Passive Inference of Bufferbloat Root Cause

Andrea Araldo!, Dario Rossi?

L RI-Université Paris-Sud, Orsay, France — araldo@lri.fr
2Telecom ParisTech, Paris, France — dario.rossi@enst.fr

Abstract—In this work, we propose a methodology to gauge
the extent of queuing delay (aka bufferbloat) in the Internet,
based on purely passive measurement of bidirectional TCP traffic.
Leveraging on Deep Packet Inspection (DPI) and behavioral
classification, we next show a per-application breakdown of
the queuing delay in ISP networks, that assists in binding the
queueing delay to the performance perceived by the users of
that application. Finally, we report preliminary results to further
correlate the amount of queuing delay seen by each host with the
set of active applications for that host during small time windows,
to find the root cause of bufferbloat.

I. INTRODUCTION

Despite the steady growth of link capacity, Internet perfor-
mance may still be laggy in the early 2010. Already in 1996, a
famous post [9] pointed out that delay, more than bandwidth,
was an important metric for user perception. As confirmed
by the recent resonance of the “bufferbloat” buzzword [16],
this may still hold today. Shortly, excessive buffer delays
(measured in seconds) are possible in today’s Internet due to
the combination of loss-based TCP congestion control coupled
to excessive buffer sizes (e.g., in user AP and modem routers,
end-host software stack and network interfaces) in front of
slow access links.

While, through controlled testbed and experiments, it is
clear that high latency can hamper user QoE of Web [5], [23],
multi-media [17], [8] or even peer-2-peer [24] users, it is
unclear how high is queuing latency in practice. Indeed, while
it is known that queuing delays can potentially reach a few
seconds [20] under load stress, and while these delays have
been anedoctically observed [16], it however is unclear how
common they are for end-users daily experience — which is
precisely the goal of this paper.

Summarizing, our contributions are as follows: first, we
propose a passive TCP queuing delay estimation methodology
and make our open source implementation, based on Tstat[14],
available to the community. Second, we quantify the typical
bufferbloat seen by different applications, by leveraging on
Tstat’s Deep Packet Inspection (DPI) and behavioral classifi-
cation capabilities. Third, we propose a methodology to find
the root cause of bufferbloat, and report preliminary results that
further correlate the amount of queuing delay seen by each host
with the set of applications active on that host during small
time windows.

II. BACKGROUND

Delay measurement over the Internet are definitively not
a new subject — indeed, over 20 years passed since seminal
work such as [6]. Yet, despite the Internet steady evolution,

performance problems resurface that are actually worsened by
technology advances: indeed, Moore law not only increased
the memory size, but also the amount of packets standing
in modem buffers. As such, recent effort has focused on
explicitly measuring, among other performance indicators, the
latency and queuing delay experienced by end-users. With
few exceptions [3], [15], [10], [11], most related effort [20],
[12], [19], [23], [4], [5], [1], [21] employs active measurement
techniques.

A. Active vs Passive measurement.

Our methodology relies on passive measurement that, due
to its unobtrusiveness and realism of the user traffic, is the
ideal candidate to answer our questions — i.e., what delay
users observe in their daily activities? under what applica-
tions? Hence, due to lack of space, we invite the reader to
a companion technical report [7] for a thorough overview
and comparison of related work on active measurement. Here
we limitedly observe that, though active methodologies are
potentially simpler and more accurate, at the same time they
exhibit some weak points of worth pointing out. First, many
work measures latency under controlled load [20], [12], [19],
[23], [4], [S], which tends to give maximum (rather than
typical) bufferbloat. Second, periodic measures of latency have
generally very coarse granularity (with the exception of [23],
where samples are still spaced out by 6 seconds in the best
case), so that bufferbloat can go unnoticed. Third, and most
important, active techniques miss one crucial ingredient: the
knowledge of the traffic that caused the bufferbloat. In other
words, while [23] points out queuing delay to vary between
800ms and 10s depending on modem make and model, active
methods are unable to gauge how often users actually see
bufferbloats in excess of 1s, or to pinpoint the application that
caused it — which are precisely our goals.

