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THE FOURTH MOMENT THEOREM
ON THE POISSON SPACE

CHRISTIAN DÖBLER AND GIOVANNI PECCATI

Abstract. We prove an exact fourth moment bound for the normal approxima-
tion of random variables belonging to the Wiener chaos of a general Poisson random
measure. Such a result – that has been elusive for several years – shows that the
so-called ‘fourth moment phenomenon’, first discovered by Nualart and Peccati
(2005) in the context of Gaussian fields, also systematically emerges in a Poisson
framework. Our main findings are based on Stein’s method, Malliavin calculus
and Mecke-type formulae, as well as on a methodological breakthrough, consist-
ing in the use of carré-du-champ operators on the Poisson space for controlling
residual terms associated with add-one cost operators. Our approach can be re-
garded as a successful application of Markov generator techniques to probabilistic
approximations in a non-diffusive framework: as such, it represents a significant
extension of the seminal contributions by Ledoux (2012) and Azmoodeh, Campese
and Poly (2014). To demonstrate the flexibility of our results, we also provide some
novel bounds for the Gamma approximation of non-linear functionals of a Poisson
measure.

1. Introduction

1.1. Overview. The aim of this paper is to prove an exact fourth moment bound
for the normal approximation of random variables belonging to the Wiener chaos of
a general Poisson measure. Differently from previous fourth moment limit theorems
on the Poisson space proved in the literature, our main findings do not require that
the involved random variables have the form of multiple integrals with a kernel
of constant sign (see [LRP13, Sch16, ET14]), nor that they are finite homogeneous
sums (see [PZ14]) or that they belong to Wiener chaoses of lower orders (see [PT08,
BP16b]). As discussed below, the methodological breakthrough yielding such an
achievement, consists in the use of carré-du-champ operators on the Poisson space,
that we shall systematically exploit in connection with Mecke-type formulae and
Stein’s method (see [CGS11,NP12]). We will see that using carré-du-champ operators
instead of norms of Malliavin derivatives (as done in the already quoted references
[LRP13, Sch16, ET14, PZ14, PT08, BP16b]) will allow us to bypass at once almost
all combinatorial difficulties – in particular connected to multiplication formulae on
configuration spaces – that have systematically marred previous attempts.
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We stress that the idea of using carré-du-champ operators, in order to deduce
quantitative limit theorems by means of Stein’s method, originates in the ground-
breaking works [Led12, ACP14, AMMP16], where the authors apply the powerful
techniques of Gamma calculus in the framework of eigenspaces of diffusive Markov
generators (see [BGL14] for definitions, as well as [CP15] for an introduction to this
approach). As demonstrated in Section 3, our results show that such an approach
can be fruitfully applied and extended, in order to control residual terms arising from
the application of Stein’s method in a non-diffusive context.

1.2. Further historical details. The so-called fourth moment phenomenon was
first discovered in [NP05], where the authors proved that a sequence of normalized
random variables, belonging to a fixed Wiener chaos of a Gaussian field, converge
in distribution to a Gaussian random variable if and only if their fourth cumulant
converges to zero. Such a result constitutes a dramatic simplification of the method
of moments and cumulants (see e.g. [NP12, p. 202]), and represents a rough infinite-
dimensional counterpart of classical results by de Jong – see [dJ87, dJ89, dJ90], as
well as [DP17,DP16] for recent advances. A particularly fruitful line of research was
initiated in [NP09b], where it is proved that the results of [NP05] can be recovered
from very general estimates, obtained by combining the Malliavin calculus of vari-
ations with Stein’s method for normal approximation. Precisely, one remarkable
achievement of this approach is the bound

dKol(F,N) ≤
√
q − 1

3q

(
E[F 4]− 3

)
, (1.1)

where dKol stands for the Kolmogorov distance between the laws of two random
variables, F is a normalized multiple Wiener-Itô integral of order q ≥ 1 on a
Gaussian space and N denotes a standard normal random variable (see e.g. The-
orem 5.2.6 in [NP12], where analogous bounds for other metrics are also stated).
Such a discovery has been the seed of a fruitful stream of research, now consist-
ing of several hundred papers, where the results of [NP05, NP09b] have been ex-
tended and applied to a variety of frameworks, ranging from free probability to
stochastic geometry, compressed sensing and time-series analysis — see the webpage
https://sites.google.com/site/malliavinstein/home for a constantly updated
list, as well as the monograph [NP12] and the reference [LNP15] for recent develop-
ments related to functional inequalities.

The line of research pursued in the present work stems from the two papers
[PSTU10,PZ10], where the authors adapted the techniques introduced in [NP09b] to
the framework of non-linear Poisson functionals, in particular by combining Stein’s
method with a discrete version of Malliavin calculus on configuration spaces. As
anticipated, the principal aim of this work is to positively answer the following ques-
tion:

Can one prove a bound comparable to (1.1) on the Poisson space?

Such a question has stayed open since the publication of [PSTU10] and, so far,
answers have only been found in very special cases — see Remark 1.5 below.

One should notice that the relevance of the techniques developed in [PSTU10,
PZ10] has been greatly amplified by the pathbreaking reference [RS13], where it is
shown that one can use Malliavin-Stein techniques on the Poisson space in order to
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study the fluctuation of random objects arising in the context of random geometric
structures on configuration spaces, like e.g. random graphs or random tessellations.
Such a connection with stochastic geometry has generated a remarkable body of
work, that has recently culminated in the publication of the monograph [PR16]. The
reader is referred to [LPS16,LRSY16] for recent developments connected to Mehler
formulae, stabilization and second order Poincaré inequalities, and to [BP16a] for
some related concentration estimates in a geometric context.

1.3. Main results for normal approximations. We fix an arbitrary measurable
space (Z,Z ) endowed with a σ-finite measure µ. Furthermore, we let

Zµ := {B ∈ Z : µ(B) <∞}
and denote by

η = {η(B) : B ∈ Zµ}
a Poisson measure on (Z,Z ) with control µ, defined on a suitable probability space
(Ω,F ,P). We recall that the distribution of η is completely determined by the
following two facts: (i) for each finite sequence B1, . . . , Bm ∈ Z of pairwise disjoint
sets, the random variables η(B1), . . . , η(Bm) are independent, and (ii) that for every
B ∈ Z , the random variable η(B) has the Poisson distribution with mean µ(B).
Here, we have extended the family of Poisson distributions to the parameter region
[0,+∞] in the usual way. For B ∈ Zµ, we also write η̂(B) := η(B) − µ(B) and
denote by

η̂ = {η̂(B) : B ∈ Zµ}
the compensated Poisson measure associated with η. As discussed in Section 2.1, we
require throughout the paper that η is proper, that is, that η can be a.s. represented
as a (possibly infinite) random sum of Dirac masses. Without loss of generality, we
may and will assume that F = σ(η). In order to state our main results, we introduce
the following fundamental objects from stochastic analysis on the Poisson space. For
precise definitions and further explanation we refer to [PR16], in particular to its
first chapter [Las16], as well as to [LP17] and Section 2. For a nonnegative integer
q and a square-integrable kernel function f ∈ L2(µq) we denote by Iq(f) the q-th
order multiple Wiener-Itô integral of f with respect to η̂. If L denotes the generator
of the Ornstein-Uhlenbeck semigroup with repect to η, then it is well-known that
−L has pure point spectrum given by the set of nonnegative integers and that, for
q ∈ N0 = {0, 1, 2, . . .}, F is an eigenfunction of −L with eigenvalue q, if and only if
F = Iq(f) for some f ∈ L2(µq). The corresponding eigenspace Cq is called the q-th
Wiener chaos associated with η.

Next, we introduce the probabilistic distances in which our bounds are expressed.
For m ∈ N, denote by Hm the class of those (m−1)-times differentiable test functions
h on R such that h(m−1) is Lipschitz-continuous and we have

‖h(l)‖∞ ≤ 1 for l = 1, . . . , m .

Here and elsewhere, for an arbitrary function g on R, we use the notation

‖g′‖∞ := sup
x 6=y

|g(y)− g(x)|
|y − x| ∈ [0,+∞]

for the minimum Lipschitz-constant of g. This does not cause any confusion be-
cause this quantity coincides with the supremum norm of the derivative g′ of g
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when g happens to be differentiable. For real random variables X and Y such that
E|X|,E|Y | <∞ we denote by

dm(X, Y ) := dm
(
L(X),L(Y )

)
:= sup

h∈Hm

∣∣E[h(X)]− E[h(Y )]
∣∣

the distance between the distributions of X and Y induced by the class Hm; observe
that d1 coincides with the classical 1-Wasserstein distance, see e.g. [NP12, Appendix
C] and the references therein. We will also study the Kolmogorov distance between
the laws of X and Y , given by

dKol(X, Y ) := sup
x∈R

∣∣P[X ≤ x]− P[Y ≤ x]
∣∣.

It is a well known fact (see e.g. [NP12, Appendix C] and the references therein) that
if X is a generic random variable and Y has a density bounded by c ∈ (0,∞), then

dKol(X, Y ) ≤
√

2c d1(X, Y ). (1.2)

The assumptions in our main results will be expressed in terms of the add-one cost
operator D+, that is defined as follows: if F = f(η) is a functional of η, then

D+
z F := f(η + δz)− f(η), z ∈ Z,

in such a way that D+F can be regarded as a random function with domain equal
to Z. See Section 2.1 for a formal discussion of such an object.

Definition 1.1. Let F be an F(= σ(η))-measurable random variable.

(i) We say that F satisfies Assumption A if F ∈ L4(P) and if the four random
functions D+F , FD+F , (D+F )4 and F 3D+F are all elements of the space
L1(Ω× Z,P⊗ µ) := L1(P⊗ µ).

(ii) We say that F satisfies Assumption A
(loc) if there exists a set Z0 ∈ Z with

the following properties: (a) µ(Z\Z0) = 0, and (b) for every fixed z ∈ Z0,
the random variable D+

z F verifies Assumption A.

