iPOJO Training - Clement Escoffier aquinet

Tutorial = iPOJO

1. Context

This tutorial is based on a pretty simple application. This application ‘simulates’
a snack bar where products (hotdog, popcorn) are provided by vendors exposed
as services. This simple application exhibits a lot of interesting use cases such:

- To sell hot dogs, a vendor needs both buns and wieners
- To sell pop-corn, only corn is required, salt and sugar are optional

type=bun
stock=10 Bun
type=hotdag Provider
pe=

~ Vendor —€

Wiener
type=wie Povider
stock=50

The objectives of this tutorial is to illustrate how to use basic iPOJO features, as
well as introduce less basic features and how iPOJO can be used in real world
applications.

2. Preparation

Download the archive from:
http: eople.apache.org/~clement/ipojo/tutorials/ipojo-training/ipojo-training.zip.

Unzip it.
This tutorial relies on OW2 Chameleon and Apache Felix. It provides a pretty
simple way to launch the application and to manage it.

Before launching anything, edit the ‘chameleon/chameleon.properties’ files and
set the HTTP Port to a valid port (property ‘org.osgi.service.http.port’) like 8080.
You must choose a different HTTP Port (each group a different one).

The chosen port is denoted as ‘port’ in the remaining of the document.

2.1.Launching the Chameleon
A chameleon is a ‘ready-to-go’ OSGi distribution. The provided chameleon is
shipped with the basic services used in this training session. To launch the
chameleon, go to the chameleon directory and execute chameleon-start.(sh/bat).

Note: For linux / unix / macos users, you must add the execution permission to
the script with ‘chmod 774 chameleon-start.sh’.

iPOJO Training - Clement Escoffier aquinet

Note: For windows users, the chameleon is started in another command
windows.

This command starts and provisioned bundles contained in ‘core’, ‘runtime’,
‘application’ and ‘deploy’. The ‘deploy’ folder is a dynamic folder. Bundles
dropped inside this directory will be automatically installed and started.
Removing a bundle from this directory is equivalent to uninstalling it. This also
works with configurations.

2.2.Launching the web console
This chameleon starts a bundle allowing administering the OSGi platform via a
web interface. Once the chameleon is launch, open:

http://localhost:port/system/console/bundles (login/password: admin/admin)

Bundles | Configuration Configuration Status Deployment Packages IPOJO Licenses Log Service OSGIRepository Services Shell System Information

Bundle information: 15 bundles in total - all 15 bundles active.

Choose File Install or Update Reload Install/Update... Refresh Packages
Id & |Name # | Version 4 | Symbolic Name 4 | Status & | Actions
0 » gSystem Bundle 204 org.apache.felix.framework Active
7 * Apache Felix Bundle Repository 142 org.apache feiix bundlerepository Active DRCORORO)
1 > Apache Felix C Admin Service 124 org.apache.felix.configadmin Active) @ @ @
2 > Apache Felix File Install 204 org.apache felix fileinstall Active D@ @ @
3 * Apache Felix iPOJO 1.5.0.SNAPSHOT org.apache.felix.ipojo;singleton:=true Active) @ @ @
4 * Apache Felix iPOJO Arch Command 140 org.apache felix.ipojo.arch Active D @ @ @
8 * Apache Felix iPOJO URL Handler 142 org.apache.felix.ipojo.online.manipulator Active v @ @ ®
9 * Apache Felix iPOJO WebConsole Plugins 144 org.apache.felix.ipojo.webconsole Active) @ @ 2
1 > Apache Felix Log Service 100 org.apache feiix.log Active D@ @ @
" * Apache Felix Metatype Service 104 org.apache.felix. metatype Active V@ @ @
5 * Apache Felix Shell Service 141 org.apache felix.shell Active)@@ @
12 » Apache Felix Web Console 206 org.apache.felix.webconsole Active D@ @ @
13 > OPS4J Pax Web - Jetty Bundle 0.7.0 org.ops4j.pax.web.pax-web-jetty-bundle Active 0 @ (2 O]
14 » OPS4J Pax Web - Jsp Support 07.0 org.ops4j.pax.web.pax-web-jsp Active) @ @ @
6 > osaicmp 4.2.0.200908310645 osgi.cmpn Active) @ @ (=&

Install or Update Install/Update...) Refresh Packages

]
£

Bundle information: 15 bundles in total - all 15 bundles active.
The ‘action’ buttons allow starting, stopping, updating, and uninstalling a bundle.

The iPOJO view (click on iPOJO) lists the instances, the factories and handlers. It
provides a navigable view were you can see who provides used services...

3 instances in total, 3 valid instances, 0 invalid instances.

{ instances JE(Factories BRI Handlers J

4 | Factory Name
ArchCommand org.apache.felix.ipojo.arch. ArchCommandimpl valid
ora.apache felix.ipoio.online IPOJOURLHandler-0 org.apache.felix.ipojo.oniine. manipulator. IPOJOURLHandler valid
ora.apache felix.ipojo.webconsole.IPOJOServiet-0 org.apache felix.ipojo.webconsole.IPOJOServiet valid

{ instances JER(Factories BRI Handlers J

3 instances in total, 3 valid instances, 0 invalid instances.