Another interesting tradeoff between active vs passive
measurements concerns their representativeness, in terms of
number of users and networks observed. Scale of active
measurements can be as small as O(10)-O(10°) users in O(1)
networks (resp. [19] and [23]), growing up to O(10°) users
in O(10%) networks [20], [4] (though it is worth stressing that
the user base is possibly gathered over several months [20]).
Passive methodologies allow to observe a larger number of
users at any given time. At the same time, as observation of
both forward and backward paths is necessary, they can hardly
be applied in the network core (due to routing asymmetry, only
about 2%[15] flows are bidirectional) so that, generally vantage
points are sited at the network edge (e.g., near to a DSLAM
as in this work) and represents about O(10%) users in O(1)
networks.

B. Passive measurement.

Some recent work tackled the problem of passive measure-
ment of queuing delay [15], [3], [11], [10]. In our previous
work [11], [10], we propose methodologies to infer remote
host queues exploiting transport layer information available in
packet headers, for both uTP [10] (the new protocol proposed
by BitTorrent as TCP replacement for data swarming) and
TCP [10] (using RFC1323 TimeStamp option[18]). Contrarily
to [11], [10], in this work we focus on the local host queue
(since we have full knowledge of all traffic on that host) and
adopt a more general methodology, of which we outline some
important differences. First, notice that while uTP timestamps
allow to precisely gauge the remote queue (even in presence
of cross-traffic toward unseen hosts) observations are limited
in both space (to hosts that are running BitTorrent) and
time (precisely when they run it). This constrains measure-
ment campaign [10] on the one hand (a disadvantage shared
with [4]), and possibly induces a biased view of the Internet
bufferbloat on the other hand (since BitTorrent is a data-
intensive application) — problems that this work instead avoids.
Second, contrarily to [11], we avoid relying on timestamps
carried in packet headers for TCP, increasing the reach of the
methodology (despite growth of TCP TimeStamp option usage,
this still account for modest 5%-30% at our vantage points).

Closer to our work is [3] that, using bro, employs a
similar methodology to ours, relying on TCP data/ acknowl-
edgement pairs, using trace timestamps as oppostie to TCP
Timestamp option and takes care of rejecting RTT samples
from retransmitted segments (though the methodology is not
validated in a testbed, see Sec. III-A for potential issues).
Since our dataset significanly differ from [3] (in terms of US
vs EU location, FTTH vs ADSL access, duration, etc.), we
cannot attempt a direct comparison of bufferbloat results — but
still point out that, as in [3], [10] we find delays above 1 sec
to be rare in practice. Additionally, while [3] equally counts
all RTT samples (i.e., equally weighting packets of the same
TCP burst, so that users transferring large volumes are over-
represented) we give a more unbiased view (equally weighting
each second of all hosts). Finally, a more important difference
is that while [3] measures TCP queuing delay blindly across
all applications, we instead give a fine-grained per-application
view — binding queuing delay to user QoE and explaining its
root cause.

Finally, [15] focuses on a memory-efficient bufferbloat
measurement methodology, by keeping approximate TCP state
in a probabilistic data structure (that can fit the cache of current
MIPS and ARM processors used in home DSL gateways), at
the price of a minimal accuracy loss (error is less than 10 ms
in 99% of the cases, compared to tcptrace as a baseline).
However, as the focus of [15] is on the relative accuracy of the
methodology, it reports differences with respect to the baseline
rather than absolute bufferbloat measurement. Our approach
is instead complementary and, assuming a high performance
dedicated measurement box (i.e., no memory constraint), im-
plements a methodology to accurately gauge current Internet
bufferbloat (incidentally, building over tcptrace, of which
Tstat is an evolution).

G £ (Hog i~ Erid- mIN(y 417 by)

Fig. 1: Synopsis of our passive methodology

1I1. QUEUING DELAY INFERENCE
A. Methodology

We infer queuing delay of local hosts simply as depicted
in Fig. 1. For each acknowledgement packet reporting a
valid RTT sample (i.e., no reordered, nor retransmitted as
in [3]), we compute the difference between the time ¢, ;11 the
acknowledgement packet is observed and the time ¢, ; the data
packet corresponding to the sequence number was observed.
Packets are timestamped at the measurement point via Endace
DAG cards, so that timestamp is reliable. With respect to
Fig. 1, assume the local host queue A contains at time ¢, ;
packets directed toward hosts B,C and D. Neglecting for
the sake of simplicity delayed-acknowledgement timers (that
are by the way small compared to the bufferbloat magnitudo
reported in [20]), as soon as data is received at about ¢, ; at
A, the TCP receiver issues an acknowledgement that will be
serviced after the already queued data segments. The monitor
can then estimate the queuing delay ¢; 1 incurred by the (i+1)-
th acknowledgement segment as the difference between the
current samples ¢;; ;11 — trz,; and the minimum among the
previously observed samples of that flow (that represents the
propagation delay component and, as the monitor is close to
the end-user, is by the way expected to be small).