Remark 1.2. Requiring that a given functionals satisfies Assumption A or As-
sumption A

(loc) is an unavoidable (minimal) restriction, ensuring that one can apply
Mecke identities (see (2.3)–(2.4) below), as well as exploit several almost sure repre-
sentations of Malliavin and carré-du-champ operators. Using e.g. the multiplication
formula stated in [Las16, Proposition 5], one can easily prove that both Assumption
A and Assumption A

(loc) are verified, whenever F has the form

F =
M∑

q=0

Iq(fq),

where M < ∞ and each fq is bounded and such that its support is contained in
a rectangle of the type C × · · · × C, where C ∈ Z verifies µ(C) < ∞. Such a
class of random variables contains most U -statistics that are relevant for geometric
applications (see the surveys [LRR16, ST16] and the references therein), as well as
non-linear functionals of Volterra Lévy processes [PSTU10, PZ10], and the finite
homogeneous sums in independent Poisson random variables considered in [PZ14].
A similar remark applies to the assumptions appearing in the statement of our main
abstract bounds in Proposition 4.1 and Proposition 4.3.
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The next result is the main finding of the paper: it provides quantitative fourth
moment estimates with completely explicit constants, both in the 1-Wasserstein and
Kolmogorov distances, for random variables living in the Wiener chaos of a Poisson
measure. Remarkably, the order of the bound (as a function of the fourth cumulant
E[F 4]−3) is the same for the two distances, thus significantly improving the estimate
on dKol that one could deduce from (1.2).

Theorem 1.3 (Fourth moment bounds on the Poisson space). Fix an integer q ≥ 1
and let F = Iq(f) be a multiple Wiener-Itô integral with respect to η̂. Assume that
F verifies Assumption A and that E[F 2] = 1; denote by N ∼ N (0, 1) a standard
normal random variable. Then,

d1(F,N) ≤
(√

2

π

2q − 1

2q
+

√
4q − 1√
q

)√
E
[
F 4
]
− 3 (1.3)

≤
(√

2

π
+ 2

)√
E
[
F 4
]
− 3 (1.4)

(in the above situation one automatically has that E[F 4] ≥ 3). Moreover, if F satisfies
Assumption A

(loc), then

dKol(F,N) ≤
(
11 + 23/2

(
E[F 4]1/2 + E[F 4]1/4

))√
E
[
F 4
]
− 3 . (1.5)

The following result is an immediate consequence of the bound (1.4).

Corollary 1.4 (Fourth moment theorem on the Poisson space). For each n ∈ N

let qn ≥ 1 be an integer and let Fn = Iqn(fn) be a multiple Wiener-Itô integral of
some symmetric kernel fn ∈ L2(µqn) such that

lim
n→∞

E
[
F 2
n

]
= lim

n→∞
qn!‖fn‖22 = 1 and lim

n→∞
E
[
F 4
n

]
= 3 .

Then, if each Fn satisfies Assumption A, the sequence (Fn)n∈N converges in dis-
tribution to a standard normal random variable N in the sense of the 1-Wasserstein
distance.

Remark 1.5. As mentioned before, so far, the fourth moment theorem on the Poisson
space has only been known in very special cases: For double integrals, i.e. q =
2, the qualitative fourth moment theorem was proved in [PT08]. Under different
assumptions, this result is also proved in [BP16b] where also a qualitative fourth
moment theorem for q = 3 is derived. We would like to mention that the method
of proof applied in [BP16b] is rather ad hoc and cannot be generalized to higher
orders of q. We also stress that all existing quantitative fourth moment theorems
on the Poisson space make the restrictive assumption that the kernel function f
has a constant sign (see e.g. [LRP13,Sch16,ET14]). Furthermore, the multiplicative
constants in these results depend on the order q in a non-explicit way such that
e.g. a statement in the spirit of Corollary 1.4 cannot be inferred from them. We
finally mention [PZ14], where one can find a fourth moment theorem for sequences
of chaotic elements having the form of homogeneous sums in independent Poisson
random variables whose variance is bounded away from zero, as well as [BP14], where
the authors prove a fourth moment theorem for multiple integrals with respect of
a non-commutative Poisson measure (in the framework of free probability theory),
under an additional tameness assumption.
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We also notice the following negative result.

Proposition 1.6. For each q ∈ N, there exists no Gaussian random variable with
positive variance in the q-th Wiener chaos Cq associated with η.

1.4. Main results on Gamma approximations. For ν > 0, we denote by Γ̄(ν)
the so-called centered Gamma distribution with parameter ν which by definition is
the distribution of

Zν := 2Xν/2,1 − ν ,

where, Xν/2,1 has the usual Gamma distribution on [0,+∞) with shape parameter
ν/2 and rate 1. In particular, one has

E[Zν ] = 0 and Var(Zν) = E[Z2
ν ] = 2ν .

Moreover, the following moment identity (already exploited in [NP09a]) will play an
important role in what follows:

E[Z4
ν ]− 12E[Z3

ν ]− 12ν2 + 48ν = 0 . (1.6)

The next result is the counterpart of Theorem 1.3 for centered Gamma approxima-
tion.

Theorem 1.7 (Fourth moment bound for Gamma approximation). Fix ν > 0 as well
as an integer q ≥ 1 and let F = Iq(f) be a multiple Wiener-Itô integral with respect
to η̂, verifying Assumption A. Assume that F ∈ L4(P) and that E[F 2] = 2ν. Also,
let Zν ∼ Γ̄(ν) have the centered Gamma distribution with parameter ν. Then, we
have the following bound:

d2(F, Zν) ≤ C1(ν)

√∣∣∣E
[
F 4
]
− 12E

[
F 3
]
− 12ν2 + 48ν

∣∣∣

+ C2(ν)

(
1

q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

)1/2

, (1.7)

where D+ denotes the add-one-cost operator associated with η (see Section 2) and
where we can let

C1(ν) :=
1√
3
max

(
1,

2

ν

)
and

C2(ν) :=
1√
6
max

(
1,

2

ν

)
+max

(√
2ν,

√
2

ν
+

√
ν

2

)
.

Remark 1.8. (a) The bound (1.7) displays an additional term, not directly con-
nected to moments, that is not present in the estimate (1.3) for normal approx-
imations. For the time being, it is a challenging open problem to determine
whether such a term can be removed.

(b) The previous result implies that, if, for n ∈ N, Fn ∈ Ker(L+ qnIn) (qn ≥ 1) is a
sequence of random variables verifying Assumption A and such that

lim
n→∞

E[F 2
n ] = 2ν, lim

n→∞

(
E
[
F 4
n

]
− 12E

[
F 3
n

])
= 12ν2 − 48ν,

and

lim
n→∞

∫

Z
E
[
|D+

z Fn|4
]
µ(dz) = 0, (1.8)
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then Fn converges in distribution to Zν . In the case where qn ≡ q, and Fn has the
form Iq(fn) for some sufficiently regular kernel fn, then one sufficient condition
in order to have (1.8) is that all contractions of the type fn ⋆

a
b fn converge to zero

in L2, where the definition of fn ⋆
a
b fn can be found e.g. in [Las16, Section 6];

see the computations contained in [PSTU10, p. 465-466]. A detailed discussion
of the Gamma bound (1.7) via the use of contraction operators (in the sprit e.g.
of [PT13,FT16]) seems to be outside the scope of the present work, and will be
tackled elsewhere; see also [DP16].

1.5. Plan. The paper is organised as follows. Section 2 contains preliminary results
concerning stochastic analysis on the Poisson space. Section 3 focusses on several
new estimates for multiple integrals, whereas Section 4 and Section 5 deal with the
proofs of our main results. Finally, Section 6 contains the proofs of some technical
lemmas.

1.6. Acknowledgments. The authors would like to thank Solesne Bourguin, Si-
mon Campese, Günter Last and Matthias Schulte for useful discussions. Support is
acknowledged from the grant F1RMTH-PUL-15STAR (STARS) at Luxembourg Univer-
sity.

2. Elements of stochastic analysis on the Poisson space

In this section, we describe our theoretical framework in more detail, by adopt-
ing the language of [Las16], corresponding to Chapter 1 in [PR16]. See also the
monograph [LP17].

2.1. Setup. In what follows, we will view the Poisson process η as a random element
taking values in the space Nσ = Nσ(Z) of all σ-finite point measures χ on (Z,Z )
that satisfy χ(B) ∈ N0 ∪ {+∞} for all B ∈ Z . Such a space is equipped with
the smallest σ-field Nσ := Nσ(Z) such that, for each B ∈ Z , the mapping Nσ ∋
χ 7→ χ(B) ∈ [0,+∞] is measurable. As anticipated, throughout the paper we shall
assume that the process η is proper, in the sense that η can be P-a.s. represented in
the form

η =

η(Z)∑

n=1

δXn
,

where {Xn : n ≥ 1} denotes a countable collection of random elements with values
in Z. A sufficient condition for η to be proper is e.g. that (Z,Z ) is a Polish space
endowed with its Borel σ-field, with µ being σ-finite as above. See [LP17, Section
6.1] and [Las16, p. 2-3] for more details. Furthermore, Corollary 3.7 in [LP17]
states that for each Poisson process η, there exists (maybe on a different probability
space) a proper Poisson process η∗ which has the same distribution as η. Since all
our results depend uniquely on the distribution of η, it is no restriction of generality
to assume that η is proper.

Now denote by F(Nσ) the class of all measurable functions f : Nσ → R and by
L0(Ω) := L0(Ω,F) the class of real-valued, measurable functions F on Ω. Note that,
as F = σ(η), each F ∈ L0(Ω) can be written as F = f(η) for some measurable
function f. This f, called a representative of F , is Pη-a.s. uniquely defined, where
Pη = P ◦ η−1 is the image measure of P under η on the space (Nσ,Nσ).
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Using a representative f of F , we can define the so-called add-one cost operator
D+ = (D+

z )z∈Z on L0(Ω) (recall that we assume F = σ(η)) by

D+
z F := f(η + δz)− f(η) , z ∈ Z; (2.1)

similarly, we define D− on L0(Ω) via

D−
z F := f(η)− f(η − δz) , if z ∈ supp(η) , and D−

z F := 0, otherwise, (2.2)

where supp(η) stands for the support of the measure η; note that, since η is proper,
if z ∈ supp(η), then η−δz ∈ Nσ. Intuitively, −D− is a remove-one cost operator. We
stress that the definitions of D+F and D−F are, respectively, P⊗ µ-a.e. and P-a.s.
independent of the choice of the representative f — see e.g. [LP11, Lemma 2.4] for
the case of D+, whereas the case of D− can be dealt with by using the Mecke formula
(2.4) below. Similarly, the conditions stated in Assumption A and Assumption
A

(loc) do not depend on the choice of the representative f.