2.3.Compilation and Deployment
The project uses Apache Ant to compile and package bundles. On each project,
three main goals are available:

- package: compile and create the bundle in the ‘target’ directory

|
'

iPOJO Training - Clement Escoffier

- install: copy the create bundle to the ‘live’ folder of the chameleon

(deploy)
- clean: all is in the goal name...

Launch them by navigating in the project folder, and launch ‘ant clean package
install’. This command will compile, package and deploy the bundle. Launch
them in directories containing a ‘build.xml’ file.

At the end of the session, you can create a distribution of your work with: ‘ant
assembly’ A zip file will be created in the ‘dist’ directory.

3. The service interfaces

The service interfaces used in this tutorial are mostly (expect one for
demonstration purpose) packaged in their own bundle named ‘service-
interfaces’.

Open the source files from the ‘de.akquinet.gomobile.ipojo.training.service’
package (in the service-interfaces folder) to have a look to the service interfaces:

- VendorService is implemented by vendors selling Products
- ResellerService is implemented by resellers providing the ingredients to
vendors

1. Task:

Read the service interfaces and explain why they are packaged in a separated
bundle. Also explain why service properties are specified in the service
interfaces.

Then, package and deploy the service interfaces by launching ‘ant clean package
install’.

4. The Shop Servlet
Open the Shop-Servlet project and read the ShopServlet.java class.

2. Task:
Explain the behavior of this component. Are the synchronization policies valid
for the start and stop method?

Once done, package and deploy the Shop-Servlet bundle. Open
http://localhost:port/shop with your browser.

3. Task:
Is the displayed page what you expected?

5. Providing a Service: The Corn Service

In this section, you will implement a CornVendor selling Corn. For demonstration
purpose, this implementation does not implement the ResellerService but
embeds its own service interface.

iPOJO Training - Clement Escoffier aquinet y
4. Task:

What do you think about this choice?
Open the ‘de.akquinet.gomobile.ipojo.training.corn.CornVendorImpl’ java class.

5. Task:

Edit the CornVendorImpl class to provide the CornVendor service (don’t forget
to add the @Instantiate annotation). Moreover, imports must be added for the
annotation classes - e.g. import org.apache.felix.ipojo.annotations.Component;

Once done, package and deploy the bundle (ant clean package install). To check
that your component is correctly implemented, open the web console, go to the
iPOJO view, and select the ‘de.akquinet.gomobile.ipojo.training.CornVendorImpl-
0’ instance.

You should see something like:

{ Instances Factories Handlers

Instance Name de.akquinet.gomobile.ipojo.training.corn.CornVendorimpl-0

Factory de.akquinet.gomobile.ipojo.training.corn.CornVendorimpl

Provided Services g6 cification [de.akquinet. gomobile.ipojo.training.corn.service. CornVendor]
State registered
Service Id 59

Service Properties .
« factory.name = de.akquinet.gomobile.ipojo.training.corn.CornVendorimpl
« instance.name = de.akquinet.gomobile.ipojo.training.corn.CornVendorimpl-0

Required Services No required services

Architecture
instance name="de.akquinet.gomobile.ipojo.training.corn.CornVendorImpl-0" component.type="de.akquinet.gomobile.ipoj
object name="de.akquinet.gomobile.ipojo.training.corn.CornVendorImpl@49d31859"
handler name="org.apache.felix.ipojo:callback" state="valid"
handler name="org.apache.felix.ipojo:provides" state="valid"
provides service.id="59" state="registered" specifications="[de.akquinet.gomobile.ipojo.training.co
property name="factory.name" value="de.akquinet.gomobile.ipojo.training.corn.CornVendorImpl
property name="instance.name" value="de.akquinet.gomobile.ipojo.training.corn.CornVendorImp:
handler name="org.apache.felix.ipojo:architecture" state="valid"
C B))<l
Cinstance:

Explain the factory value, and the provided services section.

6. Requiring a Mandatory Service: The PopCornVendor

In this section, you will implement a VendorService selling PopCorn and relying
on the CornVendor service defined and implemented previously.

Open the ‘de.akquinet.gomobile.ipojo.training.popcorn.PopCornVendor’ class
from the popcorn-vendor project.

7. Task:
Edit the class to declare a component type providing the VendorService and
create an instance of it.

8. Task:
Configure the m_corn field to receive a CornVendor service object. The service
dependency must be scalar and mandatory.

9. Task:

iPOJO Training - Clement Escoffier

In the buy method call the CornVendor to get corn before creating the PopCorn
product.

10. Task:
Explain the two service properties.

Once done, package and deploy the bundle (ant clean package install). Then,
reload the shop. If everything is correct, you should see the popcorn vendor, and
you can buy pop-corn.

11. Task:

In the web console, go to the bundle view, and stop the ‘corn-vendor’ bundle
(with the stop button). Go back to the shop, and refresh the page. Explain the
result.

Restart the corn vendor bundle from the web console.