B. Validation

At low level, tcptrace keeps sequence numbers in a
circular data structure named quad (i.e., after the “quadrants”
the structure is divided into, to speed-up lookup). In case the
quad has a fixed size, it may happen that, if the number of
outstanding segments grow larger than the quad size, then
sequence number are overwritten — so that ack cannot be paired
with data and RTT samples are lost. We show an occurrence
of this problem in Fig. 2, where we configured two values
of the quad size — one is fixed (to a purposely small value)
and the other is variable and can grow arbitrarily large to avoid
overwriting outstanding sequence numbers (notice that variable
size is handled with linked lists, so that in this validation phase
we take precisely the opposite direction to [15], as we do not
want to compromise accuracy).

In a local testbed, we send bidirectional TCP traffic be-
tween LAN hosts, mimicking Fig. 1. Host B sends rate-limited

1600 Fixed-size quad Variable-size quad

1600 o Traat : 1T ‘ ‘ .‘ 7

1200 ICMP 1t o]

1000 1r ® .
i ° ,
I S .]
L .b ,
P E—

— vaid |
80 r x Allinvalid 1T

Valid RTT samples[%] Queuing delay [ms]
)
o

30 400 10 20 30 40

Fig. 2: Testbed validation of the methodology

data (at application-layer) to A, whose acks are used to pas-
sively infer queuing delay samples at A (denoted Tstat in the
picture). The uplink of host A is limited to 1Mbps with a token
bucket shaper and, after about 10sec, we start a backlogged
transfer between A and C, causing congestion to build up.
To validate passive inference, we send ICMP echo requests to
B at 1Hz, and compare average Tstat queuing delay during
1 sec long windows. To gather the impact of low-level Tstat
settings, we record the packet trace and repeat the analysis with
small and fixed (left) or variable (right) size quad. It can be
seen that, in case the structure is under-dimensioned, sequence
numbers are possibly overwritten when large amounts of
packets are queued, so that possibly all samples during a 1 sec
long window are lost. As large buffer sizes are common [13],
[23], it follows that careful settings of monitoring tools are
needed to avoid underestimating bufferbloat'.

IV. EXPERIMENTAL RESULTS

We now report experimental results of the inference. As
our focus on this paper is to build a solid methodology,
rather than providing full-blown measurement campaign, for
the time being we analyze offline traces gathered in a single
ISP network during FP7 NapaWine project, when P2P was
still fairly popular (we consider a 9 hr-long period starting at
14:00, gathered during 2009).

We argue that in order to give statistics that are useful from
the user perspective, we need to batch? consecutive samples
(e.g., belonging to the same TCP burst) into windows whose
duration relates with the timescale typical of user dynamics.
For the network under observation, we consider each internal

Notice that, at 1Mbps, 1500ms worth of queuing delay correspond to more
than 100 queued packets, which exceeds the default quad=100 size in Tstat
— hence, at higher capacities, even lower delay could be underestimated for
lower quad sizes.

2In the specific case of uTP, we have already shown [10] that queuing delay
statistics can be biased (precisely, queuing delay is underestimated) in case
each packet is counted as a sample (as opposite to windows of equal duration).

1 "

0.9
5i
oc |
22 08}
g
g3 07
SE
<g 06 '
05
28
=5
o8
© = *
U)g xx X
.EQ . * ¥
gw L
o,LCr)J— & *¥
~ 15:00 16:00 17:00 18:00 19:00 20:00 21:.00 22:00
Hours [hr]
Correlation Delay percentile

coefficient p50 p75 p90 p95 p99
Load 0.007 -0.017 -0.081 -0.091 -0.092

Fig. 3: Time evolution of normalized load (top) and queuing
delay percentiles (bottom). Correlation coefficient among load
and queueing delay samples (1 minute window).

IP as a single? host. For each host, we collect delay samples for
each active flow, corresponding to the average queuing delay
over short time windows of 1second duration, as estimated
by valid data-ack pairs of each flow. Overall, our processing
gathers about 107 individual per-flow samples.