We conclude the section by observing that the operator D+ can be canonically
iterated by setting D(1) := D+ and, for n ≥ 2 and z1, . . . , zn ∈ Z and F ∈ L0(Ω), by
recursively defining

D(n)
z1,...,zn

F := D+
z1

(
D(n−1)
z2,...,zn

F
)
.

2.2. L1 theory: Mecke formula and Γ0. A central formula in the theory of Pois-
son processes is the so-called Mecke formula from [Mec67] which says that for each
measurable function h : Nσ × Z → [0,+∞] the identity

E

[∫

Z
h(η + δz, z)µ(dz)

]
= E

[∫

Z
h(η, z)η(dz)

]
(2.3)

holds true; see [LP17, Chapter 4] for a modern discussion of this fundamental result.
We will pervasively use the following consequence of (2.3):

Lemma 2.1. For some integer d ≥ 1, let f1, ..., fd be measurable mappings from Nσ

into [0,+∞], and let V : [0,+∞]2d → [0,+∞] be measurable. Then,

E

[∫

Z
V (z)µ(dz)

]
:= E

[∫

Z
V
(
f1(η), f1(η + δz), ..., fd(η), fd(η + δz)

)
µ(dz)

]

= E

[∫

Z
V
(
f1(η − δz), f1(η), ..., fd(η − δz), fd(η)

)
η(dz)

]
. (2.4)

Both sides of (2.4) do not change if any of the fi, i = 1, ..., d is replaced with another

measurable mapping f̂i such that fi = f̂i, a.s.-Pη.

Proof. Apply relation (2.3) to the random function

h(η + δz, z) := V (z) = V
(
f1(η), f1(η + δz), ..., fd(η), fd(η + δz)

)

= V
(
f1(η + δz − δz), f1(η + δz), ..., fd(η + δz − δz), fd(η + δz)

)
1{(η+δz)({z})≥1},

in such a way that

h(η, z) = V
(
f1(η − δz), f1(η), ..., fd(η − δz), fd(η)

)
1{η({z})≥1}.

The last sentence in the statement follows from [LP11, Lemma 2.4]. �
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Remark 2.2. Plainly, formulae (2.3) and (2.4) continue to hold when the functions
h(η + δz, z) and V

(
z
)

are in L1(P⊗ µ), without necessarily having a constant sign.

For random variables F,G ∈ L0(Ω) such that D+F D+G ∈ L1(P⊗ µ), we define

Γ0(F,G) :=
1

2

{∫

Z
(D+

z FD
+
z G)µ(dz) +

∫

Z
(D−

z FD
−
z G) η(dz)

}
(2.5)

which verifies E[|Γ0(F,G)|] <∞, and E[Γ0(F,G)] = E[
∫
Z(D

+
z FD

+
z G)µ(dz)], in view

of the Mecke formula (2.4). The following statement will play a fundamental role in
our work.

Lemma 2.3 (L1 integration by parts). Let G,H ∈ L0(Ω) be such that

GD+H, D+GD+H ∈ L1(P⊗ µ).

Then,

E

[
G

(∫

Z
D+
z H µ(dz)−

∫

Z
D−
z H η(dz)

)]
= −E[Γ0(G,H)]. (2.6)

Proof. The assumptions in the statement imply that (G+D+G)D+H ∈ L1(P⊗ µ).
Applying (2.4) and Remark 2.2 to

V (z) = g(η + δz){h(η + δz)− h(η)},
where g and h are representatives of G and H , respectively, yields that

E

[
G

∫

Z
D−
z H η(dz)

]
= E

[∫

Z
(G+D+

z G)D
+
z H µ(dz)

]
,

which gives immediately the desired conclusion. �

2.3. L2 theory, part 1: multiple integrals. For an integer p ≥ 1 we denote by
L2(µp) the Hilbert space of all square-integrable and real-valued functions on Zp

and we write L2
s(µ

p) for the subspace of those functions in L2(µp) which are µp-
a.e. symmetric. Moreover, for ease of notation, we denote by ‖·‖2 and 〈·, ·〉2 the
usual norm and scalar product on L2(µp) for whatever value of p. We further define
L2(µ0) := R. For f ∈ L2(µp), we denote by Ip(f) the multiple Wiener-Itô integral of
f with respect to η̂. If p = 0, then, by convention, I0(c) := c for each c ∈ R. We refer
to Section 3 of [Las16] for a precise definition and the following basic properties of
these integrals in the general framework of a σ-finite measure space (Z,Z , µ). Let
p, q ≥ 0 be integers:

1) Ip(f) = Ip(f̃), where f̃ denotes the canonical symmetrization of f ∈ L2(µp), i.e.
with Sp the symmetric group acting on {1, . . . , p} we have

f̃(z1, . . . , zp) =
1

p!

∑

π∈Sp

f(zπ(1), . . . , zπ(p)) .

2) Ip(f) ∈ L2(P), and E
[
Ip(f)Iq(g)

]
= δp,q p! 〈f̃ , g̃〉2, where δp,q denotes Kronecker’s

delta symbol.
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For p ≥ 0, the Hilbert space consisting of all random variables Ip(f), f ∈ L2(µp),
is called the p-th Wiener chaos associated with η, and is customarily denoted by Cp.
It is a crucial fact that every F ∈ L2(P) admits a unique representation

F = E[F ] +

∞∑

p=1

Ip(fp) , (2.7)

where fp ∈ L2
s(µ

p), p ≥ 1, are suitable symmetric kernel functions, and the series
converges in L2(P). Identity (2.7) is referred to as the chaotic decomposition of the
functional F ∈ L2(P).

From Theorem 2 in [Las16] (which is Theorem 1.3 from the article [LP11]) it is
known that, for all F ∈ L2(P) and all p ≥ 1, the kernel fp in (2.7) is explicitly given
by

fp(z1, . . . , zp) =
1

p!
E
[
D(p)
z1,...,zpF

]
, z1, . . . , zp ∈ Z . (2.8)

The following new lemma, which relies on (2.8) and whose proof is deferred to
Section 6, will be essential for the proof of Theorem 1.3.

Lemma 2.4. Let p, q ≥ 1 be integers and let the multiple Wiener-Itô integrals F =
Ip(f) and G = Iq(g) be in L4(P) and given by symmetric kernels f ∈ L2(µp) and
g ∈ L2(µq), respectively.

(a) The product FG has a finite chaotic decomposition of the form
FG =

∑p+q
r=0 proj

{
FG

∣∣Cr
}
=
∑p+q

r=0 Ir(hr) with symmetric kernels hr ∈ L2
s(µ

r).
(b) The kernel hp+q in (a) is explicitly given by hp+q = f⊗̃g, where f ⊗ g ∈ L2(µp+q)

denotes the tensor product of f and g defined by

f ⊗ g(z1, . . . , zp+q) = f(z1, . . . , zp)g(zp+1, . . . , zp+q)

and f⊗̃g denotes its canonical symmetrization.

Remark 2.5. We stress that the statement of Lemma 2.4 is not a direct consequence
of the product formula for multiple Wiener-Itô integrals on the Poisson space (see
e.g. Proposition 5 in [Las16] and the discussion therein), since such a result assumes
the square-integrability of the so-called ‘star contractions kernels’ f ⋆lr g associated
with f and g. It is easily seen that such an integrability property cannot be directly
deduced from the minimal assumptions of Lemma 2.4.

2.4. L2 theory, part 2: Malliavin operators and carré-du-champ. We now
briefly discuss Malliavin operators on the Poisson space.

(i) The domain domD of the Malliavin derivative operator D is the set of all F ∈
L2(P) such that the chaotic decomposition (2.7) of F satisfies

∑∞
p=1 p p!‖fp‖22 <

∞. For such an F , the random function Z ∋ z 7→ DzF ∈ L2(P) is defined via

DzF =

∞∑

p=1

pIp−1

(
fp(z, ·)

)
, (2.9)

whenever z is such that the series is converging in L2(P) (this happens a.e.-
µ), and set to zero otherwise; note that fp(z, ·) is an a.e. symmetric function
on Zp−1. Hence, DF = (DzF )z∈Z is indeed an element of L2

(
P ⊗ µ

)
. It
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is well-known (see e.g. [PT13, Lemma 3.1]) that, F ∈ domD if and only if
D+F ∈ L2

(
P⊗ µ

)
, and in this case

DzF = D+
z F, P⊗ µ−a.e.. (2.10)

(ii) The domain domL of the Ornstein-Uhlenbeck generator L is the set of those
F ∈ L2(P) whose chaotic decomposition (2.7) verifies

∑∞
p=1 p

2 p!‖fp‖22 <∞ (so

that domL ⊂ domD) and, for F ∈ domL, one defines

LF = −
∞∑

p=1

pIp(fp) . (2.11)

By definition, E[LF ] = 0; also, from (2.11) it is easy to see that L is symmetric
in the sense that

E
[
(LF )G

]
= E

[
F (LG)

]

for all F,G ∈ domL for which these expectations are well-defined. Note that,
from (2.11), we conclude that the spectrum of −L is given by the nonnegative
integers and that F ∈ domL is an eigenfunction of −L with corresponding
eigenvalue p if and only if F = Ip(fp) for some fp ∈ L2

s(µ
p), that is:

Cp = Ker(L+ pI).

