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Abstract. This paper proposes KISS, a new Internet classification method. Moti-

vated by the expected raise of UDP traffic volume, which stems from the momen-

tum of P2P streaming applications, we propose a novel statistical payload-based

classification framework, targeted to UDP traffic.

Statistical signatures are automatically inferred from training data, by the means

of a Chi-Square like test, which extracts the protocol “syntax”, but ignores the

protocol semantic and synchronization rules. The signatures feed a decision en-

gine based on Support Vector Machines. KISS is tested in different scenarios,

considering both data, VoIP, and traditional P2P Internet applications. Results are

astonishing. The average True Positive percentage is 99.6%, with the worst case

equal 98.7%. Less than 0.05% of False Positives are detected.

1 Introduction

Last years witnessed a very fast-paced evolution of new Internet applications, ignited

by the introduction of the very successful P2P networking paradigm and fueled by the

growth of Internet access rates. This entailed not only a deep change of the Internet ap-

plication landscape, but also undermined the reliability of the traditional Internet traffic

classification mechanisms, typically based on Deep Packet Inspection (DPI) such as

simple port-based classification. Indeed, DPI classification is deemed to fail more and

more due to proliferation of proprietary and evolving protocols and the adoption of

strong encryption techniques [1, 2].

In previous proposals, UDP has usually been neglected in favor of applications run-

ning over TCP. Motivated by the expected raise of UDP traffic volume, we propose a

novel classification framework that explicitly targets long-lived UDP traffic.

Recalling that a protocol specifies the rules governing the syntax, semantics, and

synchronization of a communication, we propose to extract the L7-protocol syntax

while ignoring the actual semantic and synchronization rules. This is achieved by sta-

tistically characterizing the frequencies of observed values in the UDP payload, by

performing a test similar to the Pearson’s χ2 test. The χ2 values are then used to com-

pactly represent application fingerprints, which we call Chi-Square Signatures - ChiSS

(pronounced as in KISS). Compared to classic DPI classifiers, KISS uses statistical

signatures, rather than deterministic values. This makes it more robust to protocol di-

alects/evolution, eventual packet sampling, drop or reordering, and it does not assume

to observe specific packets in a flow (e.g., the first few packets).
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Fig. 1. Scheme of signature extraction process (left) and KISS learning steps (right).

After the fingerprints have been extracted, proper classification must be achieved,

i.e., individual items should be placed into the most likely class. A huge set of method-

ologies are available from the literature, that span from simple threshold based heuris-

tics [3], to Naive Bayesian classifiers [2, 4], to advanced statistical classification tech-

niques [5]. In this paper, we rely on Support Vector Machines (SVMs) [5], which are

well known in the statistical classification field, and only recently have been adopted in

the context of Internet traffic classification.

2 KISS Description

2.1 Chi-Square Signatures Definition

The signature creation is inspired by the Chi-Square statistical test. The original test

estimates the goodness-of-fit between observed samples of a random variable and a

given theoretical distribution. Assume that the possible outcomes of an experiment are

K different values and Ok are the empirical frequencies of the observed for values, out

of M total observations (
∑

Ok = M ). Let Ek be the number of expected observations

of k for the theoretical distribution, Ek = M · pk with pk the probability of value k.

Given that M is large, the distribution of the random variable

X =

K
∑

k=1

(Ok − Ek)
2

Ek

(1)

that represents the distance between the observed empirical and theoretical distribu-

tions, can be approximated by a Chi-Square, or χ2, distribution with K − 1 degrees of

freedom. In the classical goodness of fit test, the values of X are compared with the

typical values of a Chi-Square distributed random variable: the frequent occurrence of

low probability values is interpreted as an indication of a bad fitting.

In KISS, we build a similar experiment analyzing the content of groups of bits taken

from the packet payload we want to classify; we then check for the distance between the

observed values and uniformly distributed bits. In other terms, we use a Chi-Square like

test to measure the randomness of groups of bits as an implicit estimate of the source

entropy.

Chi-Square signatures are built from streams of packets directed to or originated

from the same end-point. The first N bytes of the packets payload are divided into G
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Fig. 2. Evolution in time (left) and dispersions in space (right) of χ2 of two groups extracted from

the second byte of UDP payloads.

groups of b consecutive bits each; a group g can take integer values in [0, 2b − 1]. From

packets of the same stream, we collect, for each group g, the number of observations of

each value i ∈ [0, 2b − 1]; denote it by O
(g)
i . We then define a window of C packets, in

which we compute:

χg =

2b
−1

∑

i=0

(

O
(g)
i − Ei

)2

Ei

with Ei =
C

2b
(2)

and collect them in the KISS signature vector:

χ = [ χ1, χ2, · · · , χG ] (3)

The left plot of Fig. 1 shows a schematic representation of the KISS signature ex-

traction.

