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Abstract—In the context of cognitive radio, this paper ad-
dresses the challenge of OFDM system identification. We show
that it is possible to take advantage of pilot tone structures to
perform identification. Pilot subcarriers usage is of greatinterest
since it enables to discriminate OFDM systems that have the
same modulation parameters (subcarrier spacing, cyclic prefix
duration, etc.). The proposed method relies on the periodicre-
dundancy often induced between pilot symbols. We demonstrate
that most OFDM systems (Wifi, WiMAX, DVB-T, etc.) can be
identified thanks to this redundancy by conducting a hypothesis
test based on second order statistics. Detailed numerical examples
demonstrate the efficiency of the proposed identification criterion
in various kinds of environments.

I. I NTRODUCTION

T HE increasing demand of new services constrains wire-
less systems to move towards a more intelligent control

of the limited spectrum resources. [1] laid the foundation of
the Cognitive Radio (CR) concept that is now considered as
a key paradigm to evolve from the current fixed spectrum
usage to opportunistic spectrum sharing models tailored to
address the frequency resource scarcity issue. CR promisesthe
deployment of flexible wireless systems able to reconfigure
themselves (i.e. adapt their modulation parameters, carrier
frequency, power, etc.) with regard to the surrounding radio en-
vironment and regulatory policies. Spectrum sensing and espe-
cially system identification is therefore a crucial step towards
radio environment awareness. In this paper we focus on OFDM
based systems as it becomes the physical layer for many
wireless standards [2]–[5]. Existing OFDM identification algo-
rithms are mainly based on modulation parameter estimation
[6]–[8]. Considering the increasing interest in OFDM by the
wireless designers, modulation parameters of such systemsare
likely to become closer and closer. For instance, 3GPP/LTE [5]
and Fixed WiMAX [2] systems already have a subcarrier spac-
ing only different from 4% which may prevent from getting an
accurate system identification based on the subcarrier spacing
estimation principle. To overcome this limitation, few methods
involving more particular signatures have been suggested in
[9]–[11]. These methods either add overhead, and thus reduce
systems capacity, or are only dedicated to OFDM systems with
specific pilot tone configurations.

In this contribution, we propose a solution to address both
issues. By studying existing OFDM systems (Wifi, WiMAX,
DVB-T etc.), it can be noticed that pilot symbols, used

for channel estimation and/or synchronization purposes, are
often replicated with regard to a pre-defined time/frequency
distribution. This property induces correlation between pilot
subcarriers that can be exploited in conjunction with the
periodicity of the time/frequency pilot mapping to perform
system identification. In that case, identification can be based
upon the knowledge of pilot structures without knowledge of
pilot symbols. We hereafter generalize the pilot correlation
property and adapt it to the context of cognitive radio under
the concept of pilot-induced cyclostationary (PIC) signatures.
We show that these signatures can be reliably identified thanks
to a hypothesis test based on2nd order statistics. As in [11],
we here suggest to take advantage of signatures created as a
side-effect of existing PIC structures to identify standards such
as Wifi, WiMAX and DVB-T and also advocate to extend PIC
use to future cognitive systems.

The paper is organized as follows: Section II describes
the pilot-assisted OFDM system model. Section III recalls
the cyclostationarity basis and introduces the pilot induced
cyclostationary (PIC) signature scheme with its corresponding
identification algorithm. Identification performance is assessed
through simulations in Section IV. Finally, conclusions are
presented in Section V.

II. PILOT-ASSISTEDOFDM SYSTEM MODEL

A. Signal model

Assuming that a transmitted OFDM symbol consists of
N subcarriers, the discrete-time baseband equivalent transmit
signal is given by

x(m) =

√
Es

N

[
xd(m) + xt(m)

]
, (1)

where

xd(m) =
∑

k∈Z

N−1∑

n=0
n/∈I(k)

ak(n)e2iπ n
N

(m−D−k(N+D))

.g(m− k(N +D)),

and

xt(m) =
∑

k∈Z

∑

n∈I(k)

bk(n)e2iπ n
N

(m−D−k(N+D))

.g(m− k(N +D)).

(2)
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Es is the signal power andak(n) are the transmit data symbols
atn-th subcarrier ofk-th OFDM block. These data symbols are
assumed to be independent and identically distributed (i.i.d),
D is the CP length andm 7→ g(m) is the pulse shaping filter.
I(k) denotes the set of pilot subcarrier indexes of thek-th
symbol andbk(n) are the pilot symbols.

