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Abstract

This work addresses the performance evaluation of Content Centric Networks (CCN).
Focusing on a realistic YouTube-like catalog, we conduct a thorough simulation study
of the main system performance, focusing on multi-path interest forwarding strategies
but considering several other ingredients such as network topology, content popularity,
caching decisions and replacement policies.

Summarizing our main results,(i) catalog and popularity settings plays by far the
most crucial role (ii) the impact of the strategy layer comes next, with naive forwarding
strategies playing against CCN efficiency, (iii) simple randomized caching policies per-
form almost as well as more complex ones, (iv) the impact of the topology is limited.
Hopefully, our thorough assessment of scenario parameters can assist and promote the
cross-comparison in the research community — for which we also provide our CCN
simulator as open source software.

1. Introduction

A new communication paradigm, namely Information Centric Networking (ICN),
may have a disruptive impact on the Internet ecosystem. The adoption of ICN may
indeed not only reshape the underlying Internet technology, but also threatens the cur-
rent business models, with the content and optimization business moving down from
“over the top” approaches such as Content Distribution Networks (CDN) to lower layer
services, available directly to the owner of the infrastructure.

Recognizing that end users are often more interested in obtaining content, rather
than merely being provided with connectivity among two addressable entities, a number
of architectures (overviewed in [11]) have started proposing caching of objects (or
object chunks) as network primitives. While these proposals differ in a number of
aspects (e.g., the way content is named, content resolution is addressed, etc.) the crucial
importance of in-network caching of popular content is common to all. Among these
proposals, Content Centric Networking (CCN) [18] is one of the most promising: in
CCN, content is sent in reply to interest packets addressing named data chunks, that
gets cached along the way back to the request originator. In CCN routers, caches
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de facto replace traditional buffers, so to avoid redundant network traffic [3]: interests
packets are matched with cached data, which has to be done per packet, for all requests,
and at line speed.

Yet, the potential impact of CCN has not been thoroughly assessed so far: though
caching has already been extensively studied, a number of architectural details make
caching in CCN a relatively new, and largely unexplored, research topic. The lack of
CCN performance evaluation is partly due to the scale of the problem (large CCN cache
and Internet catalog sizes), to its strict requirements (line speed operation) and complex
scenarios (network of caches, user behavior, etc.). For one, as in CCN all nodes may
cache the content, and since multiple paths can be used, it follows that the network of
caches is no longer arranged as a tree, but as an arbitrary graph. Finally, contrary to
early literature on Web caching, there is no consensus on the evaluation scenario for
CCN in the scientific community so far — which is exacerbated by the changing nature
of Internet applications and users’ behavior[12].

The contribution of this paper is as follows. First, we develop ccnSim an efficient
and scalable chunk-level CCN simulator, that we make available to the scientific com-
munity as open source software [1]. ccnSim allows to assess CCN performance in
scenarios up to four order of magnitude larger with respect to the those considered in
the current literature. For instance, in this work we simulate large CCN cache sizes
(108 chunks), catalog sizes (108 files), file sizes (10% chunks) and topologies (up to 68
nodes). Second, we take care in defining a realistic scenario, investigating the effect of
wide parameter ranges that, along with the simulator software, can hopefully assist and
promote cross-comparison in the research community. Third, we conduct a thorough
simulation campaign, considering several popularity settings, 6 topologies, 4+4 cache
decision+replacement policies, 1 single-path +12 multi-path forwarding strategies. Re-
sults of this campaign allow us to conclude that (i) catalog and popularity settings plays
by far the most crucial role (ii) the impact of the strategy layer comes next, with naive
forwarding strategies playing against CCN efficiency — though we find strategies with
similar caching efficiency of shortest path forwarding, and added benefits of multi-path
resilience and reduced repository load, (iii) simple randomized caching policies may
be good enough, (iv) provided that heterogeneous latencies are taken into account the
impact of the network topology is limited.