For F ∈ L2(P) given by (2.7) and p ∈ N0 we write

proj
{
F
∣∣Cp

}
= Ip(fp)

for the projection of F onto Cp, with f0 := E[F ]. The following identity,
which corresponds to formula (65) in [Las16], will play an important role in
the sequel: if F ∈ domL is such that D+F ∈ L1(P⊗ µ), then

LF =

∫

Z

(
D+
z F
)
µ(dz)−

∫

Z

(
D−
z F
)
η(dz) . (2.12)

(iii) In order to deal with bounds in the Kolmogorov distance, we will also exploit
the properties of the Skohorod integral operator δ associated with η, which is
characterised by the following duality relation:

E
[
Gδ(u)

]
= E

[
〈DG, u〉L2(µ)

]
for all G ∈ domD, u ∈ dom δ, (2.13)

where dom δ stands for its domain (see [Las16, p.14-15]). Recall that the
operator δ satisfies the classical identity

L = −δD, (2.14)

that has to be understood in the following sense: F ∈ domL if and only
if F ∈ domD and DF ∈ dom δ, and in this case δDF = −LF . Also, if
u(η, ·) ∈ L1(P⊗ µ) ∩ dom δ, then

δ(u) =

∫

Z

u(η − δz, z)η(dz)−
∫

Z

u(η, z)µ(dz), a.s.-P; (2.15)

see [Las16, Theorem 6] for a proof of this fact.
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(iv) As it is customary in the theory of Markov generators, see e.g. [BGL14], for
suitable random variables F,G ∈ domL such that FG ∈ domL, we introduce
the carré-du-champ operator Γ associated with L by

Γ(F,G) :=
1

2

(
L(FG)− FLG−GLF

)
. (2.16)

The symmetry of L implies immediately the crucial integration by parts for-
mula

E
[
(LF )G

]
= E

[
F (LG)

]
= −E

[
Γ(F,G)

]
. (2.17)

The connection between (2.17) and (2.6) will be clarified in the discussion to
follow.

(v) The domain domL−1 of the pseudo-inverse L−1 of L is the class of mean zero
elements F of L2(P). If F =

∑∞
p=1 Ip(fp) is the chaotic decomposition of F ,

then L−1F is given by

L−1F = −
∞∑

p=1

1

p
Ip(f) .

Note that these definitions imply that L−1F ∈ domL (and therefore L−1F ∈
domD), for every F ∈ domL−1, and moreover

LL−1F = F for all F ∈ domL−1 and

L−1LF = F − E[F ] for all F ∈ domL .

Using the first of these identities as well as (2.17) we obtain that, for F,G
such that G, GL−1(F − E(F )) ∈ domL,

Cov(F,G) = E
[
G
(
F − E[F ]

)]
= E

[
G · LL−1

(
F − E[F ]

)]

= −E
[
Γ
(
G,L−1

(
F − E[F ]

)]
(2.18)

In particular, if F = Iq(f) is a multiple integral of order q ≥ 1 such that
F 2 ∈ dom L, then E[F ] = 0, L−1F = −q−1F and

Var(F ) =
1

q
E
[
Γ(F, F )

]
. (2.19)

Note that Lemma 2.4 immediately implies that F 2 = Iq(f)
2 ∈ domL if and

only if F ∈ L4(P). On the other hand, if G ∈ domD and GD+(L−1F ),
D+(L−1F ) ∈ L1(P ⊗ µ), then combining (in order) (2.12), (2.6) and (2.10)
yields

Cov(F,G) = E
[
G · LL−1

(
F − E[F ]

)]
= −E[Γ0(G,L

−1
(
F − E[F ]

)
)]. (2.20)

2.5. Combining L1 and L2 techniques. The following result provides an explicit
representation of the carré-du-champ operator Γ in terms of Γ0, as introduced in
(2.5). Although such a characterization follows quite straightforwardly from the
(classical) results and definitions provided above, we were not able to locate it in the
existing literature, and we will therefore provide a full proof. It is one of the staples
of our approach.
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Proposition 2.6. For all F,G ∈ domL such that FG ∈ domL and

DF, DG, FDG, GDF ∈ L1(P⊗ µ),

we have that DF = D+F, DG = D+G, in such a way that DF DG = D+F D+G ∈
L1(P⊗ µ), and

Γ(F,G) = Γ0(F,G), (2.21)

where Γ0 is defined in (2.5).

In order to prove Proposition 2.6, we state the following lemma which will be
exploited in several occasions.

Lemma 2.7. (a) For F ∈ L0(Ω) and z ∈ Z we have the identities

D+
z F

2 =
(
D+
z F
)2

+ 2FD+
z F (2.22)

D+
z F

3 =
(
D+
z F
)3

+ 3F 2D+
z F + 3F

(
D+
z F
)2

(2.23)

D−
z F

2 = −
(
D−
z F
)2

+ 2FD−
z F (2.24)

D−
z F

3 =
(
D−
z F
)3

+ 3F 2D−
z F − 3F

(
D−
z F
)2
. (2.25)

(b) Let ψ ∈ C1(R) be such that ψ′ is Lipschitz with minimum Lipschitz-constant
‖ψ′′‖∞. Then, for F ∈ L0(Ω) and z ∈ Z, there are random quantities R+

ψ (F, z)

and R−
ψ (F, z) such that

∣∣R+
ψ (F, z)

∣∣ ≤ ‖ψ′′‖∞
2

,
∣∣R−

ψ (F, z)
∣∣ ≤ ‖ψ′′‖∞

2

and

D+
z ψ(F ) = ψ′(F )D+

z F +R+
ψ (F, z)

(
D+
z F
)2

and

D−
z ψ(F ) = ψ′(F )D−

z F +R−
ψ (F, z)

(
D−
z F
)2
.

Proof. The proof of this result is deferred to Section 6.
�

Remark 2.8. Note that, by virtue of (2.22) and polarization, for F,G ∈ L0(Ω) and
z ∈ Z we also deduce the product rules

D+
z

(
FG
)

= GD+
z F + FD+

z G+
(
D+
z F
)(
D+
z G
)

(2.26)

D−
z

(
FG
)

= GD−
z F + FD−

z G−
(
D−
z F
)(
D−
z G
)

(2.27)

If, furthermore, F,G, FG ∈ domD, then, from (2.10) we conclude that

Dz(FG) = GDzF + FDzG+ (DzF )(DzG) , z ∈ Z , (2.28)

for the Malliavin derivative D. Relations (2.26)–(2.27) combined with (2.21) imply
that Γ is not a derivation, and confirm the well-known fact that L is not a diffusion
operator (see e.g. [BGL14, Definition 1.11.1] for definitions).

Proof of Proposition 2.6. We need only prove (2.21) — as the rest of the assertions in
the statement follows from elementary considerations. Since our assumptions imply
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that D(FG) ∈ L1(P⊗ µ), we can apply (2.12) in order to deduce that

2Γ(F,G) = LFG−GLF − FLG =

∫

Z
D+
z (FG)µ(dz)−

∫

Z
D−
z (FG)η(dz)

−G

∫

Z
D+
z F µ(dz) +G

∫

Z
D−
z F η(dz)

− F

∫

Z
D+
z Gµ(dz) + F

∫

Z
D−
z Gη(dz).

Using (2.26) and (2.27) yields immediately the desired formula. �

3. Identities and estimates for multiple integrals

We will now prove several important relations involving multiple stochastic inte-
grals of a fixed order q ≥ 1. They constitute the backbone of the forthcoming proof
of Theorem 1.3.

Lemma 3.1. Let q ≥ 1, and consider a random variable F such that F = Iq(f) ∈
Cq = Ker(L+ qI) and E[F 4] <∞. Then, F, F 2 ∈ domL, and

Var
(
q−1Γ(F, F )

)
=

2q−1∑

p=1

(
1− p

2q

)2
Var
(
proj

{
F 2
∣∣Cp

})

≤ (2q − 1)2

4q2
(
E
[
F 4
]
− 3E[F 2]2

)
. (3.1)

Moreover, one has also that

1

q2
E[Γ(F, F )2] ≤ E[F 4] (3.2)

1

q
E[F 2Γ(F, F )] ≤ E[F 4] (3.3)

Proof. From Lemma 2.4, we know that F 2 = Iq(f)
2 has a chaos decomposition of

the form

F 2 =

2q∑

p=0

proj
{
F 2
∣∣Cp

}
= E[F 2] +

2q−1∑

p=1

proj
{
F 2
∣∣Cp

}
+ I2q(g2g) (3.4)

with g2q = f⊗̃f , thus ensuring that F 2 is in the domain of L. By homogeneity,
without loss of generality we can assume for the rest of the proof that E[F 2] = 1. As
LF = −qF , by the definitions of Γ and L we have

2Γ(F, F ) = LF 2 − 2FLF =

2q∑

p=1

−p proj
{
F 2
∣∣Cp

}
+ 2q

2q∑

p=0

proj
{
F 2
∣∣Cp

}

=

2q∑

p=0

(2q − p) proj
{
F 2
∣∣Cp

}
. (3.5)
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By orthogonality, one has that

Var
(
q−1Γ(F, F )

)
=

1

4q2

2q∑

p=1

(2q − p)2Var
(
proj

{
F 2
∣∣Cp

})

=
1

4q2

2q−1∑

p=1

(2q − p)2Var
(
proj

{
F 2
∣∣Cp

})
,

proving the first equality in (3.1). For the inequality, first note that from (3.4) and
the isometry property of multiple integrals we have

E
[
F 4
]
− 1 = Var

(
F 2
)
=

2q∑

p=1

Var
(
proj

{
F 2
∣∣Cp

})

=

2q−1∑

p=1

Var
(
proj

{
F 2
∣∣Cp

})
+ (2q)!‖f⊗̃f‖22 . (3.6)

Now, identity (5.2.12) in the book [NP12] yields that

(2q!)‖f⊗̃f‖22 = 2(q!)2‖f‖42 +Dq , (3.7)

where Dq ≥ 0 is a finite non-negative quantity that can be expressed in terms of the
contraction kernels associated with F , and whose explicit form is immaterial for the
present proof. Also,

2(q!)2‖f‖42 = 2
(
E
[
F 2
])2

= 2,

and we deduce from (3.6) and (3.7) that

(2q − 1)2

4q2

(
E
[
F 4
]
− 3
)
=

(2q − 1)2

4q2

2q−1∑

p=1

Var
(
proj

{
F 2
∣∣Cp

})
+

(2q − 1)2

4q2
Dq

≥ (2q − 1)2

4q2

2q−1∑

p=1

Var
(
proj

{
F 2
∣∣Cp

})

≥ 1

4q2

2q−1∑

p=1

(2q − p)2Var
(
proj

{
F 2
∣∣Cp

})

= Var
(
q−1Γ(F, F )

)
,

which is exactly the second estimate in (3.1). Relations (3.2) and (3.3) are immediate
consequences of (3.4) and (3.5). �

The following result will allow us to effectively control residual quantities arising
from the applicaton of Stein’s method on the Poisson space.

