
OPTIMAL TRAINING FOR FREQUENCY OFFSET ESTIMATION
IN CORRELATED-RICE FREQUENCY-SELECTIVE CHANNEL

Philippe Ciblat(1), Pascal Bianchi(2), and Mounir Ghogho(3)
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ABSTRACT

We consider carrier frequency offset (CFO) estimation for single-
carrier and single-user transmission over a frequency-selective
channel. When training is solely devoted to frequency synchro-
nization, it is important to design the training to optimizeCFO
estimation performance. In this paper we exhibit the training se-
quence that minimizes the Cramer-Rao bound associated withthe
carrier frequency offset and averaged over the channel statistics
following a correlated Ricean fading channel model. Simulations
show significant improvements compared to the standard pseudo-
random white training sequence.

1. INTRODUCTION

In wireless communication, the transmitted signal is usually dis-
torted by inter symbol interference due to the multipath channel
and a carrier frequency offset (CFO) caused by a local oscillator
drift or a Doppler effect. In order to retrieve the transmitted data
accurately, the receiver needs to accurately estimate the CFO and
the channel. In civil applications, symbols known to the receiver,
called training symbols, are sent periodically by the transmitter.
The training sequence can be employed to estimate the channel
and the carrier frequency offset. Often, both parameters are esti-
mated separately with two different kinds of training sequences. In
this paper we focus on the carrier frequency offset estimation when
the channel is still not a parameter of interest and is unknown at
the receive and transmit sides.

The goal of this paper is to exhibit the “optimal” training se-
quence in the sense of optimizing CFO estimation performance.
Toward this objective, we will minimize the Cramer-Rao bound as-
sociated with the CFO. In order for the solution to be independent
of the channel realization, we average the CRB over the channel
statistics model. In wireless environment, it is standard to consider
the channel to be Rice distributed [1]. In the literature, the optimal
training sequence for carrier frequency offset estimationhas been
developed in the case of uncorrelated Rayleigh channel [2].In
such a case, the best training sequence is white. In this paper, we
will see that as soon as the channel has either a deterministic part
or a correlated random part, the best training sequence is not white
anymore.

As we consider a single-carrier and single-user communications
scheme, the complex envelope of receive discrete-time signal y(n)
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takes the following form

y(n) = e2iπfn
L−1
X

l=0

h(l)t(n − l) + w(n), (1)

where f denotes the carrier frequency offset and coefficients
h(0) . . . h(L − 1) represent the channel coefficients. The train-
ing sequencet(0), t(1), . . . , t(NT − 1) with lengthNT devoted
to CFO estimation is assumed to be transmitted periodically. Se-
quencew(n) denotes a white complex-valued circular zero-mean
Gaussian noise of varianceσ2 = E[|w(n)|2].

In the sequel, we denote byh = [h(0) . . . h(L − 1)]T the un-
known channel vector and byt = [t(0), t(1) . . . t(NT − 1)]T the
vector of training symbols. The superscript(.)T stands for the
transpose operator.

The channel is assumed to be Rice distributedi.e.,

h =

r

K

K + 1
hd +

r

1

K + 1
hr (2)

wherehd, also called Line-Of-Sight (LOS) component, is a de-
terministic vector normalized in such a way that‖hd‖2 = 1 and
wherehr, also called Non-Line-Of-Sight (NLOS) component, is
a complex circular Gaussian random vector with zero mean and
covariance matrixΣ = E[hrh

H

r ], normalized in such a way that
Tr (Σ) = 1. The superscript(.)H stands for the conjugate trans-
pose operator. CoefficientK is the so-called Ricean factor. We
assume thatK, Σ, andhd are known at both the transmitter and
the receiver sides. This assumption is realistic in most wireless
applications since the coherence time corresponding toK, Σ, and
hd is much larger than the coherence time corresponding tohr.

In order to fix our optimal training sequence selection issue, the
derivations and the optimization of the average CRB will be done
under the following asymptotic regime: we first assume that the
sizeNT of the training sequence tends to infinity, andthenassume
the sizeL of the channel impulse response tends to infinity. The
last assumption is equivalent to assuminglimNT →∞ L/NT = 0
which means thatL ≪ NT . It is worth pointing out that although
our theoretical analysis is based on this asymptotic regime, realis-
tic values forNT andL are used in the simulation section.

When the number of available observationsNT is much greater
than the number of unknown parameters(L + 1), it is well known
that the Bayesian approach which takes into account the statistical
model of the parameters (e.g., the Maximum A Posteriori based
algorithm) does not provide significant improvement compared to
the deterministic approach (e.g., the Maximum Likelihood based



algorithm). In the case of asymptotic regime, the performance of
the Maximum Likelihood based algorithm is described by the de-
terministic Cramer-Rao bound [3, 4] associated with the joint es-
timation of the CFO and the channelh. Therefore the use of the
deterministic Cramer-Rao bound averaged over channel statistics
as our criterion is well motivated.

