Technical Presentation:

Radio Engineering of Relay-Based OFDMA Networks

Mattia Minelli1,2

1INFRES, Télécom ParisTech
46, Rue Barrault, Paris, France

2School of Electrical and Electronic Engineering, NTU
50, Nanyang Avenue, Singapore

26th April 2012

Joint work with Ma Maode, Marceau Coupechoux and Philippe Godlewski
Outline of Topics

1. Introduction
2. State of the Art
3. My Contribution
Why Relaying?

- IMT-Advanced demanding requirements for 4G systems [1]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink peak rate (low mobility)</td>
<td>1 Gbit/sec</td>
</tr>
<tr>
<td>Downlink peak rate (high mobility)</td>
<td>100 Mbit/sec</td>
</tr>
<tr>
<td>Data rate bw any 2 points</td>
<td>100 Mbit/sec</td>
</tr>
<tr>
<td>Roaming across networks</td>
<td>Seamless</td>
</tr>
</tbody>
</table>

- Need for ubiquitous coverage and uniform data rate [2]

- BS densification too expensive [3]
Relay Nodes: Definition and Network Structure

- D&F devices [4]
- Lower costs [5]
 - Single omni-directional antenna
 - Smaller (f.ex. put on lamppost)
- Multiple access scheme: OFDMA [2]
Relaying

- Energy savings
 - MH communication: reduced power consumption
- RRM: Simultaneous/division mode of operation
- Strong interf. from eNB
 - Literature: division mode of operation

![Graph showing received power from eNB and RN](image)
Resource Partitioning: how to assign time-freq. resources

- Strong interference from eNB ⇒ AL - DL - RL time-frequency separation
 - Time relaying (case a))[6]
 - Frequency relaying (case b))[6]
 - Hybrid time/frequency relaying schemes

Variability of RP:

1. **Static RP**: RP fixed bw frames
2. **Dynamic RP**: RP changes bw frames
Static Resource Partitioning

- RP based on average network performance

 \[\bar{R}_{AL} = B_{AL}E \left[\log (1 + SINR_{AL}) \right] \]

Implementation

- RP derived by imposing constraints on frame structure (example from [7]):

 1. Fairness among UE

 \[\frac{\bar{R}_{AL}}{N_{AL}} = \frac{\bar{R}_{DL}}{N_{DL}} \]

 2. Multihop feasibility

 \[B_{AL}E \left[\log (1 + SINR_{AL}) \right] = B_{RL}E \left[\log (1 + SINR_{RL}) \right] \]

 3. Total available band

 \[B_{AL} + B_{DL} + B_{RL} = B_{TOT} \]

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple RP approach</td>
<td>No optimal resources use</td>
</tr>
<tr>
<td>Cheaper network hardware</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic Resource Partitioning

- Possible alternative [8]: control system approach

- Control variables: RP data
- Feedback: Ue satisfaction
- Target: maximization UE satisfaction.

\[
\tilde{Z}[t] = \frac{T - 1}{T} \tilde{Z}[t - 1] + \frac{1}{T} Z[t - 1] \]

(1)

- Exponential average to avoid high variability of partitioning
Dynamic Resource Partitioning

- Overall system can be written as:

\[x[t] = Ax[t - 1] + Bu[t - 1] \]

(2)

- Solution chosen: linear quadratic-optimal controller

- Results:
 - Higher UE throughput
 - Uniform UE throughput

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptability wrt load, UE pos., etc...</td>
<td>Higher computat. compl.</td>
</tr>
<tr>
<td>Optimization of resources allocation</td>
<td>More complex hardware</td>
</tr>
</tbody>
</table>
Relay Selection and Resource Scheduling

Definitions

- Relay selection (in-cell routing) [2]: how to associate UE with serving stations
- Resource scheduling: how to assign station resources to served UE

Implementations

1. Disjoint R&S: Relay selection separated from scheduling
 - In-cell routing strategies: nearest server, best server, best SINR, ...
 - Resources scheduling: single-hop network methods (e.g. PFS [9])

2. Joint R&S: Joint relay selection and resource scheduling
 - Find best combination of UE serving nodes and resource scheduling at once
 - Implemented as maximization of a functional over all combinations (e.g. [10])
Joint RN Selection and Scheduling: Example [10]

- Queue-aware: improve fairness w/o throughput penalty
 - Highest rate subchannels to longest queues ⇒ Cell load balance, stable queue length, fairness
- Quality Functional: Demand for each subcarrier n, for each node m-UE k link:
 \[D_{n,m \rightarrow k} = R_{m,k,n}Q^m_k \]
 - $R_{m,k,n}$: Rate on subchannel n for the link bw node m and UE k
 - Q^m_k: UE k buffer queue length at node m.
- **Target**: maximization of **sum demand** on all links, nodes and UE
 ⇒ Cell load balance, stable queue length, fairness
Joint Routing and Scheduling: Example [10]

- Subchannels assignment: maximization of sum demands:

\[
D_s = \max_{\rho, \gamma} \left\{ \sum_{n=1}^{N} \sum_{m=0}^{M} \sum_{k=1}^{K} \rho_{m,k,n} D_{n,m \rightarrow k} + \sum_{n=1}^{N} \sum_{m=1}^{M} \gamma_{0,m,n} D_{n,0 \rightarrow m} \right\}
\] (3)