Lemma 3.2. Let q ≥ 1 be an integer and let F ∈ L4(P) be an element of the q-th
Wiener chaos Cq, such that F verifies Assumption A. Then,

1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz) =

3

q
E
[
F 2Γ(F, F )

]
− E

[
F 4
]
≤ 4q − 3

2q

(
E
[
F 4
]
− 3E[F 2]2

)
.
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Proof. Again by homogeneity, we can assume without loss of generality that F has
unit variance. Observe that F ∈ domD, and therefore DF = D+F (up to a P ⊗
µ-negligible set), and also, by virtue of Proposition 2.6, one has that Γ(F, F ) =
Γ0(F, F ), a.s.-P. It follows that

E

[
F 2

∫

Z
(D+

z F )
2µ(dz)

]
≤ 2E

[
F 2Γ0(F, F )

]
= 2E

[
F 2Γ(F, F )

]
≤ 2qE[F 4] <∞,

where we have used (3.3), and moreover, by Cauchy-Schwarz,

E

[
|F |
∫

Z
|D+

z F |3µ(dz)
]
≤ E

[
F 2

∫

Z
(D+

z F )
2µ(dz)

]1/2
E

[∫

Z
(D+

z F )
4µ(dz)

]1/2
<∞,

so that F 2(D+F )2, F (D+F )3 ∈ L1(P⊗ µ). Since LF = −qF and DF ∈ L1(P⊗ µ),
one infers from (2.12) that

F = −1

q

(∫

Z
(D+

z F )µ(dz)−
∫

Z
(D−

z F )η(dz)

)
.

Since the above discussion also implies that F 3D+F, D+(F 3)D+F ∈ L1(P⊗ µ) (via
(2.23)), we can now exploit the integration by parts relation stated in Lemma 2.3 to
deduce that

E
[
F 4
]
= −1

q
E

[
F 3

(∫

Z
(D+

z F )µ(dz)−
∫

Z
(D−

z F )η(dz)

)]
=

1

q
E
[
Γ0(F, F

3)
]
.

Now, using (2.23) and (2.25) we obtain

Γ0(F, F
3) =

1

2

(∫

Z
D+
z F
(
(D+

z F )
3 + 3F 2D+

z F + 3F (D+
z F )

2
)
µ(dz)

+

∫

Z
D−
z F
(
(D−

z F )
3 + 3F 2D−

z F − 3F (D−
z F )

2
)
η(dz)

)

=
1

2

(∫

Z

(
(D+

z F )
4 + 3F 2(D+

z F )
2 + 3F (D+

z F )
3
)
µ(dz)

+

∫

Z

(
(D−

z F )
4 + 3F 2(D−

z F )
2 − 3F (D−

z F )
3
)
η(dz)

)
,

and we also have

3F 2Γ0(F, F ) = 3F 2Γ(F, F ) =
1

2

(∫

Z
3F 2(D+

z F )
2µ(dz) +

∫

Z
3F 2(D−

z F )
2η(dz)

)
.

Hence, using the Mecke formula (2.4) (as well as the content of Remark 2.2) in the
case

V (z) = −
(
f(η + δz)− f(η)

)4 − 3f(η)
(
f(η + δz)− f(η)

)3
,
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where f is some representative of F , we can conclude that

3

q
E
[
F 2Γ(F, F )

]
− E

[
F 4
]
=

1

2q
E

[∫

Z

(
−(D+

z F )
4 − 3F (D+

z F )
3
)
µ(dz)

+

∫

Z

(
−(D−

z F )
4 + 3F (D−

z F )
3
)
η(dz)

]

=
1

2q
E

[
−2

∫

Z
(D+

z F )
4µ(dz) + 3

∫

Z
(D+

z F )
3
(
f(η + δz)− f(η)

)
µ(dz)

]

=
1

2q
E

[∫

Z
(D+

z F )
4µ(dz)

]
.

Finally, using relations (3.4) and (3.5) from the proof of Lemma 3.1, we obtain

1

q

∫

Z
E
[
|D+

z F |4
]
µ(dz) = 2

(
3

q
E
[
F 2Γ(F, F )

]
− E

[
F 4
])

= 2

(
3

q
q
(
E[F 2]

)2 − E
[
F 4
]
+

3

2q

2q−1∑

p=1

(2q − p) Var
(
proj

{
F 2
∣∣Cp

}))

≤ 2
(
3− E

[
F 4
])

+
3(2q − 1)

q

2q−1∑

p=1

Var
(
proj

{
F 2
∣∣Cp

})

≤ 2
(
3− E

[
F 4
])

+
3(2q − 1)

q

(
E
[
F 4
]
− 3
)

=
4q − 3

q

(
E
[
F 4
]
− 3
)
, (3.8)

where the last inequality is again a consequence of (3.6) and (3.7). �

We eventually prove an estimate that will be crucial in order to deal with bounds
in the Kolmogorov distance.

Lemma 3.3. For some fixed q ≥ 1, let F ∈ Ker(L + qI) satisfy both Assumption
A and Assumption A

(loc). Then,

0 ≤ 1

q
sup
x∈R

E

[∫

Z
(D+

z 1{F>x}|D+
z F |D+

z F µ(dz)

]
≤ 10

√
E[F 4]− 3E[F 2]2. (3.9)

Proof. One checks immediately that D+
z 1{F>x}D

+
z F ≥ 0, so that we need only prove

the second inequality in the statement; also, without loss of generality and by ho-
mogeneity, we can once again assume that F has unit variance. According to (2.9)–
(2.10), we can choose a version of D+F such that, for µ–almost every z ∈ Z, the
random variable D+

z F = DzF is an element of the (q − 1)th Wiener chaos Cq−1.
Applying Lemma 3.1 and Lemma 3.2 to every DzF such that z lies outside the
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exceptional set, one therefore infers that

A :=

∫

Z
E

[∫

Z

(
Dz2Dz1F

)4
µ(dz2)

]
µ(dz1)

=

∫

Z
E

[∫

Z

(
D+
z2(D

+
z1F )

)4
µ(dz2)

]
µ(dz1)

≤ 4(q − 1)E

[∫

Z
(D+

z F )
4µ(dz)

]
≤ 16q(q − 1)

(
E
[
F 4
]
− 3
)
, (3.10)

and

B :=

∫

Z
E

[
(Dz1F )

2

∫

Z
(Dz2Dz1F )

2µ(dz2)

]
µ(dz1)

=

∫

Z
E

[
(D+

z1F )
2

∫

Z
(D+

z2D
+
z1F )

2µ(dz2)

]
µ(dz1)

≤ 2(q − 1)

∫

Z
E
[
(D+

z1
F )2Γ0(D

+
z1
F,D+

z1
F )
]
µ(dz1)

= 2(q − 1)

∫

Z
E
[
(D+

z1
F )2Γ(D+

z1
F,D+

z1
F )
]
µ(dz1)

≤ 2(q − 1)E

[∫

Z
(D+

z1
F )4µ(dz1)

]
≤ 8q(q − 1)

(
E
[
F 4
]
− 3
)
, (3.11)

where we have used twice the fact that, by virtue of Lemma 3.2,

C :=

∫

Z
E
[
|D+

z F |4
]
µ(dz) ≤ 4q

(
E
[
F 4
]
− 3
)
. (3.12)

Now write Φ(a) := a|a|, a ∈ R. In view of the inequality (proved e.g. in [PT13,
Section 4.2])

[D+
z2
Φ(D+

z1
F )]2 ≤ 8(D+

z1
F )2(D+

z2
D+
z1
F )2 + 2(D+

z2
D+
z1
F )4, (3.13)

valid µ2–almost everywhere, we deduce immediately that the process z 7→ v(z) :=
Φ(D+

z F ) is such that v(z) ∈ domD for µ-almost every z, and v ∈ dom δ — this last
fact being a a consequence of the classical criterion stated in [Las16, Theorem 5] and
of the estimates (3.10)–(3.12), together with the fact that E[F 4] <∞ by assumption.
Also, in view of the fact that v ∈ L1(P ⊗ µ) by assumption, equation (2.15) yields
that

δ(v) =

∫

Z
Φ(D−

z F )η(dz)−
∫

Z
Φ(D+

z F )µ(dz).

We now fix x ∈ R. Relation (2.4) applied to the mapping

V (z) = 1{f(η+δz)>x}Φ
(
f(η + δz)− f(η)

)
,

where f is a representative of F , yields that

1

q
E

[∫

Z
D+
z 1{F>x}|D+

z F |D+
z F µ(dz)

]

=
1

q
E

[
1{F>x}

(∫

Z
Φ(D−

z F )η(dz)−
∫

Z
Φ(D+

z F )µ(dz)

)]

=
1

q
E
[
1{F>x}δ(v)

]
≤ 1

q
E
[
δ(v)2

]1/2
.
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To conclude, we use [Las16, formula (56)] as well as (3.13) to deduce that

E
[
δ(v)2

]
≤ E

[∫

Z
v(z)2µ(dz)

]
+ E

[∫

Z

∫

Z
(D+

y v(z))
2µ(dz)µ(dy)

]

≤ C + 8B + 2A ≤
(
4q + 64q(q − 1) + 32q(q − 1)

)(
E
[
F 4
]
− 3
)

≤ 100q2
(
E
[
F 4
]
− 3
)
,

which in turn implies that

1

q
E
[
δ(v)2

]1/2 ≤ 10
√
E
[
F 4
]
− 3 ,

where A,B,C have been defined above, and where we have used the estimates (3.10)–
(3.12). �

4. Proof of Theorem 1.3

In order to prove Theorem 1.3 we have to establish new abstract bounds on the
normal approximation of functionals on the Poisson space in the Wasserstein and
Kolmogorov distances, respectively. Recall the definition of Γ0 given in (2.5).