7. Exposing service properties: The Wiener Reseller

Now that you have created your first vendor, you will create a slightly more
complex vendor (selling hotdogs). This vendor requires two resellers: a wiener
reseller and a bun reseller. In this section, you will implement wiener reseller
exposing service properties.

12. Task:
Open the wiener-provider project and fill the
de.akquinet.gomobile.ipojo.training.wiener.WienerReseller class. This

component must be instantiated, and implement the Reseller Service
specification. The provided type is ‘wiener”.

Once done, package and deploy the bundle (ant clean package install). Then,
check that the Reseller Service providing Wiener is correctly exposed.

8. Properties and Lifecycle: The Bun Reseller

The bun reseller is more complex. Indeed, there are potential starvations... In
this section, you will implement the Bun Reseller as a configurable instance
(stock). If the stock reaches 0, the service is withdrawn from the service registry.

The Bun Reseller will not be instantiated by default (so no @Instantiate
annotation). Instead, a configured instance will be creating with the initial stock.
This property is declared with the @Property annotation.

To control the service exposition, the @ServiceController annotation is used.
When set to false, the services are withdrawn from the service registry. When set
to true, the services are published.

13. Task:
Fill the de.akquinet.gomobile.ipojo.training.bun.BunReseller class to follow the
description.

iPOJO Training - Clement Escoffier aquinet

Deploy your bundle (ant clean package install). In the web console, in the iPOJO
view, no instances are created. But, if you click on ‘Factories’, you should see the
component type:

Instances Factories Handlers

Factory Name 4 | Bundle 4 |State ¢
apache feiix.ipojo. IPOJOServiet org.apache.felix.ipojo.webconsole (9) valid
de.akquinet.gomobile.ipojo.training.shop.ShopServiet de.akquinet.gomobile.ipojo.training.shop (15) valid

de.akquinet.gomobile.ipojo.training.corn (16) valid

de.akquinet.gomobile.ipojo.training.popcorn (18) valid

de.akquinet.gomobile.ipojo.training.wiener (19) valid

de.akguinet.gomobile.ipojo.training.bun eseller de.akquinet.gomobile.ipojo.training.bun (20) valid

9. Instantiating a Bun Reseller
In this section, you will create an instance of the Bun Reseller. There is a couple
of way to do that:

* Using an XML file
* Using the cfg files and the configuration admin
* Using the iPOJO Factory service

You will use the second approach. It consists in creating a .cfg files containing the
properties. This file will be analyzed and push to the configuration admin (an
0OSGi service managing configurations). This service will send the configuration
to the component type, and the instance will be created.

14. Task:

Create a file named ‘de.akquinet.gomobile.ipojo.training.bun.BunReseller-
bunl.cfg’ in the chameleon/deploy folder. This folder is a live folder. So, the file
will be discovered, analyzed and the configuration will be pushed to the config
admin. The file name is important, and must follow the following name rule:
component_type_name-instance_name.cfg. In your case, the component type
name is the class name. In the file, write:

stock: 10

When the file is saved, reload the iPOJO view of the web console. A bun reseller
instance should be here.

10. Using Requirement Filters: the hotdog vendor

You now have the two resellers selling buns and wieners. It’s time to implement
the hotdog vendor relying on those resellers.

Open the hotdog-vendor project to fill the
‘de.akquinet.gomobile.ipojo.training.hotdog.HotDogVendor’ class.

15. Task:

iPOJO Training - Clement Escoffier

Fill the HotDog vendor class. Before returning the product you must get a bun
and a wiener. The @Requires annotation has a filter attribute receiving an
0SGi LDAP filter.

Once implemented, package and deploy the bundle (ant clean package install).
The hotdog vendor should appear in the shop.

16. Task:

Try to buy hotdogs several times (10 times). What is happening? Open the web
console and look at the state of the HotDog vendor instance. Could you explain
why the hotdog vendor is invalid?

11. Dynamic reconfiguration: stock management

17. Task:
Edit the cfg file from the ‘deploy’ folder and save it again. Then, refresh the
shop. Explain what is happening when the file is saved.

18. Task:
Clone the cfg file and rename it (just the last part of the name). Open the web
console and check the iPOJO instance. What do you remark?

19. Task:
Now try to buy hotdogs from the shop. What happens when the first bun
provider ‘closes’?

12. Optional Requirement: The log service

In all the components, the log uses SLF4]. However, OSGi defines a log service
too.

20. Task:
Adapt one of your components to replace the log by an optional service
requirement on LogService (org.osgi.service.log.LogService).

21. Task:
What happens if the log service is not available? To check this behavior, stop
the bundle named ‘Apache Felix Log Service’ from the web console.

13. Default Implementation: strategy pattern
iPOJO also supports default-implementation to replace a missing service. iPOJO
creates an instance of this class when a service is not available. The Default
implementation class must implement the service interface.

22. Task:

Provide a default implementation of the log service delegating to a SLF4]
logger. Check the behavior when the log service is available and when the log
service is not available.

iPOJO Training - Clement Escoffier aquinet

14. Aggregate Dependencies: The combo vendor

23. Task:
Implement from scratch (create the complete project) a vendor service that

aggregates all the others vendors to provide a ‘combo’.