Let {h(l)}l=0,··· ,L−1 be the baseband equivalent discrete-
time channel impulse response of lengthL. Unless otherwise
stated, the channel is assumed to be time invariant. Notice that
impact of channel variations is discussed in Section IV. The
received samples of the OFDM signal are then expressed as

y(m) = e−i(2πε m−τ
N

+θ)
L−1∑

l=0

h(l)x(m− l− τ) + η(m), (3)

where ε is the carrier frequency offset (normalized by the
subcarrier spacing),θ the initial arbitrary carrier phase,τ
the timing offset andη(m) a zero mean circularly-symmetric
complex-valued white Gaussian noise of varianceσ2 per com-
plex dimension. The receiver does not know these parameters
({h(l)}l=0,··· ,L−1, ε, θ, τ, σ

2).

B. Pilot tone arrangements

As depicted in Figure 1, three different types of pilot
tone arrangements are usually set up in OFDM systems to
meet the channel estimation requirements. The first one is the
block type configuration used under the assumption of slow
fading channel. Pilot tones are in that case mapped onto all
subcarriers of OFDM symbols within a specific periodK so
that I(k) verifies

I(k) =

{
{0, · · · , N − 1}, if k = mK (m ∈ Z)
∅ otherwise.

The second one, comb-type pilot configuration, is introduced
to satisfy the need for equalizing when the channel quickly

Fig. 1. Examples of pilot tone arrangement: a) block type configuration, b)
comb-type configuration, c) circular configuration.

varies. Pilot tones are mapped onto certain subcarriers of
each OFDM symbol such thatI(k) = I where I is any
subset of{0, · · · , N − 1} ∀k. The last arrangement is a
circular configuration where the set of pilot subcarrier indexes
periodically change such thatI(k+K) = I(k) whereK ∈ Z

andI(k) 6= ∅. Such a scheme is used under the assumption of
fast fading channel and presents the interest of avoiding cases
where a given pilot subcarrier is attenuated by the channel for
a period of several symbols. Note that some OFDM systems
(e.g. [4] and [12]) make a joint use of these arrangements.

III. PILOT-INDUCED CYCLOSTATIONARITY (PIC)
IDENTIFICATION

A. Background on cyclostationarity

Two complex discrete time stochastic processesxk and
yk, k ∈ Z, are said to exhibit joint second-order almost
cyclostationarity in the wide sense if the cross correlation
function

Rxy(k, u)
△
= E

[
xky

∗
k+u

]
,

where∗ stands for complex conjugation, admits series repre-
sentation

Rxy(k, u) =
∑

α∈Axy

Rα
xy(u)ei2παk

where

Rα
xy(u)

△
= lim

M→+∞

1

2M + 1

M∑

k=−M

Rxy(k, u)e−i2παk (4)

is the cyclic cross correlation function (CCCF) and

Axy
△
=

{
α ∈ [−1/2; 1/2[

∣∣∣ ∃u s.t. Rα
xy(u) 6= 0

}

is a countable set of cycle frequenciesα [13]. Note that the
CCCF is periodic inα with period 1.

B. Signature generation

As illustrated in subsection II-B, the time/frequency pilot
tone distribution is always deterministic to meet the channel
estimation requirements. As the number of pilot tones is finite,
the deterministic characteristic of the pilot tone distribution
can be expressed asI(k + K) = I(k), K ∈ Z for any
combination of arrangements described in subsection II-B.For
the particular case of comb-type arrangement, note thatK = 1.
Such a periodicity is a useful property that can be exploited
to induce cyclostationarity in OFDM frames through careful
choice of pilot symbolsbk(n).

Let ck(n) be thek-th symbol on subcarriern such that

ck(n) =

{
bk(n), if n ∈ I(k)
ak(n) otherwise.

(5)

If the pilot tones are designed such that

bk(p) = bk+d(p,q)(q)eiϕ (6)

with d(p,q) ∈ Z andϕ ∈ [−π;π[ then, as shown in appendix A,
processes{ck(p)}k and {ck(q)}k are jointly cyclostationary

with A(p,q)
△
= Ac

k
(p)ck(q) =

{
m−⌊K/2⌋

K ,m ∈ {0,K − 1}
}

where⌊ ⌋ stands for integer flooring.
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In the framework of OFDM system identification, joint
cyclostationary structure is of great interest to generatesystem
specific signatures. Eq. (6) indicates that it is possible todesign
a given signatureS by choosing particular combinations of
p, q, d(p,q) andK. Such a signatureS is then defined as

S
△
=

{(
p, q, d(p,q),K

)
|A(p,q) 6= ∅

}
. (7)

As examples, DVB-T, Wifi and WiMAX pilot structures can
be seen as (unintentional) PIC signatures where

• DVB-T: K=4, d(p,q)=0,1,2 or 3, (p,q) can be any pilot
tone pair.