Proposition 4.1. Let F ∈ domD be such that E[F ] = 0 and let N ∼ N (0, 1) be a
standard normal random variable. Assume that

D+(L−1F ), FD+(L−1F ) ∈ L1(P⊗ µ). (4.1)

Then, we have the bounds

d1(F,N) ≤
√

2

π
E

∣∣∣1− Γ0

(
F,−L−1F

)∣∣∣ +
∫

Z
E

[∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣
]
µ(dz) (4.2)

≤
√

2

π

∣∣1− E[F 2]
∣∣ +
√

2

π

√
Var
(
Γ0(F,−L−1F )

)

+

∫

Z
E

[∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣
]
µ(dz) . (4.3)

If, furthermore, F = Iq(f) for some q ≥ 1 and some square-integrable, symmetric
kernel f on Zq and E[F 2] = q!‖f‖22 = 1, then −L−1F = q−1F ,

E
[
Γ0(F,−L−1F )

]
= q−1

E
[
Γ0(F, F )

]
= 1 and

∫

Z
E
[
|D+

z F |2|D+
z L

−1F |
]
µ(dz) = q−1

∫

Z
E
[
|D+

z F |3
]
µ(dz)

≤
(
q−1

∫

Z
E
[
|D+

z F |4
]
µ(dz)

)1/2

so that the previous estimate (4.3) gives

d1(F,N) ≤
√

2

π

√
Var
(
q−1Γ0(F, F )

)
+

1√
q

(∫

Z
E
[
|D+

z F |4
]
µ(dz)

)1/2
. (4.4)

Remark 4.2. Under the assumptions of Theorem 4.1, we have that F, L−1F ∈
domD, in such a way that Γ0(F,−L−1F ) is an element ot L1(P). It follows that the
variance Var

(
Γ0(F,−L−1F )

)
is always well-defined, albeit possibly infinite.
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Proof of Proposition 4.1. We apply Stein’s method for normal approximation. Define
the class F1 of all continuously differentiable functions ψ on R such that both ψ and
ψ′ are Lipschitz-continuous with minimal Lipschitz constants

‖ψ′‖∞ ≤
√

2

π
and ‖ψ′′‖∞ ≤ 2 . (4.5)

Then, it is well-known (see e.g. Theorem 3 of [BP16b], and the references therein)
that

d1(F,N) ≤ sup
ψ∈F1

∣∣E
[
ψ′(F )− Fψ(F )

]∣∣ . (4.6)

Let us thus fix ψ ∈ F1. The Lipschitz property of ψ implies that ψ(F ) ∈ domD,
whereas the trivial estimate

|ψ(F )D+(L−1F )| ≤
(
|ψ(0)|+

√
2/π |F |

)
× |D+(L−1F )|

implies that ψ(F )D+(L−1F ) ∈ L1(P⊗ µ). Using that E[F ] = 0 we therefore deduce
from (2.20) that

E
[
Fψ(F )

]
= E

[
ψ(F ) · LL−1F

]
= −E

[
Γ0

(
ψ(F ), L−1F

)]
(4.7)

Now, by the definition of Γ0 and Lemma 2.7 (b) we obtain that

2Γ0

(
ψ(F ), L−1F

)
=

∫

Z

(
D+
z ψ(F )

)(
D+
z L

−1F
)
µ(dz) +

∫

Z

(
D−
z ψ(F )

)(
D−
z L

−1F
)
η(dz)

= ψ′(F )

∫

Z

(
D+
z F
)(
D+
z L

−1F
)
µ(dz) +

∫

Z
R+
ψ (F, z)

(
D+
z F
)2(

D+
z L

−1F
)
µ(dz)

+ ψ′(F )

∫

Z

(
D−
z F
)(
D−
z L

−1F
)
η(dz) +

∫

Z
R−
ψ (F, z)

(
D−
z F
)2(

D−
z L

−1F
)
η(dz)

=: ψ′(F )

∫

Z

(
D+
z F
)(
D+
z L

−1F
)
µ(dz) +R+

+ ψ′(F )

∫

Z

(
D−
z F
)(
D−
z L

−1F
)
η(dz) +R−

= 2ψ′(F )Γ0(F, L
−1F ) +R+ +R− (4.8)

with

E|R+| ≤
‖ψ′′‖∞

2
E

[∫

Z

∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣µ(dz)
]

≤ E

[∫

Z

∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣µ(dz)
]

(4.9)

and

E|R−| ≤
‖ψ′′‖∞

2
E

[∫

Z

∣∣D−
z F
∣∣2∣∣D−

z L
−1F

∣∣η(dz)
]

≤ E

[∫

Z

∣∣D−
z F
∣∣2∣∣D−

z L
−1F

∣∣η(dz)
]

= E

[∫

Z

∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣µ(dz)
]
, (4.10)
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where the last identity holds by virtue of (2.4), as applied to

V (z) =
(
f(η + δz)− f(η)

)2∣∣f∗(η + δz)− f∗(η)
∣∣,

where f is a representative of F and f∗ is a representative of L−1F . Thus, from (4.7)
and (4.8) we infer

E
[
ψ′(F )− Fψ(F )

]
= E

[
ψ′(F )

(
1− Γ0

(
F,−L−1F

)]
+

1

2
(E|R+|+ E|R−|) , (4.11)

and from (4.5), (4.9), (4.10) and (4.11) we conclude that

∣∣E
[
ψ′(F )− Fψ(F )

]∣∣ ≤
√

2

π
E
∣∣1− Γ0

(
F,−L−1F

)∣∣+ E

[∫

Z

∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣µ(dz)
]
.

Plugging such an estimate into (4.6) yields (4.2). By (2.20) we know that

E
[
Γ0(F,−L−1F )

]
= Var(F ) = E[F 2]

and, hence, (4.3) follows from (4.2) by using the triangle and Cauchy-Schwarz in-
equalities. To prove (4.4) we first apply the Cauchy-Schwarz inequality to obtain

∫

Z
E
[
|D+

z F |3
]
µ(dz) ≤

(∫

Z
E
[
|D+

z F |4
]
µ(dz)

)1/2(∫

Z
E
[
|D+

z F |2
]
µ(dz)

)1/2

But, by using the isometry properties of multiple integrals we have

∫

Z
E
[
|D+

z F |2
]
µ(dz) = q2

∫

Z
E
[
Iq−1

(
f(z, ·)

)2]
µ(dz)

= q2(q − 1)!

∫

Z
‖f(z, ·)‖22µ(dz) = qq!‖f‖22 = qE[F 2] = q . (4.12)

Hence, we obtain

q−1

∫

Z
E
[
|D+

z F |3
]
µ(dz) ≤ 1√

q

(∫

Z
E
[
|D+

z F |4
]
µ(dz)

)1/2

proving (4.4).
�

The next result provides a similar estimate in the Kolmogorov distance.
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Proposition 4.3. Under the same assumptions as in Proposition 4.1, one has the
bounds

dKol(F,N) ≤ E

∣∣∣1− Γ0

(
F,−L−1F

)∣∣∣ (4.13)

+E

[(
|F |+

√
2π/4

) ∫

Z
(D+

z F )
2|D+

z L
−1F |µ(dz)

]

+ sup
x∈R

E

[∫

Z
(D+

z F ) |D+
z (L

−1F )|D+
z 1{F>x}µ(dz)

]

≤
∣∣1− E[F 2]

∣∣+
√

Var
(
Γ0(F,−L−1F )

)
(4.14)

+E

[(∫

Z
(D+

z F )
2µ(dz)

)2
]1/4 (

1 + E[F 4]1/4
)

×
√

E

[∫

Z
(D+

z F )
2(D+

z (L
−1F ))2µ(dz)

]

+ sup
x∈R

E

[∫

Z
(D+

z F ) |D+
z (L

−1F )|D+
1{F>x}µ(dz)

]
.

If F = Iq(f) for some q ≥ 1 and some square-integrable, symmetric kernel f on Zq

and E[F 2] = q!‖f‖22 = 1, then (4.14) becomes

dKol(F,N) ≤
√

Var
(
q−1Γ0(F, F )

)

+
1

q

(
1 + E[F 4]1/4

)
E

[(∫

Z
(D+

z F )
2µ(dz)

)2
]1/4√

E

[∫

Z
(D+

z F )
4µ(dz)

]

+
1

q
sup
x∈R

E

[∫

Z
(D+

z F ) |D+
z F |D+

z 1{F>x}µ(dz)

]
. (4.15)

Proof. Fix x ∈ R. According to Propositon 6.1, we can write

|P(F ≤ x)− P(N ≤ x)| = |E[g′x(F )− Fgx(F )]| ,
where gx is the solution of the Stein equation (6.3) associated with x, whose properties
are stated in Proposition 6.1. Using Proposition 6.1 and reasoning as in the proof of
Proposition 4.1, one deduces that

|E[g′x(F )− Fgx(F )]|
≤E

[
|g′x(F )||1− Γ0(F,−L−1F )|

]

+
1

4
E

[(
|F |+

√
2π/4

)∫

Z
(D+

z F )
2|D+

z (L
−1F )|µ(dz)

]

+
1

2
E

[∫

Z
(D+

z F )|D+
z (L

−1F )|D+
z 1{F>x}µ(dz)

]

+
3

4
E

[∫

Z

(
|F −D−

z F |+
√
2π/4

)
(D−

z F )
2|D−

z (L
−1F )|η(dz)

]

+
1

2
E

[∫

Z
(D−

z F )|D−
z (L

−1F )|D−
z 1{F>x}η(dz)

]
.
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Note that, in order to obtain the previous estimate, one has to use Point (f) and Point
(g) in Proposition 6.1, respectively, in order to control the quantities |D+

z gx(F ) −
g′x(F )D

+
z F | and |D−

z gx(F ) − g′x(F )D
−
z F |. Bound (4.13) can now be deduced by

applying (2.4) to the mappings

V (z) =
(
|f(η)|+

√
2π/4

)
(f(η + δz)− f(η))2 |f∗(η + δz)− f∗(η)|,

and

V (z) = 1{f(η+δz)>x} (f(η + δz)− f(η)) |f∗(η + δz)− f∗(η)|,
where f and f∗ are representatives of F and L−1F , respectively. The estimate (4.14)
can be deduced by applying the Cauchy-Schwarz and triangle inequalities to the
middle term of (4.13). The second part of the statement immediately follows from
(4.14) and from the fact that, if F = Iq(f), then −L−1F = q−1F . �

End of the proof of Theorem 1.3. Since, under Assumption A, one has that

Γ(F, F ) = Γ0(F, F ), a.s.–P,

the estimate (1.3) is a direct consequence of (4.4), Lemma 3.1 and Lemma 3.2, as
well as of elementary simplifications. Similarly, (1.5) follows from (4.15), Lemma 3.1,
Lemma 3.2 and Lemma 3.3, combined with the estimate

E

[(∫

Z
(D+

z F )
2µ(dz)

)2
]1/4

≤ 41/4E[(Γ0(F, F ))
2]1/4 ≤

√
2qE[F 4]1/4,

where we have used (3.2). �

Proof of Proposition 1.6. Fix q ≥ 2. Reasoning as in [NP05, Corollary 2], if a Gauss-
ian random variable F := Iq(f) ∈ Cq such that E[Iq(f)

2] := c > 0 existed, then
E[F 4] − 3c2 = 0. Formulae (3.6)–(3.7), together with the explcit form of Dq would
therefore imply that f ⊗r f = 0 for every r = 1, ..., q− 1, where q is the rth contrac-
tion of f with itself, as defined in [NP12, Appendix B]. This conclusion contradicts
the fact that c = q!‖f‖22 > 0. The case q = 1 follows immediately from the relation
E[I1(f)

4] = 3‖f‖42 +
∫
Z f

4dµ. �

5. Proof of Theorem 1.7

We begin by giving the analog of Proposition 4.1 for Gamma approximation.

Proposition 5.1. Let F ∈ domD satisfy the same assumptions as in the statement
of Proposition 4.1, and let Zν ∼ Γ̄(ν) have the centered Gamma distribution with
parameter ν > 0. Then, we have the bounds

d2(F, Zν) ≤ max
(
1,

2

ν

)
E

∣∣∣2(F + ν)− Γ0

(
F,−L−1F

)∣∣∣

+max
(
1,

1

ν
+

1

2

) ∫

Z
E

[∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣
]
µ(dz) (5.1)

≤ max
(
1,

2

ν

)∣∣2ν − E[F 2]
∣∣+max

(
1,

2

ν

)√
Var
(
2F − Γ0

(
F,−L−1F

))

+max
(
1,

1

ν
+

1

2

) ∫

Z
E

[∣∣D+
z F
∣∣2∣∣D+

z L
−1F

∣∣
]
µ(dz) . (5.2)
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If, furthermore, F = Iq(f) for some q ≥ 1 and some square-integrable, symmetric
kernel f on Zq and E[F 2] = q!‖f‖22 = 2ν, then −L−1F = q−1F ,

E
[
Γ(F,−L−1F )− 2F

]
= q−1

E
[
Γ0(F, F )

]
= 2ν and

∫

Z
E
[
|D+

z F |2|D+
z L

−1F |
]
µ(dz) = q−1

∫

Z
E
[
|D+

z F |3
]
µ(dz)

≤
(
2ν

q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

)1/2

so that the previous estimate (5.2) can be further bounded to give

d2(F, Zν) ≤ max
(
1,

2

ν

)√
Var
(
2F − q−1Γ0

(
F, F

))

+max

(√
2ν,

√
2

ν
+

√
ν

2

)(
1

q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

)1/2

. (5.3)

Proof. Using the recently obtained bounds on the solution to the centered Gamma
Stein equation from Theorem 2.3 of [DP16], it is easy to see that

d2(F, Zν) ≤ sup
ψ∈F2,ν

∣∣∣E
[
2(F + ν)ψ′(F )− Fψ(F )

]∣∣∣ ,

where F2,ν denotes the class of all continuously differentiable functions ψ in R such
that both ψ and ψ′ are Lipschitz-continuous with minimum Lipschitz-constants

‖ψ′‖∞ ≤ max
(
1,

2

ν

)
and ‖ψ′′‖∞ ≤ max

(
2,

1

ν
+ 1
)
.

The rest of the argument follows a route that is completely analogous to the one
leading to the proof of Proposition 4.1; the details are omitted for the sake of con-
ciseness.

�

Lemma 5.2. Let q ≥ 1 be an integer and and consider a random variable F such that
F = Iq(f) ∈ Cq = Ker(L+ qI), E[F 2] = 2ν and E[F 4] <∞. Then, F, F 2 ∈ domL,
and

Var
(
2F − q−1Γ

(
F, F

))
=

∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)2
Var
(
proj

{
F 2
∣∣Cp

})

+
1

4
Var
(
proj

{
F 2
∣∣Cq

}
− 4F

)

=
∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)2
Var
(
proj

{
F 2
∣∣Cp

})

+
1

4
Var
(
proj

{
F 2
∣∣Cq

})
+ 8ν − 2E

[
F 3
]
= V1 + V2 ,
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where we define

V1 :=
∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)2
Var
(
proj

{
F 2
∣∣Cp

})
and (5.4)

V2 :=
1

4
Var
(
proj

{
F 2
∣∣Cq

})
+ 8ν − 2E

[
F 3
]
=

1

4
Var
(
proj

{
F 2
∣∣Cq
}
− 4F

)
. (5.5)

Proof. The first identity easily follows from (3.5) and the orthogonality of the chaos
decomposition. The second one follows from this and the formula

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

upon observing that

Cov
(
proj

{
F 2
∣∣Cq

}
,−4F

)
= −4E

[
F 3
]
,

again by orthogonality.
�

Lemma 5.3. Let q ≥ 1 be an integer and let F ∈ L4(P) be an element of the q-
th Wiener chaos Cq, such that F verifies Assumption A and E[F 2] = 2ν. The
following relations are in order:

1

6q

(
E
[
F 4
]
− 12E

[
F 3
]
− 12ν2 + 48ν

)
+

1

12q2

∫

Z
E
[
|D+

z F |4
]
µ(dz)

≤ Var
(
2F − q−1Γ

(
F, F

))
= Var

(
2F − q−1Γ0

(
F, F

))

≤ 1

3

(
E
[
F 4
]
− 12E

[
F 3
]
− 12ν2 + 48ν

)
+

1

6q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

Proof. Recall that, under the assumptions in the statement, Γ(F, F ) = Γ0(F, F ).
Using orthogonality, from Lemma 3.2 and (3.5) we obtain

E
[
F 4
]
=

3

q
E
[
F 2Γ(F, F )

]
− 1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

= 3
(
E[F 2]

)2
+ 3

2q∑

p=1

(
1− p

2q

)
Var
(
proj

{
F 2
∣∣Cp

})
− 1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

= 12ν2 + 3
∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)
Var
(
proj

{
F 2
∣∣Cp

})
+

3

2
Var
(
proj

{
F 2
∣∣Cq

})

− 1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz) .
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Hence, recalling the definition of V2 in (5.5) we conclude from Lemma 5.2 that

E
[
F 4
]
− 12E

[
F 3
]
− 12ν2 + 48ν

= 3
∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)
Var
(
proj

{
F 2
∣∣Cp

})
− 1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

+
3

2
Var
(
proj

{
F 2
∣∣Cq

})
− 12E

[
F 3
]
+ 48ν

= 3
∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)
Var
(
proj

{
F 2
∣∣Cp

})
+ 6V2 −

1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz) .

Now, recalling also the definition (5.4) of V1 and using the simple chain of inequalities
(
1− p

2q

)2
≤
(
1− p

2q

)
≤ 2q

(
1− p

2q

)2
, 1 ≤ p ≤ 2q − 1 ,

we obtain on the one hand that

E
[
F 4
]
− 12E

[
F 3
]
− 12ν2 + 48ν

≥ 3
∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)2
Var
(
proj

{
F 2
∣∣Cp

})
+ 6V2 −

1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

= 3V1 + 6V2 −
1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

≥ 3Var
(
2F − q−1Γ

(
F, F

))
− 1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz) , (5.6)

and, on the other hand,

E
[
F 4
]
− 12E

[
F 3
]
− 12ν2 + 48ν

≤ 6q
∑

1≤p≤2q−1:
p 6=q

(
1− p

2q

)2
Var
(
proj

{
F 2
∣∣Cp

})
+ 6V2 −

1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz)

≤ 6qVar
(
2F − q−1Γ

(
F, F

))
− 1

2q

∫

Z
E
[
|D+

z F |4
]
µ(dz) . (5.7)

The statement of the Lemma now follows from (5.6) and (5.7).
�

End of the proof of Theorem 1.7. The claim of Theorem 1.7 is now an immediate
consequence of the bound (5.3) and of the upper bound given in Lemma 5.3. �

6. Proofs of technical lemmas

6.1. Proof of Lemma 2.7. We first prove part (a). We just prove (2.22) and (2.23),
since the derivation of (2.24) and (2.25) is very similar. Let f be a representative
for F , i.e. F = f(η). Then, by the binomial identity, we have
(
D+
z F
)2

=
(
f(η + δz)− f(η)

)2
= f(η + δz)

2 − f(η)2 − 2f(η + δz)f(η) + 2f(η)2

= D+
z F

2 − 2f(η)
(
f(η + δz)− f(η)

)
= D+

z F
2 − 2FD+

z F
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such that (2.22) holds true. Similarly, using (2.22), we obtain
(
D+
z F
)3

=
(
f(η + δz)− f(η)

)3
= f(η + δz)

3 − f(η)3 − 3f(η + δz)
2f(η)

+ 3f(η + δz)f(η)
2

= D+
z F

3 + 3f(η)2
(
f(η + δz)− f(η)

)
− 3f(η)

(
f(η + δz)

2 − f(η)2
)

= D+
z F

3 + 3F 2D+
z F − 3FD+

z F
2

= D+
z F

3 + 3F 2D+
z F − 3F

(
D+
z F
)2 − 6F 2D+

z F

= D+
z F

3 − 3F 2D+
z F − 3F

(
D+
z F
)2

which is equivalent to (2.23). Now we turn to the proof of (b). Again, we just prove
the part involving D+

z . By a suitable version of Taylor’s formula, for x, y ∈ R we
have

ψ(y) = ψ(x) + ψ′(x)(y − x) +Rψ(x, y)(y − x)2 ,

where ∣∣Rψ(x, y)
∣∣ ≤ ‖ψ′′‖∞

2
.