The rationale behind KISS signatures is that they allow to automatically discover

application layer message header without needing to care about specific values of the

header fields. Indeed, in the first bytes of UDP payload there is the application header

containing fields that can be: constant identifiers, counters, words from a small dictio-

nary (message/protocol type, flags, etc), or truly random values coming from encryption

or compression algorithms. These coarse classes of fields can be easily distinguished

through the operation in (2). For example, left plot in Fig. 2 reports the value of two

4-bit long groups belonging to two different traffic protocols, namely DNS and eMule,

versus C. The steep lines corresponding to groups taken from an eMule stream refer

to fields that are almost constant. In this case, the longer the experiment is (larger C),

the larger the distance from the uniform distribution is, i.e., the bits are far from being

random. In the same plot, observe the lines referring to DNS traffic. The lowest one has

a very slow increase with C, its behavior is almost perfectly random, the values of χ3

being compatible with those of a Chi-Square distribution. The bouncing line, instead,

corresponds to the typical behavior of a counter. The computation (2) over consecutive

groups of bits of a counter cyclically varies from very low values (when all the val-

ues have been seen the same number of times) to large values. The periodicity of this

behavior depends on the group position inside the counter.

While randomness provides a coarse classification over individual groups, by jointly

considering a set of G groups through the vector χ the fingerprint becomes extremely



accurate. To justify this assertion, let observe the right plot in Fig. 2, which shows signa-

tures generated using C = 80 packets of a stream. Points in the figure are plotted using

(χ2, χ3) as coordinates; each point corresponds to a different stream. Points obtained

from DNS streams are displaced in the low left corner of the plot; points from eMule

are spread in the top part of the plot. Intuitively, different protocols fall in different areas

that are clearly identified and easily separable.

The signature creation approach previously presented is based on a number of pa-

rameters whose setting may be critical. These are the criteria we used to set them:

Bits per group (b = 4), whose choice trade-offs opposite needs. From one hand, b
should be as closest as possible to typical length of protocol fields, e.g., b should be 4

or 8 or a multiple of 8. From the other hand, b should be small enough to allow that the

packet window C over which the Chi-Square test is statistically significant is not too

large, so that streams can be classified even if they are not too long, they are classified

in short time and live classification is possible. Thus, we chose b = 4.

Packet window (C = 80). While we would like to keep the packet window as small as

possible, the χ2 test is considered to be statistically significant if the number of samples

for each value is at least 5. Having chosen b = 4, in order to have Ei = C/2b equal to

5, we need C to be equal to about 80. Sensitivity to C is evaluated in the Sec.4.1.

Number of bytes per packet (N = 12). In general, classification accuracy increases

with the number of considered bytes per packet. However, complexity of the classi-

fication tool increases also with the N , in terms of both memory and computational

complexity. As a convenient trade-off we choose N = 12 so, given b = 4, this values

corresponds to G = 24 groups for each signature. One motivation for the chosen value

is because it allows to analyze the most important part of RTP and DNS headers. Even

more, N = 12 allows to collect 20 bytes of the IP packet payload (12 bytes + 8 bytes of

the UDP header) that is the minimum size of the TCP header and the typical value used

by measurement tools. Notice that the optimal value of N depends from the targeted

applications. For example, DNS and eMule can be clearly identified by only consider-

ing (χ2, χ3) as right plot of Fig. 2 shows. The selection of which groups to include in

χ is then a complex task that is left out as future work.

2.2 KISS Model Generation for Classification

The decision process in KISS is driven by a Support Vector Machine (SVM). The SVM

approach is based on the idea of mapping training samples so that samples of two dif-

ferent classes are displaced in compact areas separated by hyperplanes. Since SVM is a

supervised learning method, a training set must be used to generate the model used for

the classification task. To generate a KISS model we operate as sketched in right plot of

Fig. 1. We start by considering some streams that belong to a given set of applications

we want to classify. The streams could either be generated on purpose (e.g., by run-

ning the applications), or extracted from real traffic traces through some other reliable

classification engine. Streams are then fed into a chunker, whose role is to derive the

KISS signatures as in (3). This signature set is than randomly sampled (according to a

uniform distribution) so as to select the training set, whose size is 300 by default (the

impact of this value will be discussed in Sec. 4.1). The training set is then fed to the



SVM learning phase after which the KISS model is produced; samples used for training

will not be used for the model validation.