- \(\rho_{m,k,n}, \gamma_{0,m,n} \): binary subch. assignment variables

- Maximization performed with constraints

- Queue-aware algorithm: throughput maximization
 - capacity \(\neq \) throughput (burst traffic nature)

- Maximization wrt all UE-node links, and subcarriers: high computational complexity
Disjoint vs Joint RN Selection and Scheduling

<table>
<thead>
<tr>
<th>Disjoint R&S</th>
<th>Joint R&S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Pros</td>
</tr>
<tr>
<td>Simple nw management</td>
<td>Optimal performance wrt target</td>
</tr>
<tr>
<td>Low overheads</td>
<td>Performance stable in time [10]</td>
</tr>
<tr>
<td>sub-optimal solution</td>
<td>Performance stable wrt UE position [2]</td>
</tr>
<tr>
<td>⇒ performance loss</td>
<td>⇒ Ubiquitous coverage</td>
</tr>
<tr>
<td>Cons</td>
<td>Cons</td>
</tr>
<tr>
<td></td>
<td>Very high computational complexity</td>
</tr>
<tr>
<td></td>
<td>Completely centralized processing</td>
</tr>
</tbody>
</table>
Relaying in LTE-Advanced (3GPP)

- RN are D&F devices [11].

- Backhaul link is wireless.

- Type 1 RN: Non-transparent. Transmits the common reference signal and control information from the eNB (coverage extension). It appears as a separate cell.

- Type 2 RN: Transparent. Does not transmit reference signals and control informations. Used for achieving multipath diversity and transmission gains (capacity extension).
Resource Partitioning in LTE-Advanced

- Need for backward compatibility

- Relay Link resources obtained by configuring part of the subframes as Multicast/Broadcast Single-Frequency Network (MBSFN) subframes.

- Dynamic RP, but only partially flexible
Store-and-Forward Type 2 Uplink RN

- Used for uplink coverage enhancement (cell-edge UE)
- RN stores uplink PUSCH transmission
- Forward to eNB in case of HARQ NAK

Figure: Uplink store-and-forward RN HARQ scheme (from [12])
Simulations results: SINR spatial distribution [13]
Simulations results: N_{RN} vs Desired Capacity [13]

$$N_{RN} = \alpha (E[C] - C_0)$$ (4)
Long-Term Downlink Power Optimization

Optimal solution:
- frame-by-frame and node-by-node power allocation
- joint resource and power allocation

Drawbacks:
- High complexity
- High protocol overheads

Suboptimal solution:
- Fixed eNB and RN transmit power
- Power allocation independent from scheduling
Long-Term Downlink Power Optimization

Target: maximize UE average spectral efficiency

- Assumption: UE served by node guaranteeing highest received power [14] → av. spectral efficiency depends on nodes tx power
- Assumption: eNB and RN transmit on orthogonal resources
- Assumption: SIR good channel quality metric

- Shadowing has small influence on peak spectral efficiency
 - Simplified model

- 'Brute force' Maximization long
 - Geometrical approach faster
Long-Term Downlink Power Optimization

Strategy: match *SIR area* of nodes with *serving area*.

- **Serving area:** circle
- **SIR area:** ?

Mathematically:

\[
\argmax_{P_{RN}} \frac{1}{A_c} \int_{A_c} \log_2(1 + SIR(z, P_{RN})) \, dz \quad (5)
\]

Equivalent problem:

\[
\argmin_{P_{RN}} \frac{1}{A_c} \int_{D_i} (C_H(z) - C(z, P_{RN})) \, dz \quad (6)
\]
Strategy: match *SIR area* of nodes with *serving area.*

- **Serving area**: circle
- **SIR area**: ?

![Diagram showing serving and SIR areas with power levels](image)

\[
\text{Equivalent problem:} \quad \argmin_{P_{RN}} \frac{1}{A_c} \int_{D_i} (C_H(z) - C(z, P_{RN}))dz \quad (6)
\]

\[
\argmax_{P_{RN}} \frac{1}{A_c} \int_{A_c} \log_2(1 + SIR(z, P_{RN}))dz \quad (5)
\]
Long-Term Downlink Power Optimization

Strategy: match *SIR area* of nodes with *serving area*.

- Serving area: circle
- *SIR area:* ?

\[\pi_{i,j}(P_2) \]

\[\pi_{i,j}(P_3) \]

\[D_i \]

\[P_1 < P_2 < P_3 < P_4 < P_5 < P_6 \]

\[\text{Equivalent problem:} \]

\[\argmax_{P_{RN}} \frac{1}{A_c} \int_{A_c} \log_2(1 + SIR(z, P_{RN})) \, dz \]

(5)

\[\argmin_{P_{RN}} \frac{1}{A_c} \int_{D_i} (C_H(z) - C(z, P_{RN})) \, dz \]

(6)

\[I \]

\[P_3 < P_{RN}^* < P_5 \]
Long-Term Downlink Power Optimization

Strategy: match *SIR area* of nodes with *serving area*.