2. Related work

Despite a large caching literature (see e.g., [25] for a thorough survey), novel as-
pects of ICN architectures (e.g., splitting content in chunks, complex topologies, line
speed requirement, etc.) refuel the research interest. In the following we merely pro-
vide a brief overview of the most relevant related work [4, 5, 6, 7, 10, 11, 13, 14,
19, 20, 21, 26, 28, 29, 32, 33], referring the reader to [15] for a more comprehensive
comparison of the above work.

A first limit of current caching work is that, with few exceptions[26, 19,4, 7, 6, 11],
entire objects are generally cached. In CCN, content is instead partitioned in sub-
objects (or chunks), so that different chunks of the same object may end up being
cached on different CCN routers. This design decision partly follows from the effi-



ciency of chunk-based diffusion shown by, e.g., BitTorrent in P2P networks, that lately
was brought into CDN[24] as well.

Concerning caching policies, as pointed out in [20], much attention has been de-
voted to replacement policies issues (over 40 policies are overviewed in[25]), while
decision policies have being studied sporadically (to the best of our knowledge, only
by [9, 31, 20]). As far as replacement policies are concerned, Least Recently Used
(LRU) has been used in the context of CCN [26, 7, 6] and of the more general ICN
context [28, 11, 19]. Only few work considers other policies, such as Most Recently
Used (MRU) and Most Frequently Used (MFU) in ICN [19]. Still, due to the fact
that CCN caching operations must happen at line speed, most of the existing decision
and replacement policies are not of practical relevance, as [4] points out. Thus, even
a simple LRU policy —often used in turn as a good enough approximation of Least
Frequently Used (LFU)— may be too complex to implement, so that uniform random
replacement (UNTF) may be preferable to keep CCN simple and scalable[4]. As far as
decision policies are concerned, generally the assumption is to Leave a Copy Every-
where (LCE), i.e., new content gets always cached. Few exceptions to this rule come
from the Web [9, 31, 20] or CCN[4] contexts: however, the approach in [9] doesn’t
apply to CCN due to implementation complexity, while DEMOTE [31] is known to
poorly perform on network of caches. With this respect, only the Leave Copy Down
(LCD) policy [20] is simple enough to be worth implementing in CCN. Again, an even
simpler policy is considered by [4], where caching decisions are taken uniformly at
random with a fixed probability FIX(P). Finally, we point out that explicit cache co-
ordination policies (e.g., see [30] for Web, and [13] for ad hoc domain) would likely
violate CCN line of speed constraint.

We now stress what are, in our opinion, the limit of existing work and why they
are not fully faithful of CCN performance in an Internet environment, considering both
analytical and simulation based studies. First, most of previously developed models
rely on different assumptions that are not fit to CCN due to either (i) chunks partitioning
or (ii) topological assumption. As CCN requests for consecutive chunks of the same
objects are now correlated, the independent reference model (IR, where all requests
are i.i.d.), popular in caching studies, no longer holds: correlated arrivals are only
studied in recent work[7, 6], though the analysis is limited to simple cascade or tree
topologies. Conversely, though the approximate cache model in [29] applies to general
network topologies, it considers an object granularity (and further assumes that on a
cache miss, the object is instantaneously downloaded before the next request for the
same object hits the cache). Hence, to the best of our knowledge, an analytical work
overcoming both limits has yet to appear.

Yet, even simulation-based studies of information-oriented networking are often
simplistic in their (i) topological assumptions or due to the (ii) scale of the consid-
ered system. Indeed, with the exception of [11, 19] (employing synthetic topologies
generated with GT-ITM), most simulative work still considers simple topologies (e.g.,
cascade or trees[6, 26, 7, 4]) and are thus not suitable to investigate multi-path issue,
which is in the genes of CCN[18]. Even more important, the scale of the considered
system is often underestimated. Notice indeed that, in Web caching it was reasonable
to assume pretty large amount of caches (e.g., disks), which implied that an accurate
estimate of the ratio between the cache size and the catalog size was not an issue (e.g.,