Notice that the KISS training phase partitions the signature space into a number of

regions equal to the number of protocol offered during the training: this implies that a

sample will always be classified as belonging to any of the known classes. Thus, an ad-

ditional region is needed to represent all samples that do not belong to any of the above

protocols, i.e., to represent all the other protocols. Thus, the training set must contains

two types of signatures: i) the ones referring to traffic generated by the applications to

classify; ii) the ones representing all the remaining traffic, which we refer to as Other –

which represents the set of applications that we are not interested in classifying.

3 Testing Methodology

We developed an ad-hoc oracle to derive the ground truth, that is based on DPI mecha-

nism, and to manually tune it and to double check its performance. The oracle is used

to extract desired protocols and Other protocols, which are then used as ground truth to

assess KISS performance.

3.1 Testing Datasets

Real Traffic Traces (RealTrace) were collected from the network of an ISP provider

in Italy called FastWeb. This network is a very heterogeneous scenario, in which users

are free to use the network without any restrictions, and there is a large portion of VoIP

and P2P traffic. It therefore represents a very demanding scenario considering traffic

classification. A probe node has been installed in a PoP, in which more than 1000 users

are connected. The measurements presented in this paper refer to a dataset collected

starting from 26th of May 2006, and ending on 4th of June 2006. The trace contains

6455 millions UDP packets, 77.6 millions flows, 56368 endpoints. Among the most

popular applications generating UDP traffic, we selected: i) eMule, ii) VoIP (over RTP),

and iii) DNS protocols. Indeed, these three protocols alone account for more than 80%

of UDP endpoints, 95% of UDP the flows, and 96% of the total UDP bitrate.

Testbed Traces (P2Ptrace) Since we are also interested in evaluating the perfor-

mance of KISS when dealing with new protocols, we selected, as case study, some

popular P2P-TV applications (namely PPLive, Joost, SopCast and TVants). Since none

of the selected applications was available at the time of real traffic trace collection, we

gather such traces with a testbed. The dataset consists of packet level traces collected

from more than 40 PCs running the above mentioned P2P-TV applications in 5 different

Countries, at 11 different institutions during the Napa-Wine [7] project.

DPI oracle has been implemented in Tstat [8], and its performance were manually

fine tuned and double checked. In particular, for DNS we rely on simple port classifi-

cation, since UDP port 53 was only used by the DNS system during 2006 whereas for

RTP classification we rely on the state machine described in [9]. Instead for eMule the

system proposed in [10, 11] has been developed and adapted to the scenario1.

1 The eMule client used by FastWeb users has been optimized to exploit FastWeb network ar-

chitecture. This entailed a modification to the KAD protocol, called KADu. Off-the-shelf DPI

signatures have been then adapted to cope with the modified protocol.



Table 1. Confusion matrix considering the RealTrace case (left) and P2P-TV Applications (right)

Tot. RTP eMule DNS Other

RTP 8389 99.9 0.05 - 0.05

eMule 7167 - 99.9 - 0.1

DNS 4491 - - 98.7 1.3

Other 1477 - - - 100.0

Tot. Joost PPLive SopCast TVants Other

Joost 33514 98.1 - - - 1.9

PPLive 84452 - 100.0 - - -

SopCast 84473 - - 99.9 - 0.1

TVants 27184 - - - 100.0 -

Other 1.2M 0.3 - - - 99.7

4 Results

Considering RealTrace dataset, left Tab. 3.1 summarizes the results reporting the con-

fusion matrix. Each row corresponds to a sub trace that was classified according to the

oracle. Columns report the total number of samples in each class, and their correspond-

ing percentages classified by KISS for each of the four classes. Values on the main

diagonal correspond to True Positive percentage (%TP), while other values details the

False Negative percentage (%FN) and False Positive percentage (%FP). For example,

in the left table, the first row says that the 99.9% of samples extracted considering RTP

flows only has been correctly classified by KISS (i.e., those are True Positives); the re-

maining 0.1% of samples has been classified as eMule and Other protocols with 0.05%

each (i.e., those are False Positive considering eMule and Other classes). Overall re-

sults are astonishing. The average True Positive percentage is 99.6%, with the worst

%TP equal to 98.7%, since 1.3% DNS endpoints are misclassified as Other (58 sam-

ples over 4491 tests). %FP=0.05%: all samples in the Other class has been correctly

classified, while 5 RTP instances have been misclassified as eMule.