A. Time evolution

We first show the temportal evolution of the queuing delays
statistics (namely, the 50th, 75th and 90th percentiles of the
distribution over a short time window), along with the load on
the link under study in Fig. 3 (where, due to NDA agreements,
we normalize the istantaneous load over the peak load during
the period), for the central portion of the trace. More precisely,
for each time period, we construct an histogram of the 1-
second queuing delay samples for all flows, and reset the
histogram at each new period.

As it can be seen from the picture, aggregated load and
queueing delay seem highly uncorrelated: to convince of this,
we also report the correlation coefficient using 1 minute win-
dows (different timescales, omitted for the sake of readability,
yield very similar results).

Though it may seem counter-intuitive, this results is ex-
pected. Notice indeed that we are not saying that “delay and
load are not correlated”: rather, our results point out that “delay
in the user home and load at the first hop IP router are not

3This is known to be simplistic as, due to the penetration of NAT devices,
the same IP is shared by multiple hosts (50% of the cases [22]), that are
possibly active at the same time (10% of the cases). Yet we point out that
this simplification has no impact for our methodology, since these potentially
multiple hosts share the same access bottleneck link

necessarily* correlated”. This is due to the fact that congestion
in the user home happens at the home gateway: thus, each user
can see local congestion, that does not translate into congestion
at the first aggregation router, that is properly dimensioned to
operate below congestion.

B. Per-application breakdown

From the previous section, it follows that monitoring aggre-
gated user load at a PoP is not informative so as to whether
users are experiencing bufferbloat. Yet, even though we are
actually observing bufferbloat for some flows (recall the 50th,
75th and 90th percentiles), this does not necessarily translate
into bad user experience either, as we do not know how does
the queueing delay statistics relate to user applications.

To have a more fine-grained view, we exploit Tstat Deep
Packet Inspection (DPI) and behavioral classification capabil-
ities (that we are unable to describe in full details here [14]).
Each delay sample carries an application label and, though
Tstat is capable of fine-grained classification of different
applications, we cluster similar applications into few classes
depending on the service they offer (namely, Mail, Web,
Multimedia, P2P, SSH, VoIP, Chat and other uncategorized
applications). To the best of our knowledge, this work is the
first to report a detailed per-application view of the Internet
queuing delay — that depends on the traffic mix and user
behavior of each household.

We present our results in Fig. 4 where we depict a jittered
density map of queuing delay samples (y-axis) for different
application classes (x-axis), along with boxplots reporting the
quartiles (and 5th, 95th percentiles). Applications are ordered,
left to right, in increasing order of delay sensitivity. It can be
seen that, for most applications the 75% of windows experi-
ence less than 100ms worth of queuing. The only exceptions
are consituted by, rather unsurprisingly, P2P applications and,
somehow more surprisingly, Chat applications, with median
delays exceeding 100ms.

Before dwelving the root cause of the above observations,
let us dig further its implication. Due to studies assessing
the impact of delay on the QoE of several applications such
as Web [5], [23], multimedia [17], [8] or P2P [24], [10]
applications, we can easily map a QoS metric such the queuing
delay, into an coarse indication of QoE for the end-user. Based
on the above work, we set two thresholds at 100ms and
1 second, such that:

e performance of interactive multimedia (e.g., VoIP,
video-conference and live-streaming) or data-oriented
applications (e.g., remote terminal or cloud editing of
text documents) significantly degrades when the first
threshold is crossed [17], [8];

e performance of mildly-interactive application (e.g.,
Web, chat, etc.) significantly degrades when the sec-
ond threshold is crossed [5], [23];

e additionally, while bulk transfers (e.g., P2P, long TCP
connections) are elastic in nature, it has been shown
that also TCP performance degrades [16] in presence

4A corner case would be the one where congestion happened at the IP
router, where in this case we would expect correlation to arise

o
£ 10000
g 5
: g
£ 1000
£ -
4 =
= 100 P o
> |
g
=

(@)}
& (]
g 10 =
3
3
(on
§ 1 3 B | i i
s Oth Mal P2P Web Media Chat SSH VolP

low | 89.7 93.2 58.4 91.9 86.8 45.7 98.6 97.8

mid | 10.2 6.2 38.7 8.0 13.2 54.1 14 22

high| 0.1 06 29 0.1 0.0 0.1 0.0 0.0

Fig. 4: Breakdown of queuing delay per application. Plots
report jittered density maps and (5,25,50,75,95)-th percentiles.
Table report the percentage of per-application samples falling
into either of the three delay regions (boldface values highlight
possible QoE degradation).

of excessive buffering (i.e., control becomes unstable
due to absence/delay of feedback information) and
furthermore queuing delay affect control plane of P2P
applications [24], [10] — so that even these applica-
tions performance start to degrade when the second
threshold is crossed.