• Wifi: K=1, d(p,q)=0, (p,q) can be any pilot tone pair.
• WiMAX: see section IV.

Note that the termeiϕ in Eq. (6) is here to bring flexibility
to PIC structures and to prevent coherent addition of pilot
symbols which increases the peak-to-average power ratio.

C. Identification cost function

Systems satisfying Eq. (1) and (7) have a
periodic cross-correlation functionRc(p,q)

(
k, d(p,q)

)
=

E

[
ck(p)c∗

k+d(p,q) (q)
]

and can thus be discriminated by
exploiting the cyclic cross-correlation function (CCCF)

Rα
c(p,q)(d

(p,q))
△
= lim

M→+∞

1

2M + 1
.

M∑

k=−M

E
[
ck(p)c∗k+d(p,q)(q)

]
e−i2παk.

We propose to perform the system identification on the eval-
uation of the CCCF energy at cyclic frequenciesα ∈ A(p,q).
In practice the symbolsck(n) are only accessible via the
observationsYk(n) expressed as

Yk(n)
△
=

1√
N

N−1∑

m=0

y[k(N +D) +D +m]e−2iπ nm
N

which, in the case of perfect synchronization (i.e.ε = 0, τ = 0
andθ = 0), simplifies to

Yk(n) = H(n)ck(n)
√
Es + Nk(n)

whereH(n) andNk(n) are respectively the channel frequency
response at subcarriern and the noise at subcarriern of
the k-th received symbol. Considering the channel frequency
response unknown at reception, we therefore have to consider
the CCCF of(Yk(p), Yk(q)) instead of(ck(p), ck(q)). If we
assume thatM OFDM symbols are available at reception, the
CCCF energy ofyk(p) and yk(q) is evaluated thanks to the
cost function defined as

JPIC
△
=

∑

(p,q)∈ξ




∑

α∈A(p,q)

∣∣∣R̂α
Ỹ (p,q)

(
d(p,q)

)∣∣∣
2



 (8)

where

R̂α
Ỹ (p,q)

(
d(p,q)

)
=

1

M − d(p,q)
.

M−d(p,q)−1∑

k=0

Ỹk(p)Ỹ ∗
k+d(p,q) (q)e

−i2παk

(9)

and ξ = {(p, q)|A(p,q) 6= ∅ andd(p,q) +K ≤ M}. Note that
in order to get the criterionJPIC less sensitive to the received
signal gain, each termYk(n) in Eq. (9) is normalized so that

Ỹk(n) =
Yk(n)√

V̂ar [Y (n)]
, (10)

where Var[.] denotes the variance and

V̂ar [Y (n)] =
1

M

M−1∑

k=0

|Yk(n)|2 . (11)

D. Decision statistics

Considering that the system to be identified embeds a PIC
signature defined by Eq. (7), our identification problem pre-
viously described boils down to a standard detection problem
that can be formulated as the following binary hypothesis test





H0 : y(m) writes as in Eq. (3) without PIC structure
or with PIC structure defined as

S′ =
{(
p′, q′, d(p′,q′),K ′

)
|A′

(p′,q′) 6= ∅
}

such thatS′ 6= S.
H1 : y(m) writes as in Eq. (3) with PIC structure

defined asS =
{(
p, q, d(p,q),K

)
|A(p,q) 6= ∅

}
.

(12)
To decide the most likely hypothesis, we propose a detection

test constrained by the asymptotic false alarm probability
similar to what is suggested in [11]. The decision is made
by comparingJPIC to a positive threshold such that

JPIC

H1
>
<
H0

Λ,

with Λ defined as

FJPIC |H0
(Λ) = 1 − Pfa (13)

whereFJPIC |H0
is the cumulative distribution function (cdf)

of JPIC whenH0 holds andPfa is the tolerated false alarm
probability. Moreover, we based our decision on the following
assumptions:

Assumption 1:We assume that the number of possible
PIC signatures are large enough to design OFDM systems
satisfyingS′

⋂
S = ∅, ∀S′ 6= S.

Assumption 2:We assume perfect synchronization at recep-
tion (i.e. ε = 0, τ = 0 andθ = 0 in Eq. (3)). Synchronization
impairments are studied in Section III-E.