Table 1: System parameters investigated in this work

Parameter Meaning Values
CCN ¢ Chunk size 10 KBytes
C  Cache size 109 chunks (10 GB)
|F|  File number 108 files
F'  File size 10* chunks (10 MB, geom. distributed)
Catalog . 15
|F|F  Catalog size 10*° bytes (1 PB)
R Number of repository {1,2}
. a  Zipf exponent 1,15
Popularity g  Mandelbrot-Zipf plateau EO,S} J
Caching Cache replacement {F1FO,LRU,UNIF,BIAS }
Cache decision {LCE,FIX(P),LCD}
Path Policy {Single-Path, Multi-Path, Multi-Repository }
Strategy-Layer Path Selection {Uniform, Round-Robin, Parallel }
Path Retention {None, Argmin}
Network Topology Tree, Abilene, Geant, Tiger2, DTelecom, Level3

add disks). In CCN instead, due to the fact that interest and data packets need to be ser-
viced at the Network Interface Card (NIC) speed, cache size is technologically limited
by memory access speed[4]. As it is not possible to arbitrarily increase size of caches
on board of CCN routers, it becomes thus imperative to more accurately estimate the
size of the catalog that CCN is expected to service, in order to assess whether CCN is
able to really achieve the promised breakthrough.

3. System and scenario description

While for reason of space, we invite the reader to [18] for a description of the CCN
architecture, we need to briefly introduce CCN terminology. CCN is based on data
structures such as Content Store (CS), Pending Interest Table (PIT) and Forwarding
Information Base (FIB). These structures are consulted at each interest packet that
users express for (univocally addressable) named data. More precisely, a CS lookup
is performed for each interest packet in the data plane: in case of a cache miss, the
interface of the incoming interest is appended to the PIT, and the interest packet gets
routed according to FIB information. This process iterates so that, when a cache is
hit, a data chunk is sent back and travels along the PIT information (flow balance).
Whenever an interest is satisfied, the corresponding entry in the PIT is then removed.
Conversely, when a new interest reaches a CCN router that already has a PIT entry for
the same data, the interest is not propagated, but the interface from which the interest
is received is appended to the PIT (interest aggregation).

We summarize in Tab. 1 the parameter space and support we investigate. On the one
hand, among the most important factors affecting CCN performance, we individuate
cache and catalog size (Sec. 3.1) and content popularity (Sec. 3.2). Yet, these factors are
constrained by technological limits (e.g., cache size) or determined by the environment
(e.g., catalog size and popularity). In this work, a great care is taken to evaluate CCN
in realistic operational points (as, e.g., one cannot simply increase the cache size to
ameliorate CCN performance).



On the other hand, overall system performance also depends on cache-related or
mutli-path mechanisms that are specific to CCN: the aim of this work is to broadly
explore their design space. Indeed, on different network topologies, interest may be
forwarded along either a single shortest path, or through multiple-paths, depending
on the strategy layer (Sec. 3.3). Then, once data travels back in the CCN data plane
following PIT “crumbles”, CCN routers along the path participate in a caching process,
that can be modeled as being composed by two distinct caching policies (Sec. 3.4).
First, a decision policy is taken whether or not to cache the current data. Then, in
case the router decides to store the object, it may need to evict a chunk according to
a replacement policy in case the cache is full. In the remainder of this section, we
motivate our decisions pertaining the boundaries of the space summarized in Tab. 1.

3.1. Cache and catalog size

First, CCN chunks are expected to be packet-size (1KB[26]-10KB[6, 7]), hence
much smaller w.r.t other ICN architectures (16MB[19]). In our work, we select 10KB
chunks as in [6, 7]: despite a CCN chunk size is not specified in [18], we believe that
in reason of the CCN overhead —due to interest packets and large headers for content
naming and security issues— chunk sizes smaller than 10KB would be an overkill.

As we previously argued, the scale of the considered system is often underesti-
mated, or at least the operational point at which the system is evaluated is not always
realistic. As far as CCN router cache size is concerned, [4] starts from the observa-
tion [3] that about half of the caching benefits at packet level happen in the first 10 sec.:
considering a capacity of 1Gbps, [4] sizes to about 12 GB the amount of memory that
can be addressed at line speed (employing a two-levels address scheme). Yet, the cache
size typically considered in simulation is much smaller (from 6.4MB [26] to SOMB [7]
and 2GB [6]), although no proper justification for these selections is given. Hence, we
select cache sizes of 10 GB (10'° Bytes or 10° chunks) as a realistic case study of CCN
performance.