Additionally, Fig. 4 tabulates the percentage of 1sec win-
dows for each application that fall into either of the three delay
regions, where we use boldface values to highlight possible
QoE degradation. It follows that, in practice, bufferbloat impact
on QoE appears to be modest. A limited 0.1% of Web and
Chat sessions may be impacted by significant delay, and 2.2%
(1.4%) of VoIP (remote terminal) sessions may be impacted
by moderate delay. P2P clearly stand out, raising the odds to
induce high delays (2.9%) followed by SMTP (0.6%), though
with likely minor impact for the end-users.

V. ROOT CAUSE ANALYSIS
A. Methodology

As we have full knowledge of the traffic generated and
received by hosts, we can correlate the queuing delay samples
with the traffic active on the hosts. As before, we limitedly
consider the upstream traffic direction, and divide time in
1 second long slots. For all active flow of each hosts, we log
the application label and its average queueing delay during that
window. Notice that in Fig. 4 we independently consider all
delay samples: in other words, the delay seen by packets of
an application flow can be induced by another flows active on
the same time in the same host (or household). In this section,
we leverage standard data mining techniques to, if possible,
pinpoint the root cause of the observed delay.

In our analysis, we face known, yet non trivial problems.
First, techniques such as frequent itemset mining or rule-
mining are known not to be scalable, and would be hard
to apply to our full dataset. Second, these techniques are
affected by class imbalance, that we need to cope with. At
this stage, we make the problem tractable by performing

TABLE I: Rule inference with Apriori

High delay

b — - Q.q b=
o = = 9 S s = £
g |8 |2 |& | |§|& |
@ 7 1% | 99%
(b) . 10% | 96%
(c) v 10% | 64%
@ =" 20% | 98%
@ | v i 28% | 87%
® v v 23% | 80%
® | ++ ++ 14% | 61%
(h) it | e 19% | 54%
o | v 1V 3% | 99%

stratified sampling’, initially including 8,000 random samples
per-application (64,000 samples overall). Let us denote by
(t,h,a,q) a queuing delay sample ¢ gathered on host h during
the time window ¢ and corresponding to an application a.
Evidently, we need to ensure that our population includes all
other samples corresponding to applications that were active
on h during ¢, and that concurred in generating bufferbloat. We
therefore complement the initial population, to achieve an over-
all population of 107,825 samples. To guarantee the statistical
relevance of our analysis, we further verify that statistics of
the sampled population correspond to those reported in Fig. 4.

For each host i and time window ¢ pair, we next compute
the queuing delay average as seen by all applications during ¢.
As rule-inference techniques are known to be largely ineffec-
tive on continuous variables, and in reason of the previous QoE
considerations, we quantize queuing delay in a low, medium
and high score.

We also aggregate all application labels, and denote with
v’ (or ++) applications that have generated respectively one
(or more) flows during ¢. For the sake of illustration, consider
2 applications are active at host h during ¢ = 0. One is a
Chat application, consisting of a single flow, the other is a
P2P application with 3 active flows during ¢ = 0: we thus
aggregate the application labels as (Chatv’, P2P++). Notice
that this criterion again implements an aggressive quantization
into classes: intuitively, we argue that there is more information
in knowing coarsely whether there was a single or more flows,
rather than distinguishing precisely the exact number of flows.
Following this spirit, we additionally encode the previous
example with purely binary indicators as in (Chatv’, P2PV").

We yet have to perform a final step in order to facilitate
the analysis of the root cause analysis. Namely, we group
together windows, irrespectively of the host, having the same
overall amount of active flows. This is necessary to simplify
interpretation of the support of the inferred rules. Intuitively,
as windows with x active flows for an host will not have the
same frequency as windows with y concurrently active flows
in our dataset, grouping window by the number of active flows
allows to let overally infrequent (i.e., with small support) but

SNote that this spatial per-host sampling step is orthogonal to the per-flow
temporal aggregation step where we coalesce delay samples coming from
multiples packets into a single queuing delay statistics.