Assumption 3:Under H0, at a given subcarrierp, the
symbols{ck(p)}k are assumed to be i.i.d.

The relevance of the hypothesis test given by Eq. (12) can
be easily justified by looking at the mean of the estimated
CCCF, defined in Eq. (9), under both hypotheses.

E

[
R̂α

Ỹ (p,q)

(
d(p,q)

)]
= Rα

Ỹ (p,q)

(
d(p,q)

)

=

{
0 underH0

µ(p,q)

K , ∀α ∈ A(p,q) underH1

whereµ(p,q) denotes a term proportional to the subcarrier
to noise ratio. It is then straightforward to see that the distance
between the two asymptotic probability distribution functions
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of JPIC is non null and makes possible the discrimination
between the two hypotheses.

In order to find a relevant thresholdΛ to perform the
identification, we hereafter derive the asymptotic statistical
behavior ofJPIC underH0.

As shown in appendix B, under hypothesisH0, JPIC

is a sum of weighted noncentral chi-square variables with
a cumulative distribution function that can be expressed as
Laguerre series of the form

FJPIC |H0
(x) =

e−
x
2ω

(2ω)ζ+1

xζ

Γ(ζ + 1)
.

∑

k≥0

k!mk

(ζ + 1)k
L(ζ)

k

(
(ζ + 1)x

2ων

)
,

∀ν > 0 andω > 0,with ζ =
∑

(p,q)∈ξ

card(A(p,q)) and L(ζ)
k the

k-th generalized Laguerre polynomial verifying

L(ζ)
k (x)

△
=

k∑

m=0

(
k + ζ
k −m

)
(−x)m

m!
.

Γ(x)
△
=

∫ ∞

0
tx−1e−tdt and (.)k denotes the Pochhammer

symbol defined as(x)k
△
= Γ(x+k)

Γ(x) . The coefficientsmk satisfy
the following recurrent relation

mk =
1

k

k−1∑

j=0

mjgk−j , k ≥ 1

with

m0 =2(ζ + 1)ζ+1 ωζ+1

ζ + 1 − ν
.

∏

(p,q)∈ξ

(
ων +

ζ + 1 − ν

2(M − d(p,q))

)−card(A(p,q))

and

gj =

( −ν
ζ + 1 − ν

)j

+

∑

(p,q)∈ξ

card(A(p,q))

(
ν(2(M − d(p,q))ω − 1)

2(M − d(p,q))ων + ζ + 1 − ν

)j

,

j ≥ 1.

Note that the Laguerre expansion depends onν and ω that
can be arbitrarily chosen. These parameter choice only have
an impact on the convergence speed and on the uniform con-
vergence property. Moreover, for computer implementation,
the Laguerre expansion has to be truncated. The number of
terms to consider within the series can be estimated using the
truncation error analytical expression given in [14].

E. Effect of synchronization errors

Timing missynchronization and/or frequency offset deterio-
rates the observationsYk(n) as inter-symbol (ISI) and inter-
carrier (ICI) interferences occur. These interferences result in
attenuation of the cost functionJPIC which has a bad impact

on identification performance as it reduces the distance be-
tween the distribution ofJPIC |H1 andJPIC |H0. To overcome
this performance loss,ε andτ can be estimated as

[ε̂, τ̂ ] = argmax
(ε,τ)

JPIC . (14)

IV. SIMULATIONS

A. Simulation context

In the following, all the results are averaged over1000
Monte Carlo runs. The asymptotic false alarm probabilityPfa

is fixed to 0.01. The Signal-to-Noise Ratio (SNR) is defined
as SNR(dB)= 10log10

(
Es/σ

2
)
. When notified, the propaga-

tion channel simulated is a time-variant discrete-time channel
{hk(l)}l=0,··· ,L with L = D and an exponential decay profile
for its non-null component (i.e.,E[|hk(l)|2] = Ge−l/β for
l = 0, · · · , L andG is chosen such that

∑L
l=0 E[|hk(l)|2] = 1).

The channel time variation is simulated using Jake’s model.

B. PIC signatures identification performance

We here simulate a 512-subcarrier OFDM system with a
subcarrier mapping scheme equivalent to the Mobile WiMAX
DL-PUSC [12] one. We recall that it is designed with 60 pilot,
360 data, 91 guard and 1 DC subcarrier. D is set to 64.K =
2 and joint cyclostationarity is induced on 1770 pilot pairs
with d(p,q) = 0 or 1. To limit the identification algorithm
computational complexity, we test only 30 pairs among all
admissible(p, q).