The paper is organized as follows: in Section 2, we introduce
the CRB associated with CFO and we derive its average over the
channel statistics under the asymptotic regime. In Section3, we
show that the average CRB can be approximated by a convex func-
tion with respect to the training sequence spectrum. Section 4
presents simulations results which illustrate the merits of the pro-
posed method.

2. CRITERION EVALUATION

The CRB associated with CFO depends on the training sequence.
Consider the training sequence as a realization of a zero-mean sta-
tionary random sequence. Then, whenNT is large and when the
channelh is unknown at the receiver and has to be estimated too,
the CRB for the CFO can be expressed as a function of the second-
order statistics of the training sequence (cf. [5]). This CRB is
given by [5]

γ(f‖h fixed and unknown) =
3σ2

2π2N3

T

1

hHRth
(3)

where Rt is the L-dimensional covariance matrix defined by
{r(k − l)}k,l=0,··· ,L−1 with r(k − l) = E[t(n + k)t(n + l)].

Our goal consists of selecting the correlation matrix that min-
imizes the CFO estimation error. Obviously, minimizing Eq.(3)
with respect toRt leads to an optimal color for the training se-
quence depending on the channel realization. This is unrealistic in
practical systems since the channel is unknown. Therefore,we
now focus on the expectation of the term (3) over the channel
statistics. The resulting function, which will be our optimization
criterion, only depends on the training sequence statistics and on
the channel statistics and is defined as follows

J(Rt) = sEh

»

1

hHRth

–

with s =
3σ2

2π2N3

T

. (4)

We would like to obtain a closed form expression forJ(Rt). Such
an expression is given in the next theorem.

Theorem 1 LetJ(Rt) be given by Eq. (4). IfL is large, we have
that

J(Rt) ≈ s(K + 1)
Tr(RtÃ)

(Tr(RtÃ))2 − Tr(RtB̃RtC̃)
(5)

where

Ã = Σ + Khdh
H

d

B̃ = Σ

C̃ = Σ + 2Khdh
H

d ,

and where Tr(.) stands for the Trace operator.

Proof– First of all, we writehH
Rth as a linear combination of

non-central chi-square distribution. Let

xd = R
1/2

t

r

K

K + 1
hd and xr = R

1/2

t

r

1

K + 1
hr

Let Rx = E[xrx
H

r ] be the autocorrelation matrix ofxr. The
matrix can be diagonalized as follows

Rx = UΛU
H

whereU is an unitary matrix in which are stacked the eigenvectors
of Rx and whereΛ = diag(λ1, · · · , λL) with λk being thekth

eigenvalue ofRx. Let x̃d andx̃r be the following vectors

x̃d = Λ
−1/2

U
H
xd and x̃r = Λ

−1/2
U

H
xr.

x̃d is a deterministic vector whereas̃xr is a circularly Gaussian
distributed vector with zero-mean and unit-variance. Thenwe get

ξ = h
H
Rth =

L
X

k=1

λk|x̃d(k) + x̃r(k)|2

wherex̃d(k) and x̃r(k) are thekth component of̃xd and x̃r re-
spectively.

Secondly, it is well known ([6] and references therein) thata
weighted sum of non-central chi-square distribution of twodegres
of freedom can be well approximated by a central Gamma distribu-
tion. LetpG(t) be a Gamma distribution with standard parameters
(p1, p2). Then we get

pG(t) =
pp2

1

Γ(p2)
tp2−1e−p1t

1t≥0

Notice that the mean (resp. variance) of a Gamma distribution
is given byp2/p1 (resp. p2/p2

1). WhenL is large enough, the
distribution of random variableξ is close to that of a Gamma dis-
tribution of parameters(p1, p2) such that

p2/p1 = E[ξ]

p2/p2

1 = E[(ξ − E[ξ])2]

After straightforward but tedious algebraic manipulations, we ob-
tain

p1 =

PL
k=1

λk(1 + |x̃d(k)|2)
PL

k=1
λ2

k(1 + 2|x̃d(k)|2)
(6)

p2 = p1

L
X

k=1

λk(1 + |x̃d(k)|2) (7)

Thirdly, it remains to evaluate the expectation of1/ξ whenξ is
assumed to be Gamma distributed. One can easily check that

E

»

1

ξ

–

≈
Z ∞

0

1

t
pG(t)dt =

p1

p2 − 1

Thanks to Eqs (6)-(7), one can check thatp2 is larger than1.
Finally, we need to evaluatep1 andp2 with respect to the chan-

nel statistics(K, hd,Σ) and the training correlation matrixRt.
For doing that, recall that

x̃d = Λ
−1/2

U
H
R

1/2

t

r

K

K + 1
hd



which implies that

L
X

k=1

λk|x̃d(k)|2 =
K

K + 1
h

H

d Rthd

and
L

X

k=1

λ2

k|x̃d(k)|2 =
K

(K + 1)2
h

H

d RtΣRthd.