- Serving area: circle
- *SIR area:* ?

\[
\pi_{i,j}(P_4) \\
\gamma_{i,j} \\
\pi_{i,j}(P_3) \\
\text{RN}_j \\
\times \\
\text{C}(P_4) \\
\mathcal{D}_i
\]

\[
P_1 < P_2 < P_3 < P_4 < P_5 < P_6
\]

\[
\argmax_{P_{RN}} \frac{1}{A_c} \int_{A_c} \log_2(1 + \text{SIR}(z, P_{RN})) dz \tag{5}
\]

Equivalent problem:

\[
\argmin_{P_{RN}} \frac{1}{A_c} \int_{\mathcal{D}_i} (C_H(z) - C(z, P_{RN})) dz \tag{6}
\]
Long-Term Downlink Power Optimization

Strategy: match SIR area of nodes with serving area.

- Serving area: circle
- SIR area: ?

\[
\begin{align*}
\pi_{i,j}(P_5) & \quad \pi_{i,j}(P_4) \\
D_i & \\
\gamma_{i,j}
\end{align*}
\]

\[
P_1 < P_2 < P_3 < P_4 < P_5 < P_6
\]

Equivalent problem:
\[
\argmin_{P_{RN}} \frac{1}{A_c} \int_{A_c} \log_2(1 + SIR(z, P_{RN})) dz
\]

(5)
Long-Term Downlink Power Optimization

Strategy: match *SIR area* of nodes with *serving area*.

- **Serving area:** circle
- **SIR area:**

\[
\pi_{i,j}(P_6) \\
\pi_{i,j}(P_5) \\
\mathcal{D}_i \\
\gamma_{i,j} \\
\text{RN } j \quad \text{C}(P_6) \\
\text{RN } j \quad \text{C}(P_5) \\
P_1 < P_2 < P_3 < P_4 < P_5 < P_6
\]

\[
\argmax_{P_{RN}} \frac{1}{A_c} \int_{A_c} \log_2(1 + \text{SIR}(z, P_{RN})) \, dz \quad (5)
\]

Equivalent problem:

\[
\argmin_{P_{RN}} \frac{1}{A_c} \int_{D_i} (C_H(z) - C(z, P_{RN})) \, dz \quad (6)
\]

\[
I \\
P_3 < P_{RN^*} < P_5
\]

\[
P_1, P_2, P_4, P_5, P_6
\]
Long-Term Downlink Power Optimization

How to find P_3 and P_5

- Find a set of points $\{p_{n}^{i,j}\}_{n\in[1,N_{i,j}]} \in \gamma_{i,j}$
- For each $p_{n}^{i,j} = (x_{n}^{i,j}, y_{n}^{i,j})$, we find the associated RN power $\tilde{P}_{RN}(p_{n}^{i,j})$ and store it in $\mathcal{P}(\gamma_{i})$
- We approximate $P_3 = \min \mathcal{P}(\gamma_{i})$, $P_5 = \max \mathcal{P}(\gamma_{i})$.

<table>
<thead>
<tr>
<th>N</th>
<th>$P_{RN}^*(f)$</th>
<th>$P_{RN}^*(2)$</th>
<th>$P_{RN}^*(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>38.5</td>
<td>40.6</td>
<td>39.9</td>
</tr>
<tr>
<td>3</td>
<td>33.9</td>
<td>37.7</td>
<td>37.7</td>
</tr>
<tr>
<td>4</td>
<td>29.7</td>
<td>35.2</td>
<td>35.4</td>
</tr>
<tr>
<td>5</td>
<td>30.4</td>
<td>32.7</td>
<td>33.6</td>
</tr>
<tr>
<td>6</td>
<td>31.7</td>
<td>32.3</td>
<td>32.1</td>
</tr>
<tr>
<td>7</td>
<td>28.8</td>
<td>30.3</td>
<td>30.5</td>
</tr>
<tr>
<td>8</td>
<td>27.8</td>
<td>29.7</td>
<td>29.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d/D</th>
<th>$P_{RN}^*(f)$</th>
<th>$P_{RN}^*(2)$</th>
<th>$P_{RN}^*(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>34.0</td>
<td>31.3</td>
<td>30.7</td>
</tr>
<tr>
<td>2/10</td>
<td>36.2</td>
<td>38.3</td>
<td>38.9</td>
</tr>
<tr>
<td>3/10</td>
<td>38.4</td>
<td>38.6</td>
<td>38.7</td>
</tr>
<tr>
<td>4/10</td>
<td>38.5</td>
<td>38.4</td>
<td>38.2</td>
</tr>
<tr>
<td>5/10</td>
<td>38.1</td>
<td>38.0</td>
<td>37.9</td>
</tr>
</tbody>
</table>

References II

reuse one frequency planning for two-hop cellular system with
fixed relay nodes.

"Dynamic Radio Resource Management for OFDMA-Based
Relay Enhanced Cellular Network".

Falconer Y.-Doo Kim W. Shin E. Kim.
Fairness-aware joint routing and scheduling in OFDMA-based
cellular fixed relay networks.