Medium delay

b - - Q: Qo
i < ‘= o % = o =}
c |8 |2 |8 2|8 |& |S
) 7 35% T 76%
) . 44% | 53%
0 7 7T 10% | 85%
m) | 4. v 11% | 88%
(n) v | v 19% | 85%
(0) Vo 10% | 77%
® | v v 15% | 76%
@ | ++ ++ 16% | 72%
() ol 10% | 51%

still interesting (i.e., with high confidence) rules to emerge.

Once our dataset is build and properly quantized, we
resort to standard algorithm for frequent item set mining and
association rule learning, namely Apriori [2]. While reporting
the full details of the algorithm would be out of scope, is worth
pointing out that the main idea in Apriori is to find general and
relevant rules by first identifying the most frequent individual
items, and enlarge them in wider item sets as long as they
occurr sufficiently often in the dataset.

B. Experimental results

Results of Apriori [2] are reported in Tab. I for both
medium and high delays, where for each rule (essentially,
a group of contemporary application labels inducing a given
delay) we report confidence and support (percentage). Rules
are reported, top to bottom, for incresing size (i.e., number
of application label in the rule). For each rule size, rules are
sorted, top to bottom, for decreasing confidence. Already from
this small dataset, several interesting observation can be made.

First, notice that SMTP can cause bufferbloat: this is
summarized by rule (a), which can be expected due to the use
of persistent TCP connections, used to send multiple messages,
each of which encapsulates possibly large e-mail bodies due to
the use of MIME to encode attachments of various kind (e.g.,
pictures, music, archives, etc.). Notice that mail application
does not otherwise frequently generate delay, confirming the
intuition that small textual messages have no impact on the
QoE of other applications.

Second, high delays are also due to (b) multiple concurrent
P2P flows or (c) single persistent HTTP connections. Interest-
ingly, the specular case in which (j) a P2P application has a sin-
gle active flow, or (k) multiple HTTP connections are active in
parallel, the delay generally remains bound to the 100 ms-1 sec
range. The intuition is thus that users often browse the Web in
parallel to P2P transfers. However, packets of short lived TCP
Web connections often pile up behind bursts of TCP packets
due to multiple P2P connections. An implicit confirmation of
this intuition comes from the fact that BitTorrent recently®
redesigned the data transfer, by introducing the delay-sensitive
uTP protocol, aimed at bounding the queuing delay to no more

5Qur dataset is before BitTorrent uTP became popular in late 2010.

than a configurable target parameter (set to 100 ms by default).
Reason why a single Web connection should generate larger
uplink queuing delay is instead less obvious, and need further
investigation.

Third, various combinations of P2P, Web and uncategorized
traffic (Other) jointly concurr in creating bufferbloat (we notice
that uncategorized traffic possibly include P2P applications for
which Tstat has no valid classification signature). We again
notice that rule (d) combining a single Web and multiple P2P
flows, has a higher confidence that rule (h). Moreover, as the
support of (h) is included in the support of (d), it follows
that including multiple Web connections weakens the rule
significance — as already observed comparing (c) against (k),
the delay seem to be inversely correlated with the number of
Web connections.

Finally, we see that Chat sessions often happens in parallel
with (1) P2P or (r) Web traffic — with the former especially
cause of delay suffered by Chat application, in reason of
the relative confidence of rules (a) and (j) with respect to
(1). Hence, user behavior of Chatting in parallel to other
applications is the cause of relative high frequency of medium
delays (54% fall in the 100 ms-1 sec range) seen early in Fig. 4.
From this observation, we can also conjecture that Chat users
likely do not consider these levels of delay harmful for QoE.
Indeed, since all other applications have lower delay statistics,
this may follow from the fact that user naturally disactivate
data-intensive background applications (e.g., P2P) and do not
perform other activities (e.g., Web browsing) while delay-
sensitive applications are ongoing (e.g., VoIP calls).

VI. DISCUSSION

This paper propose a methodology to passively observe
Internet bufferbloat. Though preliminary, this work already
convey several useful insights (e.g., ranging from guidelines
on settings of monitoring tools to avoid bufferbloat underesti-
mation, to a per-application assessment of likely QoE impact,
to rule inference, etc.) and especially allows to pinpoint its
root cause.