In Figure 2, we plot the correct detection probability versus
SNR in the context of AWGN channel for various observation
window lengths. We observe that the PIC criterion exhibits
excellent performance from -6 dB for a number of symbols as
small as 25. The identification rate is significantly improved
as the number of available symbols increases. Figure 2 also
depicts the impact of different synchronization assumptions on
the detection probability. For the simulation, uniformly dis-
tributed randomε andτ were generated with−0.5 ≤ ε ≤ 0.5
and−0.5(N +D) ≤ τ ≤ 0.5(N +D). On this figure, it can
be seen that the loss due to missynchronization can be very
high (up to 6dB). This justifies the need for a synchronization
method based on Eq. (14) as after correction, this loss is
reduced to less than0.5dB for M = 25. ε and τ were
estimated by maximizingJPIC over a grid with a step of
0.2 over ε and0.15(N +D) over τ .

In Figure 3, we plot the correct detection probability versus
SNR when the frequency-selective channel is time-variant.
Various values of maximum Doppler frequenciesfd have been
inspected. We can see that our algorithm is quite robust to
Doppler spread below 100Hz and that performance degrades
up to 4dB for fd = 500Hz (at 3GHz, this corresponds to
a relative velocity of 180kph). However, note that even for
fd = 500Hz, the identification performance is still satisfying
in the standard operating SNR range in a mobile environment.

C. PIC vsm-sequence identification

We here compare the PIC method with the state of the
art pilot structure based identification algorithm described in
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[11]. This algorithm relies on the property ofm-sequences that
modulate pilots of systems like [3] and [2]. As shown in [11],
fixed WiMAX can be identified thanks tom-sequences but
can also be identified using the PIC criterion described in this
paper. Indeed, from [2], we getK = 1 andd(p,q) = 0 with ξ
defined as all possible pair of pilot tones (that is card(ξ) = 28),
D is set to 32.

Figure 4 compares both methods and clearly indicates that
for fixed WiMAX identification, the PIC criterion outperforms
(up to 4dB) them-sequence based algorithm.

V. CONCLUSION

In this paper, we introduced a new OFDM system iden-
tification algorithm to address part of the spectrum sensing
challenge inherent in cognitive radio. The method is based
on cyclostationary patterns embedded onto pilot tones. This
has the main advantage of not adding any system overhead
and makes possible the discrimination of systems with similar
modulation parameters. Cyclostationary patterns presented in
this contribution consider existing pilot constraints so that
the method is compatible with most standard requirements.
Simulation results proved the efficiency of the proposed
identification criterion and showed its robustness to harsh

−14 −12 −10 −8 −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
de

t

 

 

m−sequence
PIC

Fig. 4. Identification performance comparison between PIC and m-sequence
criteria (M = 25, β = 0.5D).

propagation environment as well as its gain compared with
state of the art.
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APPENDIX A
(ck(p), ck(q)) CCCFDERIVATION

The CCCF ofck(p) andck(q) is defined as

Rα
c(p,q)(u)

△
= lim

M→+∞

1

2M + 1

M∑

k=−M

E
[
ck(p)c∗k+u(q)

]
e−i2παk.

The data symbolsak(n) being i.i.d and bk(p) =
bk+d(p,q)(q)eiϕ, it follows that

E
[
ck(p)c∗k+d(p,q)(q)

]
= σ2

b e
−iϕ

∑

m∈Z

δ[k −mK − k0]

where δ[.] is the Kronecker delta,σ2
b is the variance of

symbolsbk(n) andk0 is the index of the first OFDM symbol
embedding pilot tones. Hence,

Rα
c(p,q)(d

(p,q)) =
σ2

b e
−i(2παk0+ϕ)

K

∑

m∈Z

δ
[
α− m

K

]
.

Therefore, forα ∈ [−1/2; 1/2[, Rα
c(p,q)(d

(p,q)) 6= 0 iff α ∈{
m−⌊K/2⌋

K ,m ∈ {0,K − 1}
}

.

APPENDIX B
JPIC |H0 CDF DERIVATION

We first derive the expectation and variance of the CCCF
R̂α

Ỹ (p,q)

(
d(p,q)

)
defined in Eq. (9).

The expectation of̂Rα
Ỹ (p,q)

(
d(p,q)

)
is given by

E

[
R̂α

Ỹ (p,q)

(
d(p,q)

)]

=
1

M − d(p,q)

M−d(p,q)−1∑

k=0

E

[
Ỹk(p)Ỹ ∗

k+d(p,q)(q)
]
e−i2παk

= Rα
Ỹ (p,q)

(
d(p,q)

)
.