The number of files in the considered catalogs can be as low as 250 objects[29],
topping to 20K[6, 7] objects for the largest ones. Taking into account also the object
size (in chunks) considered in those work, largest catalogs varies between 2Mchunks[7]
and 13.8Mchunks [6], i.e., 20GB and 138GB respectively. Yet, we believe these sizes
to be extremely small compared to Internet catalogs — which is easily confirmed by
summing up the storage size of our portable devices. We consider a realistic Internet
catalog, namely the YouTube portal, due to its wide popularity and growth of video
content. Given the approximate number of videos (about 103[8]) and their size (geo-
metrically distributed with average 10MB [16]), the catalog size is on the order of PB
(i.e., 10'° Bytes).

We expect system performance to be determined by the ratio of the cache C over
the catalog size | F'| F'. We point out that this ratio varies in the ICN literature between a
minimum of 0.25%[7]-0.5%[19] to a maximum of 10%[29]-20%[19]. Yet, considering
realistic CCN cache and Internet catalog sizes, this ratio seems more likely to be on the
order of 107?, hence much smaller than the one considered in previous studies: as a
consequence, ICN benefits may therefore be overestimated by current literature.



3.2. Content Popularity

Another important aspect that concur in determining the system performance is the
content popularity model. Rather typically [28, 6, 7, 20], ICN studies consider (variants
of) Zipf popularity, which is simply tuned by a single parameter «, (i.e., the exponent
characterizing the distribution). Yet, no consensus has been reached on the exact model,
as for instance [19] resorts to a Mandelbrot-Zipf distribution (that is also determined by
the plateau ¢), while [28] also includes uniform popularity, and [6, 7] consider several
classes distributed with Zipf popularity (with uniformly popular objects within each
class).

Moreover, no consensus has been reached on the actual settings either, as the con-
sidered value of « varies in a rather wide range 0.6[19]-2.5[6]. However, let us evaluate
the rank |Fyg| of the 99-th percentile of the Zipf distribution: intuitively, | Fyg| repre-
sents the number of objects in the catalog that make up the 99% bulk of users’ requests.
For high values of o > 2[7, 6] the 99-th rank converges to the same value irrespectively
of the catalog size: even in the case of very large catalogs consisting of 10® objects,
99% of the requests are directed to slightly more than a dozen of objects. Hence, we
expect CCN performance to be drastically determined by the popularity exponent «.
While a broad exploration of «, ¢ settings is available in [15], here we limitedly fo-
cus on € {1,1.5} (that are about the centerfold of the parameters explored in the
literature) and g € {0,5} (as per [17]).

3.3. Multi-path strategy layer

To promote cross comparison we resort to real publicly available network topolo-
gies, that are listed in Tab. 1, and that have a size varying between 11 and 68 nodes
(for lack of space, we invite the reader to [15] for more details about the topologies).
As a reference, we also consider a standard binary tree topology with 15 nodes and 8
leafs. In the following, we assume backbone links have infinite capacity (or, otherwise
stated, to operate at a load level well below congestion).

Irrespectively of the considered topology, a peculiar aspect of CCN is that named
content can in principle take any path in the network. In CCN, decisions where to
send (or replicate) interests are taken by the strat-
egy layer. In this work, we assume that an exter-
nal routing process (and name resolution scheme)
provides to the strategy layer multi-path alterna- 1t
tives from the requester to the content originator.
For the sake of simplicity, in this work we limit-
edly consider at most two alternative paths. The
strategy layer has then to decide how to use these
paths, on a chunk-by-chunk basis.

We examplify the situation with a toy-case network, where we consider decisions taken
at node A to reach content located in possibly multiple repositories Ry, R2. On the one
hand, (i) in case node A serves requests of user u; employing only the shortest-path
(single-path, white arrow) to the closest repository R; (that pass through B, D), it may
miss previous requests of user uz (stored at C, E'). On the other hand, if strategy layer

u3s Multi-Path Repository

Figure 1: Toy-case example



exploits more than a single path, it can either (i) employ multiple alternative' paths
to the same repository (multi-path, light-gray arrow), or (iii) employ multiple shortest
paths to different repositories (multi-repository, dark-gray arrow). These multi-path
policies tradeoff between (i) the fact that shortest path routing cannot fully exploit the
benefit of in-network caching, as caching happens only en-route toward the repository,
potentially missing closer cached copies; (ii) the fact that alternate repositories may be
faraway, so that the interest may travel longer paths; (iii) the fact that path diversity
toward the closest repository may be poor, so that few alternative caches are visitied
beyond those visited by shortest path routing.

In both cases, the strategy layer faces further decisions concerning the multi-path
selection process, such as (i) exploring both paths in parallel, or (ii) alternating between
paths (and in this case, if uniformly at random, or deterministically as in round robin).
The tradeoff is in this case between (i) an increased interest load, that violates the flow-
balance and possibly causes cache contention and (ii) a possibly slower convergence to
the repository.

Finally, the selection process can happen either (i) every chunk or (ii) once per
object (keeping thus a per-object state about the path). We denote this choice as multi-
path retention. In case (i), decisions are taken for every chunk, so no path is retained.
Conversely, in case (ii) an interest” is sent over all the possible paths at time 0, and
the path retained is the one along which the first data will come. The path retention
tradeoffs (i) simplicity for (ii) greater efficiency, as it may be preferable to forward
interest foward the closest cached copy (as opposite to the closest repository).

3.4. Cache Decision and Replacement Policies

As previously introduced, cache decision policies are much less studied w.r.t re-
placement policies. At first sight indeed, it may appear that all arriving content needs
to be cached. However, at the network scale, systematically caching all chunks in all
nodes may translate in a low cache diversity, hence reducing CCN efficiency. Rather, as
already noticed in [4] and [20] for cascades and tree topologies respectively, increasing
the cache diversity may be beneficial to the overall system performance.

In light of the above observation, we implement several decision policies that try
to achieve an implicit distributed coordination between caches: (i) LCE, new content is
always cached; (ii) F1X(P), caching decisions are taken uniformly at random as in [4],
with a fixed probability P € {0.75,0.9}; (iii) LCD, on each miss, the Leave a Copy
Down policy [20] moves the content a single hop down, but downstream router further
away do not cache the request.

Intuitively, F1X(P) offers uncoordinated and distributed cache diversification: yet,
simple random decision still imply overlap between caches. Instead, LCD moves the
content from the source toward the client only on subsequent requests: hence, differ-
ently from LCE, under LCD the popular content does not instantaneously replicate on
all CCN routers along a path.

! As primary path, we consider the shortest path between the requester and the originator. As secondary
path, we instead use [23] to find the shortest path that is the most diverse from the primary

2In case parallel path are used, the same interest is expressed over multiple paths; otherwise, a different
chunk is requested over each alternative path.



Though cache replacement policies have been long studied, two peculiarities in
CCN may however question previous work: first, requests are correlated (for subse-
quent chunks of the same object) and second, replacement must happen at line-speed
(which significantly limits the variety of policies that can be implemented in practice).
In this work, we replace either (i) LRU, the least recently used chunk; (ii) FIFO, the
oldest inserted chunk; (iii) UNIF, a chunk selected uniformly at random; (iv) BIAS, the
most popular between two chunks selected at random (detailed description in [15]).

We consider LRU as it is the default caching choice, FIFO and UNIF as simpler
replacement. Finally, we design a new, counter intuitive, cache replacement policy that
selects chunks to be replaced proportionally to their popularity (B1AS). The idea is
that, as popular content will be often requested, individual caching decisions will be
taken more often that for unpopular content. In turn, this will force multiple copies of
popular chunk to be disseminated in many caches, to the detriment of cache diversity,
which we counter by biasing the replacement toward popular chunks. This policy
leverages on the “power of two” principle [22], which was already used in the context
of Web caching [27].