While in this work we adopt a minimalistic approach,
each delay sample carries additional information beyond the
application label, concerning the amount of its activity during
the window (i.e., number of packets, bytes and number of
valid data-ack pairs). As part of our future work, we plan to
leverage this information to refine the quality of our inference
(e.g., samples could be weighted by the number of packets;
the number of valid data-ack pair, raw or normalized over
the number of packets in the window, could be used as an
indication of the confidence of each sample; the istantaneous
sending rate over the last few windows correlates with the
queuing delay of the subsequent windows, possibly assisting
root cause analysis; etc.).

More importantly, as part of our future work, we plan to
deploy the modified version of Tstat on operational networks,
in order to gather more statistically significant results from
both spatial (over several ISPs and traffic mixes) and temporal
perspectives (comparing the older dataset which we focus on
in this paper with online monitoring results).

ACKNOWLEDGEMENTS

This work has been carried out during Andrea Araldo
intership at LINCS http://www.lincs.fr. The research leading
to these results has received funding from the European Union
under the FP7 Grant Agreement n. 318627 (Integrated Project
”mPlane”).

REFERENCES

[1] http://internetcensus2012.bitbucket.org/.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In VLDB, 1994.

[3] M. Allman. Comments on bufferbloat. SIGCOMM Comput. Commun.
Rev., 43(1), Jan 2012.

[4] Z. Bischof, J. Otto, M. Sanchez, J. Rula, D. Choffnes, and F. Busta-
mante. Crowdsourcing ISP characterization to the network edge. In
ACM SIGCOMM W-MUST, 2011.

[5] Z. S. Bischof, J. S. Otto, and F. E. Bustamante. Up, down and around
the stack: ISP characterization from network intensive applications. In
ACM SIGCOMM W-MUST, 2012.

[6] J.-C. Bolot. End-to-end packet delay and loss behavior in the internet.
ACM SIGCOMM Computer Communication Review, 23(4):289-298,
1993.

[7]1 P. Casoria, D. Rossi, J. Auge, M.-O. Buob, T. Friedman, and A. Pescape.
Distributed active measurement of internet queueing delays. Technical
report, http://www.enst.fr/~drossi/papers/casoria-tr.pdf, Telecom Paris-
Tech, 2013.

[8] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei. Quantifying skype
user satisfaction. 36(4):399-410, 2006.

[9] S. Cheshire. It’s the latency, stupid!
~cheshire/rants/Latency.html, 1996.

[10] C. Chirichella and D. Rossi. To the moon and back: are internet
bufferbloat delays really that large. In IEEE INFOCOM Workshop on
Traffic Measurement and Analysis (TMA), 2013.

[11] C. Chirichella, D. Rossi, C. Testa, T. Friedman, and A. Pescape.
Remotely gauging upstream bufferbloat delays. In PAM, 2013.

[12] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver,
and V. Paxson. Fathom: a browser-based network measurement plat-
form. In ACM IMC, 2012.

[13] L. DiCioccio, R. Teixeira, M. Mayl, and C. Kreibich. Probe and Pray:
Using UPnP for Home Network Measurements. In PAM, 2012.

[14] A. Finamore, M. Mellia, M. Meo, M. Munafo, and D. Rossi. Experi-
ences of internet traffic monitoring with tstat. JEEE Network Magazine,
May 2011.

[15] S. Gangam, J. Chandrashekar, I. Cunha, and J. Kurose. Estimating TCP
latency approximately with passive measurements. In PAM, 2013.

[16] J. Gettys and K. Nichols. Bufferbloat: Dark buffers in the internet.
Communications of the ACM, 55(1):57-65, 2012.

[17] O. Holfeld, E. Pujol, E. Ciucu, A. Feldmann, and P. Barford.
BufferBloat: how relevant? a QoE perspective on buffer sizing. Tech-
nical report, 2012.

[18] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High
Performance. IETF RFC 1323, 1992.

[19] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G
networks. In ACM IMC, 2012.

[20] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Illuminating the edge network. In ACM IMC, 2010.

[21] D. Leonard and D. Loguinov. Demystifying service discovery: imple-
menting an internet-wide scanner. In ACM IMC, 2010.

[22] G. Maier, F. Schneider, and A. Feldmann. Nat usage in residential
broadband networks. In PAM, 2011.

[23] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescape. Broadband internet performance: a view from the
gateway. In ACM SIGCOMM, 2011.

[24] C. Testa and D. Rossi. The impact of uTP on BitTorrent completion
time. In IEEE P2P, 2011.

http://rescomp. stanford.edu/

Netalyzr:

