher. Interestingly, the operating system and BitTorrent

client have a sizeable role as well, with furthemore very similar

magnitudo (i.e., similar HD, KL and delay percentiles).

As for the BC feature, difference in the connection management

policies among clients may have an impact on the bufferbloat.

For instance, uTorrent handles the dual TCP/LEDBAT stack by

simultaneously opening a TCP and a LEDBAT connection: only

in case the latter open is succesful, then the TCP connection

is dropped. Diffent dual stack management policies (e.g., serial

rather than parallel open, preference of either TCP or LEDBAT,

etc.) can clearly affect the queuing delay statistics. As for the

OS feature, we further point out that flavors of TCP differ among

operating systems (with TCP NewReno for old Windows version,

Compound for Windows since Vista and Cubic for Linux),

whose different congestion window dynamics clearly affects the

queuing delay statistics. Finally, other hidden factors may play

an important role. For instance, the number of torrents on which

external peers are participating at the same time (incresing the

number of simultaneous connections, and the size and diversity

of the neighborhood), whether a peer is leecher or seed on those

torrents (seed always have content and may experience higher

delay), etc. Such factors are clearly unavoidable, but even a larger-

scale study involving more features could have hard times in

precisely isolating the impact of each factor.

V. RELATED WORK

Recently, work started characterizing user bufferbloat [11],

[12]. Netalyzr [12] measures the bufferbloat with an active

methodology that saturates the uplink/downlink during short

periods of time, so that maximum queuing delays are measured.

Differently from [12], our methodology does not require end-

user cooperation and can continuously monitor the actual user

bufferbloat. Bufferbloat problems in 3G/4G networks are exposed

in [11] by instrumenting devices to perform RTT measurement

– RTT could possibly couples the sum of two queueing delays,

unlike in our work where we precisely measure a single queue.

Recent experimental work on LEDBAT and BitTorrent [6], [13]

focuses on the congestion control properties of LEDBAT [13],

or exploits BitTorrent for crowdsourcing ISP characterization [6]

mainly focusing on datarates – our work is in line with this

approach, that it complements with queuing delays information.

VI. AFTERMATH

This paper analyze the bufferbloat experienced by BitTorrent

users: it seems that while LEDBAT alleviates the problem for

most users, it does not solve it entirely, as some users may still

experience significant queuing delays. Additionally, we find that

several factors such as access type, operating system and BitTor-

rent client may concurr in determining user QoE degradation.

As future work, we aim at applying the methodology at large,

either e.g., integrating the methodology in Dasu [6], that has been

installed by over 500K peers in 3K networks, or by conducting

a large scale passive measurement campaign with Tstat.

ACKNOWLEDGEMENT

This work has been carried out at LINCS http://www.lincs.fr.

The research leading to these results has received funding from

the European Union under the FP7 Grant Agreement n. 318627

(Integrated Project "mPlane").

REFERENCES

[1] http://tstat.tlc.polito.it.
[2] http://www.telecom-paristech.fr/~drossi/dataset/bufferbloat-internet.
[3] http://bittorrent.org/beps/bep_0029.html.
[4] ITU Recommendation G.114, One Way Transmission Time.
[5] Dynamic probabilistic packet marking for efficient IP traceback. Computer

Networks, 51(3):866 – 882, 2007.
[6] Z. Bischof, J. Otto, M. Sánchez, J. Rula, D. Choffnes, and F. Bustamante.

Crowdsourcing ISP characterization to the network edge. In ACM SIG-

COMM W-MUST’11, 2011.
[7] V. Cerf, V. Jacobson, N. Weaver, and J. Gettys. Bufferbloat: what’s wrong

with the internet? Communications of the ACM, 55(2):40–47, 2012.
[8] S. Cheshire. It’s the latency, stupid! http://rescomp.stanford.edu/~cheshire/

rants/Latency.html, 1996.
[9] C. Chirichella, D. Rossi, C. Testa, T. Friedman, and A. Pescape. Remotely

gauging upstream bufferbloat delays. In PAM, 2013.
[10] L. DiCioccio, R. Teixeira, M. Mayl, and C. Kreibich. Probe and Pray: Using

UPnP for Home Network Measurements. In PAM, 2012.
[11] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G

networks. In ACM IMC, 2012.
[12] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating

the edge network. In ACM IMC’10, 2010.
[13] D. Rossi, C. Testa, and S. Valenti. Yes, we LEDBAT: Playing with the new

BitTorrent congestion control algorithm. In PAM, 2010.
[14] S. Shalunov et al. Low Extra Delay Background Transport (LEDBAT). IETF

draft, 2010.