4. Simulation results

We implement a chunk-level CCN simulation model that univocally address con-
tent chunks, faithfully representing the CS, PIT and FIB data structures and CCN op-
erations such as interest aggregation. However, aiming at scalability and efficiency,
we do not implement the full details of CCN naming and security. To promote cross-
comparison in the scientific community, we make the simulator, written in C++ under
the Omnet++[2] framework, available as open-source software at [1].

We conduct a thorough simulation campaign, consisting of more than 10,000 sim-
ulations exploring over 1,000 individual system parameter settings. In this section, we
report the most interesting results obtained from the campaign: due to space limitation,
our aim is not to provide an exhaustive coverage of our results, but rather to convey a
few relevant messages to the scientific community, in the most compact way. For the
interested reader, an extended set of results in our extended technical report[15].

To gather performance metrics of interest, we operate as follows. At time ¢ = 0 we
run the centralized path discovery algorithm, that yields a set of multiple paths between
any two node pairs. Starting from empty caches, we simulate the system until caches
fills up, at which point we start the collection of all statistics, that continues until the
cache hit metric converges to a stationary value. Unless otherwise stated, each simula-
tion point reported in the following represents the average value gathered over 10 sim-
ulation runs (with standard deviation bars). By default, we consider a single YouTube-
like repository served by CCN routers, to which aggregates of clients are attached,
issuing 10 requests per second. CCN routers implement LRU+LCEcaching policy and
their strategy-layer forward interests along the shortest-path toward the repository.

Caching performance is usually expressed in terms of the cache hit probability.
In CCN networks, additional metrics are needed in order to capture the network-wide
perspective. As user centric-metric, beyond the usual cache hit probability, we consider
the distance in terms of the number of CCN backbone hops d that the data chunk has
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Figure 2: CCN performance at a glance: (a) popularity, (b) caching policies and (c) topology impact.

actually traveled in the network (that correlates with user delay). Finally, as network-
wide metric, we consider the interest load, i.e., the number of links that interests have
crossed before hitting a cache. Interest load correlates with CCN router cost (as interest
processing must be done at line speed) and with network load (as data is generated in
reply to interests, and will flow backtracking the PIT).

4.1. Performance at a glance

Considering a YouTube-like scenario (F,|F|,C) = (103,10%,105), we report
overall system performance in Fig. 2(a) for varying popularity skews o € {1,1.5}.
As expected, low « yields to poor system performance, that further worsen for increas-
ing ¢. It can be seen that performance metrics are highly correlated: when v = 1, the
closest cache does not necessarily have the chunk of interest, hence data travels a longer
distance. This in turns lowers the cache hit rate of individual CCN content stores, and
translate into a higher interest cost as well. For highly skewed popularity o = 1.5 the
same content replicates everywhere, so that content of interest is often found in closer
caches, hence with a reduced interest cost. We see that & may undermine whether CCN
will be able to deliver the promised breakthrough: in case of @ ~ 1, it seems that a
technology change (i.e., the speed and size of memories for CCN content stores) is
evidently needed to increase the cache over catalog ratio, and so CCN performance. In
the meanwhile, a refined estimation of object popularity may be necessary to evaluate
CCN fit to serve different Internet catalogs (e.g., YouTube, BitTorrent, Netflix, etc.).

4.2. Caching policies and topologies

We now inspect the impact of caching policies in Fig. 2(b) considering («, q) =
(1.5,0). We point out that the choice of such a skwewed content popularity is not ment
for an absolute assessment of CCN performance, but rather for a relative assessment of
the impact of several parameters, and is thus perfectly justified.

For each routing strategy and all network topologies, we report the average cache
hit (i) conditioning over a given decision policy, averaging over all replacement poli-
cies (dark-gray bars) or (ii) conditioning over a replacement policy (light-gray bars).
Consider single path routing: with a single repository, this case corresponds to a non-
regular tree, where the heterogeneity of link propagation delays further shapes the in-
terest (and chunk) arrival process at the different caches. Yet, rather surprisingly, the
performance difference across cache replacement and decision policies is minimal.