To prove the KISS flexibility, we explore its ability to identify traffic generated by

P2P-TV applications. Since these are novel applications, which follow a proprietary

and closed design and might exploit obfuscation and encryption techniques, the design

and engineering of a DPI mechanism would be daunting and extremely expensive. On

the contrary, training KISS to identify P2P-TV traffic is quite straightforward. For each

considered application, a packet trace is captured by simply running the application.

Those traces are then used to train the SVM. To test the KISS ability to classify P2P-

TV traffic, all traces from the P2Ptrace dataset are used to evaluate the True Positive.

The RealTrace is instead used to evaluate the False Positive, since we assume no P2P-

TV traffic could be present during 2006. Results are summarized in the right Tab. 3.1,

which reports percentages averaged over more that 1.3 millions of tests. Also in this

case, results are amazing. KISS is able to correctly classify more than 98.1% of samples

as True Positives in the worst case, and only 0.3% of False Positives are present.

4.1 Parameter Sensitivity

Among the parameters that are part of KISS, the number of samples C to evaluate

the signature is the most critical one. Indeed, to have a good estimate of the observed

frequencies, at least 5 samples for each value should be collected (in case a uniform

distribution is considered). This leads to C ≥ 80. However, since in KISS we are

not performing a real Chi-square test, we are interested in observing the classification

accuracy of KISS when reducing the number of observation and therefore allowing an
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Fig. 3. Classification accuracy versus C (on the left) and versus the training set size (on the right).

earlier classification. Left plot of Fig. 3 reports the %TP of well-known protocols, and

the %FP, without distinguishing among protocols. Confidence intervals are evaluated

over 250 different RealTrace subtraces each comprising more than 100 samples. The

Figure clearly shows that the %TP is almost not affected C. Indeed, the syntax of the

considered protocols is very different and the SVM has little problem in distinguishing

them even if C is small. However, the %FP is much more sensible to the C value,

and only for C > 80 it goes below 5%. Similarly, it is interesting to observe how

performance changes with training sets of different size. Results are plotted in right

plot of Fig. 3, which reports the %TP and %FP for increasing training set size. The plot

shows that KISS is able to correctly classify RTP, DNS and eMule traffic with excellent

%TP, (average %TP>95%) even with 5 samples training sets. Also in this case, more

problematic is the correct classification of the Other traffic, since the False Positive

percentage goes below 5% only when the training set comprises at least 100 samples.

Intuitively, the Other traffic is far more heterogeneous than traffic of a given protocol,

and thus a larger number of samples are required to describe it.

Given the connectionless characteristic of UDP, one expects that connection last

for few packets. Analyzing the RealTrace dataset, 40% of endpoints has only 1 packet,

while only 5% have at least 80 packets. However, these latter endpoints account for

more than 98% of volume in bytes of traffic. This clearly shows that, while KISS is not

suitable for the classification of short-lived connections, it can however successfully

target the small fraction of endpoints that generate the large majority of traffic.

5 Conclusions and future works

We presented KISS, a novel classifier that couples a stochastic description of applica-

tions to the discrimination power of Support Vector Machines. Signatures are automati-

cally extracted from a traffic stream by the means of stochastic test that allows applica-

tion protocol syntax to emerge, while ignoring protocol synchronization and semantic

rules. A SVM is then used to classify the extracted signatures, leading to exceptional

performance.

KISS showed excellent results in different scenarios, considering both data, VoIP,

and P2P filesharing applications. Moreover, KISS also provide almost perfect results

when facing new P2P streaming applications, such as Joost, PPLive, SopCast and TVants.

Compared to classic DPI, KISS is more flexible, since it relies on a statistical char-



acterization of application layer protocol payload, therefore being robust to protocol

evolution/dialects, eventual packet reordering/losses or sampling.

On the other side, the classification results are strongly related to the ground truth

used to train the SVM classifier. This is particularly true for the background class which

should represent all protocols that are not the target of classification. This set of pro-

tocols can change in time so that a static trainset can become “outdated”. The same

problem exists even for well known applications because is difficult to cover all the

possible behaviour of an application. This suggest the need of a loopback in the model

creation so that the trainset can be adapted accordingly the traffic changes. These is

something we are interested of studying in the future.

Another possible optimization is the application of a feature selection algorithm to

identify the most significative chi-square features. This should speed up the computa-

tion time of the signatures and decrease the memory requirements.

The classification method proposed is applied only on UDP traffic but, even with

some restrictions, it can also be applied to TCP. In this case, due to the connection

oriented nature of TCP, the signature can be computed using only the first(s) segment(s)

of each flow. This subject is already under investigation but is outside the scope of this

paper.
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