Now the result follows by letting x = F = f(η), y = f(η + δz) and R+
ψ (F, z) =

Rψ(f(η), f(η + δz)).
�

6.2. Proof of Lemma 2.4. The method of proof we apply is similar to the one
used for the proof of Proposition 5 in [Las16], which gives the product formula for
multiple Wiener-Itô integrals. Let

FG = E[FG] +
∞∑

m=1

Im(hm)

denote the chaos decomposition of FG. We prove (a) and (b) simultaneously by
induction on k := p+ q ≥ 2. If k = 2, then necessarily p = q = 1 and, by (2.28), for
all y, z ∈ Z we have

Dz(FG) = f(z)I1(g) + g(z)I1(f) + f(z)g(z) and

D(2)
y,z(FG) = f(z)g(y) + f(y)g(z) = 2f⊗̃g(y, z) .

This immediately implies that D(m)(FG) = 0 for all m > 2. From (2.8) we thus infer
that

h2(z1, z2) =
1

2
E
[
D(2)
z1,z2

(FG)
]
= f⊗̃g(z1, z2) and

hm(z1, . . . , zm) =
1

m!
E
[
D(m)
z1,...,zm

(FG)
]
= 0

for all m > 2 and z1, . . . , zm ∈ Z. Now assume that k > 2. Then, again from (2.28)
we have that

Dzk(FG) = pIq(g)Ip−1

(
f(zk, ·)

)
+ qIp(f)Iq−1

(
g(zk, ·)

)

+ pqIp−1

(
f(zk, ·)

)
Iq−1

(
g(zk, ·)

)

=: pF̃zkG+ qG̃zkF + pqF̃zkG̃zk (6.1)
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holds for all zk ∈ Z, where F̃zk and G̃zk are multiple integrals of orders p−1 and q−1,
respectively. Hence, by the induction hypothesis for claim (b) we already conclude
that

E
[
D(k−1)
z1,...,zk−1

(
F̃zkG̃zk

)]
= 0 .

so that

E
[
D(k)
z1,...,zk

(FG)
]
= pE

[
D(k−1)
z1,...,zk−1

(
F̃zkG

)]
+ qE

[
D(k−1)
z1,...,zk−1

(
FG̃zk

)]
.

By the induction hypothesis for claim (a) we have

E

[
D(k−1)
z1,...,zk−1

(
F̃zkG

)]
= (k − 1)!

(
f(zk, ·)⊗̃g

)
(z1, . . . , zk−1) and

E

[
D(k−1)
z1,...,zk−1

(
FG̃zk

)]
= (k − 1)!

(
f⊗̃
(
g(zk, ·)

)
(z1, . . . , zk−1) .

and, in order to prove (a), it remains to show that

k!(f⊗̃g)(z1, . . . , zk) = p(k − 1)!
(
f(zk, ·)⊗̃g

)
(z1, . . . , zk−1)

+ q(k − 1)!
(
f⊗̃
(
g(zk, ·)

)
(z1, . . . , zk−1) . (6.2)

This, however, follows from

k!(f⊗̃g)(z1, . . . , zk) =
∑

π∈Sp+q

f(zπ(1), . . . , zπ(p))g(zπ(p+1), . . . , zπ(p+q))

=
∑

π:k∈{π(1),...,π(p)}
f(zπ(1), . . . , zπ(p))g(zπ(p+1), . . . , zπ(p+q))

+
∑

π:k/∈{π(1),...,π(p)}
f(zπ(1), . . . , zπ(p))g(zπ(p+1), . . . , zπ(p+q))

!
= p

∑

τ∈Sp+q−1

f(zk, zτ(1), . . . , zτ(p−1))g(zτ(p), . . . , zτ(p+q−1))

+ q
∑

τ∈Sp+q−1

f(zτ(1), . . . , zτ(p))g(zτ(p+1), . . . , zτ(p+q−1), zk)

= p(k − 1)!
(
f(zk, ·)⊗̃g

)
(z1, . . . , zk−1)

+ q(k − 1)!
(
f⊗̃
(
g(zk, ·)

)
(z1, . . . , zk−1) .

We explain the identity involving ! in some more detail. Consider the first sum
appearing there and note that

∑

π:k∈{π(1),...,π(p)}
f(zπ(1), . . . , zπ(p))g(zπ(p+1), . . . , zπ(p+q))

=

p∑

j=1

∑

π:π(j)=k

f(zπ(1), . . . , zπ(j−1), zk, zπ(j+1), . . . , zπ(p))g(zπ(p+1), . . . , zπ(p+q))

= p
∑

π:π(1)=k

f(zk, zπ(2), . . . , zπ(p))g(zπ(p+1), . . . , zπ(p+q))
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where we have used the symmetry of the kernel f to obtain the last identity. Now,
since the mapping

Ψ : Sk−1 → {π ∈ Sk : π(1) = k} , Ψ(σ)(j) :=

{
k , j = 1

σ(j − 1) , j ∈ {2, . . . , k}
is a bijection, we obtain that

∑

π:π(1)=k

f(zk, zπ(2), . . . , zπ(p))g(zπ(p+1), . . . , zπ(p+q))

=
∑

τ∈Sp+q−1

f(zk, zτ(1), . . . , zτ(p−1))g(zτ(p), . . . , zτ(p+q−1))

proving the claim. Thus, we have proved (a).
If m > k and z1, . . . , zm ∈ Z, then, by the induction hypothesis on (b) and from
(6.1) we obtain

m!h(z1, . . . , zm) = E
[
D(m)
z1,...,zm(FG)

]

= pE
[
D(m−1)
z1,...,zm−1

(
F̃zmG

)]
+ qE

[
D(m−1)
z1,...,zm−1

(
FG̃zm

)]
+ pqE

[
D(m−1)
z1,...,zm−1

(
F̃zmG̃zm

)]

= 0

for all z1, . . . , zm ∈ Z, proving (b). �

6.3. Stein’s equation in the Kolmogorov distance. In order to deal with bounds
in the Kolmogorov distance involving remove-one cost operators, we need the follow-
ing result, containing several estimates on the solution of the Stein’s equation asso-
ciated with test functions having the form of indicators of half-lines. Points (a)-(f)
are well-known. Point (g) is standard but not explicitly stated in the literature (to
our knowledge) — a proof is provided for the sake of completeness.

Proposition 6.1. Let N ∼ N(0, 1) be a centred Gaussian random variable with
unit variance and, for every x ∈ R, introduce the Stein’s equation

g′(w)− wg(w) = 1{w6x} − P(N 6 x), (6.3)

where w ∈ R. Then, for every real x, there exists a function gx : R → R : w 7→ gx(w)
satisfying the following properties (a)-(g):

(a) gx is continuous at every point w ∈ R, and infinitely differentiable at every
w 6= x;

(b) gx satisfies the relation (6.3), for every w 6= x;

(c) 0 < gx 6
√
2π
4

;
(d) for every u, v, w ∈ R,

|(w + u)gx(w + u)− (w + v)gx(w + v)| 6
(
|w|+

√
2π

4

)
(|u|+ |v|) ; (6.4)

(e) adopting the convention

g′x(x) := xgx(x) + 1− P(N 6 x), (6.5)

one has that |g′x(w)| 6 1, for every real w ;
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(f) using again the convention (6.5), for all w, h ∈ R one has that

|gx(w + h)− gx(w)− g′x(w)h| 6
|h|2
2

(
|w|+

√
2π

4

)
(6.6)

+ |h|(1[w,w+h)(x) + 1[w+h,w)(x))

=
|h|2
2

(
|w|+

√
2π

4

)
(6.7)

+ h
(
1[w,w+h)(x)− 1[w+h,w)(x)

)
;

(g) under (6.5), for every w, h ∈ R one has that

|gx(w)− gx(w − h)− g′x(w)h| 6
3|h|2
2

(
|w − h|+

√
2π

4

)
(6.8)

+ |h|(1[w−h,w)(x) + 1[w,w−h)(x))

=
3|h|2
2

(
|w − h|+

√
2π

4

)
(6.9)

+ h
(
1[w−h,w)(x)− 1[w,w−h)(x)

)
.

Proof. The content of Points (a)–(f) is well-known – see e.g. [BP16b, Section 2.2.2]
and the references therein. To show (g), fix t ∈ R, recall (6.5) and write, for every
w, h ∈ R,

gx(w)− gx(w − h)− hg′t(w) =

∫ h

0

(g′x(w − h + u)− g′x(w)) du.

Since gx is a solution of (6.3) for every real w, we have that, for all w, h ∈ R,

gx(w)− gx(w − h)− hg′xx(w)

=

∫ h

0

((w − h+ u)gx(w − h+ u)− wgx(w))du+

∫ h

0

(
1{w−h+u6x} − 1{w6x}

)
du

:= J1 + J2.

It follows that, by the triangle inequality,

|gx(w)− gx(w − h)− hg′x(x)| 6 |J1|+ |J2|. (6.10)

Using (6.4), we have

|J1| 6
∫ h

0

(
|w − h|+

√
2π

4

)
(|u|+ |h|)du =

3h2

2

(
|w − h|+

√
2π

4

)
. (6.11)

On the other hand, we have that

|J2| = 1{h<0}

∣∣∣∣
∫ h

0

(
1{w−h+u6x} − 1{w6x}

)
du

∣∣∣∣

+1{h≥0}

∣∣∣∣
∫ h

0

(
1{w−h+u6x} − 1{w6x}

)
du

∣∣∣∣

= 1{h<0}

∫ 0

h

1{w6x<w−h+u}du+ 1{h≥0}

∫ h

0

1{w−h+u6x<w}du.
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As a consequence,

|J2| 6 1{h<0}(−h)1[w,w−h)(x) + 1{h≥0}h1[w−h,w)(x) (6.12)

= h
(
1[w−h,w)(x)− 1[w,w−h)(x)

)
=|h|

(
1[w−h,w)(x) + 1[w,w−h)(x)

)
.

Using (6.11) and (6.12) in (6.10) yields the conclusion. �
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