In reason of wire-speed constraint of CCN, it could be thus worth investigating
other, simpler, combination than the most commonly used LCE+LRUpair. Hence, we
assess the impact of different topologies considering also random decision and replace-
ment strategies F1X(0.9)+UNIF. Fig. 2(c) compares cache hit on (i) a binary tree, (ii)
the 6 topologies of Tab. 1, and (iii) the average over all topologies. Notice that, average
LCE+LRU vs F1x(0.9)+UNIF performance are hardly distinguishable: furthermore,
LCE+LRU is not always the best choice overe all topologies.

4.3. Strategy layer

As we have seen that caching policies and topologies plays a limited role in deter-
mining system performance, we now fix the LCE+LRUcaching policies and limitedly
consider the Geant network to assess the impact of the strategy layer. We further
consider the case where all links have homogeneous propagation delay, and the hetero-
geneous case with real delays reflecting the interconnection lengths.

We compare several multi-path alternative to the single shortest path case. Specif-
ically, we consider either (i) alternatives paths to the same repository, or (ii) shortest
paths toward multiple repository. We further consider that the strategy layer can ei-
ther (i) alternate between paths either randomly or round-robin or (ii) use both paths
in parallel. Finally, we consider the case where (i) after an initial probing phase using
multiple paths for the first chunk of a given object, the first reply path is retained and
used for subsequent interests of that object or (ii) multiple paths are used for all inter-
ests of an object. Overall, we test 12 multi-path strategy layers, but we report only the
most interesting combinations in the following.

Fig. 3-(a) reports the average download distance as a function of the node distance
from the closest repository. Notice that filled points refer to scenario with heteroge-
neous delay, empty ones to homogeneous delay. Two lines report reference for cases
where the content is entirely downloaded from the closest repository, or is downloaded
with shortest path routing. Fig. 3-(b) reports instead the average interest load, i.e., the
number of links that each interest has crossed before hitting a cache. Light-gray color is
used for heterogeneous delay, dark-gray for homogeneous delay. Three lines report the
average distance from the closest repository E[sp(x, R1)], the shortest path distance
from the alternate repository E[sp(z, R2)], the length of the alternate path toward the
closest repository Efap(z, R1)].

As expected, when multiple paths are used, these are longer than the distance to the
closer repository, hence the download distance increases. Looking at Fig. 3-(a), this
effect is especially noticeable only for nodes that are close to the repository, with a peak
at two hops; conversely, faraway nodes will likely find the content cached somewhere
before the repository, with peformance closer to shortest path routing. Similarly, when
multiple paths are used in parallel, the interest load roughly doubles. Considering
Fig. 3-(b), path retention may however succesfully mitigate the interest load increase,
at a price of keeping per-object state in CCN routers.

We point out that in case paths are used in an alternate fashion, there is no dif-
ference between a uniform randomized criterion and a deterministic round-robin one
(hence, we do not show this in the plots). Intuitively, if deterministic decisions are not
coordinated between nodes, they are equivalent to random decisions from the overall
network perspective. When instead multiple paths are used in a parallel fashion, this
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Figure 3: Impact of strategy layer on average distance from a cache, and interest/data cost

lead to a more aggressive probing policy, that has higher chances to find closer cached
content.

Also, we see that multiple alternative path toward the same repository should be
preferred to the use of multiple shortest paths toward several repositories (furthermore
this lead to more robust choices in case of heterogeneous delay). Intuitively, this is
because CCN values diverse paths as they explore different caches, more than because
they ultimately lead to different repositories. Interestingly, this happens despite the av-
erage alternate path toward the closest repository in on average longer than the shortest
path toward the alternate repository, i.e., E[ap(z, R1)] > E[sp(z, R2)] in Fig. 3-(b).