From Assumption 1,E
[
ck(p)c∗

k+d(p,q)(q)
]

= 0 so that

E

[
R̂α

Ỹ (p,q)

(
d(p,q)

)]
= 0. (15)

To compute the covariance, we introduce the covariance matrix
defined as

C = E
[
(R − E{R})(R − E{R})H

]

where the superscriptH stands for transpose conjugate and

R =
[
R̂α0

Ỹ (p,q)

(
d(p,q)

)
, R̂α1

Ỹ (p,q)

(
d(p,q)

)
, · · · ,

R̂
αcard(A(p,q))−1

Ỹ (p,q)

(
d(p,q)

) ]
.

If we now focus on each element[C]i,j =

E

[
R̂αi

Ỹ (p,q)

(
d(p,q)

) (
R̂

αj

Ỹ (p,q)

(
d(p,q)

))∗]
, we have:

[C]i,j =
1

(
M − d(p,q)

)2 .

M−d(p,q)−1∑

ki,kj=0

E

[
Ỹki

(p)Ỹ ∗
ki+d(p,q)(q)Ỹ

∗
kj

(p)Ỹkj+d(p,q)(q)
]

.e−i2π(kiαi−kjαj).

Once again due to Assumption 1 and due to the circularity of
symbols (PSK or QAM), we get

E

[
Ỹki

(p)Ỹ ∗
ki+d(p,q)(q)Ỹ

∗
kj

(p)Ỹkj+d(p,q)(q)
]

= E

[
Ỹki

(p)Ỹ ∗
kj

(p)
]

E

[
Ỹ ∗

ki+d(p,q)(q)Ỹkj+d(p,q)(q)
]
.

From Assumption 3, this term is different from zero only
if ki = kj . Moreover, as shown in Eq. (10),̃Yk(n) is
expressed as a ratio of two random variables. The variance
estimator introduced in Eq. (11) being consistent, it converges
almost surely to a constant denotedvn so that, thanks to
the asymptotic theory developed in [15],Ỹk(n) converges in
distribution to Y (n)/

√
vn. Thus, for ki = kj and a time

invariant propagation channel

E

[
Ỹki

(p)Ỹ ∗
ki+d(p,q)(q)Ỹ

∗
kj

(p)Ỹkj+d(p,q)(q)
]

=

(
|H(p)|2 ρ(p) + σ2

N

) (
|H(q)|2 ρ(q) + σ2

N

)

vpvq

= 1

asvn = |H(n)|2 ρ(n) + σ2/N with ρ(n) the signal power of
subcarriern. Therefore, the asymptotic covariance is expressed
as

[C]i,j =
1

(
M − d(p,q)

)2

M−d(p,q)−1∑

k=0

e−i2πk(αi−αj)

=
sin

(
π

(
M − d(p,q)

)
(αi − αj)

)
(
M − d(p,q)

)2
sin(π(αi − αj))

e−iπ(αi−αj)(M−d(p,q)−1).

(16)

From Eq. (16) we can deduce that the correlation between
R̂αi

Ỹ (p,q)

(
d(p,q)

)
and R̂αj

Ỹ (p,q)

(
d(p,q)

)
for αi 6= αj is upper

bounded by
∣∣∣[C]i,j

∣∣∣ ≤ 1
(
M − d(p,q)

)2
sin(π(αi − αj))

≤ 1
(
M − d(p,q)

)2
sin(π/K)

.

which implies that as long asK ≪ π
(
M − d(p,q)

)2
, the

cyclic cross-correlation coefficients are asymptoticallymutu-
ally independent. Thus, thanks to the central limit theoremand
according to Eqs. (15) and (16)

R̂α
Ỹ (p,q)

(
d(p,q)

)
|H0

D7−→ CN
(

0,
1

M − d(p,q)

)

where
D7−→ indicates the convergence in distribution. The

cyclic cross-correlation coefficients estimate being asymptotic
uncorrelated Gaussian variables, it follows thatỸ |H0 can be
expressed as a sum of weighted central chi-square variables.
Therefore, the characteristic function ofJPIC |H0 is expressed
as

ψJP IC |H0
(t) =

∏

(p,q)∈ξ

(
1 − it

M − d(p,q)

)card(A(p,q))

.

The inversion of this characteristic function using the results
presented in [14] concludes the proof.