The above observation has an important consequence. First, this means that, unless
the ultimate aim is to reduce load at the repositories, information concerning a single
repository suffices. Furthermore, in CCN efficiency is maximum when the closest
cached copies is found: since cache update dynamics are much faster than routing
dynamics possibly, this information will likely not be available in the FIB. Hence,
there may no need for the routing protocol to disseminate information about optimate
alternate paths to the repository either, since an opportunistic exploration of a CCN
node neighborhood may suffice.

Overall, we find that naive-multi path strategies exploiting other paths than the
shortest one may lead to explore a longer distance — increasing the overall network
load, and reducing the cache hit rates. At the same time, we recognize that multi-path
benefits come from an increased resilience (in case shortest path fail) and to a possibly
reduced load at the repository (whose uplink bandwidth can be a scarce resource with
respect to router capacities). In this case, it seems that multi-path strategies that com-
plement single-path routing with an opportunistic exploration of a CCN node neigh-
borhood may be worth exploring

5. Discussion and conclusions

This work presents a simulation study of Content Centric Networks (CCN) caching
performance. We consider several aspects including: sizing of catalog and caches, pop-
ularity, caching replacement and decision policies, topologies, and epecially focus on
single vs multiple-path interest forwarding strategies. Summarizing our main results,
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we gather that (i) catalog and popularity settings play a crucial role (ii) the impact
of the strategy layer comes next, with naive multi-path forwarding strategies playing
against CCN efficiency, (iii) simple randomized policies perform almost as well as
more complex ones, (iv) the impact of the topology is limited, provided that heteroge-
neous latencies are accounted for.

While (i) is an expected results, this also means that much remains to be done in
order to fully assess whether CCN can deliver the promised breakthrough. The lack of
common evaluation scenario is a critical point that the ICN community should address
in the short term: due to its tremendous impact, this call for broad and systematic
measurement work beyond [8, 16, 17] to gather reliable popularity models.

Then, (ii) strategy layer has the second largest impact after catalog settings. Specifi-
cally, we gather than naive multi-path routing strategies may play against CCN caching
efficiency, for which a simpler shortest path interest forwarding may be preferable. Yet,
multi-path benefits may come from other aspects, orthogonal to caching efficiency,
such as increased resilience and reduced repository load. With this respect, we find the
strategy layer should probe multiple paths in parallel for the first few chunks of every
object, forward then the interests along the path leading to the closest cached copy.
This strategy indeed achieves similar caching efficiency of the shortest path routing,
with the addeed benefits of multi-path.

Then, (iii) on the one hand confirms the importance of correlated arrivals, that void
the IR assumption; on the other hand, this is a positive finding, as it also suggests that
simple policies are able to provide good enough performance in CCN.

Finally, (iv) is not surprising, as [14] that suggests request stream aggregation, more
than network topology, to be a key factor in cache placement. This also means that,
provided that latency heterogenity is properly accounted for, the network topology is a
less important detail with respect to the previous scenario pararmeters.

We believe that interest forwarding and routing should deserve further work. One
direction concerns the interaction of routing and fowarding: while this work assumes
the availability of multiple-paths in the FIB used by the strategy layer, there is currently
no routing procotocol that disseminates this name-based FIB information: hence, the
strategy layer may not always have rich multi-path information at its disposal. Fur-
thermore, our analysis show that benefits of multi-path follows from the exploration
of multiple closeby caches: hence, the strategy layer may not even need such multi-
path information. As a consequence, alternative strategies, up to the extreme case of
opportunistic strategies assuming no FIB information at all, should be assessed as well.

Another direction includes the interplay between interest forwarding with the caching
of the data on the return path. A promising direction is thus the joint design of for-
warding strategies and cache replacement policies (e.g., similarly to [28] where object
requests are forwarded to the most recent direction the same object was previously for-
warded, and thus likely cached). Such joint design may include (simple) replacement
strategies based on deterministic [21] or probabilistic distance-based [33] decisions, to
increase the diversity of CCN caches. Finally, it may be worth investigating if hetero-
geneous replacement policies may provide some moderate performance improvement
for CCN as they did for the Web[5, 10]. Both directions are part of our current research
1nterest.
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