AsΛ represents the diagonal matrix of eigenvalues ofRx, we have

L
X

k=1

λk = Tr(Rx) =
1

K + 1
Tr(RtΣ)

and
L

X

k=1

λ2

k = Tr(R2

x) =
1

(K + 1)2
Tr(RtΣRtΣ)

which concludes the proof.�
The expression provided in Theorem 1 is an extension of the

one reported in [2] for the iid Rayleigh channel case (whenK = 0
andΣ = (1/L)IdL). Given the expression ofJ(Rt), the op-
timization problem associated with the minimization of Eq.(5)
with respect to the matrixRt subject to power constraint seems
to be intractable in closed-form. In next section, we will however
see that under the asymptotic regime,J(Rt) can be well approx-
imated by a convex function. This implies that our problem boils
down to a standard convex optimization issue.

3. CRITERION OPTIMIZATION

By simplifying Eq. (5), the proposed criterion gives rise toa con-
vex optimization problem for which we are able to obtain numeri-
cal solutions for the covariance matrix of the training sequence, or
equivalently its spectrum.

First of all, let us focus on the simplification ofJ(Rt) given by
Eq. (5). WhenL is large, the(L × L) Toeplitz matrixRt can be
almost diagonalized in the Fourier basis [7]. Consequently, we get

Rt = FΛtF
H

whereF is the (L × L) Fourier matrix and whereΛt is a di-
agonal matrix whoselth component is equal to the spectrum of
t at FFT bin l/L. As a consequence,J(Rt) only depends on
λt = [λ1, . . . , λL] and takes the following approximated form,
denoted byλt 7→ Ja(λt),

Ja(λt) = s(K + 1)

PL
l=1

λlall

(
PL

l=1
λlall)2 −

PL
k,l=1

λkλlbklclk

(8)

whereakl, bkl, andckl are the components of thekth row andlth

column of matricesA = F
H
ÃF, B = F

H
B̃F, andC = F

H
C̃F,

respectively.
In next theorem, we show that the criterionλt 7→ Ja(λt) is

convex.

Theorem 2 WhenL is large,Rt 7→ J(Rt) can be replaced with
λt 7→ Ja(λt) defined by Eq. (8). Such a function is convex with
respect toλt as soon asλl ≥ 0 for all l ∈ {1, · · · , L}.

Proof– Instead of proving directly the convexity ofJa(λt), we
prove more easily the convexity ofφ(λt) = −s(K + 1)/Ja(λt).
As Ja is, by construction, positive whatever the matrixRt and as
the inverse function is also convex, the convexity ofφ implies the
convexity ofJa. Therefore we now concentrate onλt 7→ φ(λt)
which can be written as follows

φ(λt) =

PL
k,l=1

λkλlbklclk
PL

l=1
λlall

−
L

X

l=1

λlall

To prove the convexity ofφ(λt), we calculate its Hessian ma-
trix, defined as follows

H =

»

∂2φ(λ1, · · · , λL)

∂λm∂λn

–

m,n=1,··· ,L

After tedious but straightforward algebraic manipulations, we
have

∂2φ

∂λm∂λn
=

1

Sλt

»

bnmcmn + bmncnm

–

− 1

S2

λt

»

2bmmcmmannλm + 2bnncnnammλn

+ amm

L
X

k=1

k 6=n

λk(bkncnk + bnkckn)

+ ann

L
X

k=1

k 6=m

λk(bkmcmk + bmkcmk)

–

+
1

S3

λt

»

2ammann

L
X

k,l=1

λkλlbklclk

–

with Sλt
=

PL
l=1

λlall.
We need to prove that the Hessian matrixH is positive. There-

fore we focus on the following termc = x
T
Hx wherex =

[x1, · · · , xL]T is a real-valued vector of lengthL. Let T =
B ⊙ C

T where⊙ stands for the element-by-element Hadamard
product. We easily obtain that

c =
2

Sλt

»

x
T
Tx− (λT

t Tx + λ
T

t T
T
x)Sx

Sλt

+
(λT

t Tλt)S
2

x

S2

λt

–

with Sx =
PL

l=1
xlall.

SinceB andC are hermitian positive, so isT [8]. As a conse-
quence, we can apply the following Schwartz inequality

|λT

t Tx|2 ≤ (λT

t Tλt)(x
T
Tx)

leading to

c ≥ 2

Sλt

"

√
xTTx−

p

λ
T

t Tλt |Sx|
Sλt

#

2

≥ 0

which concludes the proof.�

Our optimization problem thus is convex since the function to
be minimized is convex and the constraints are also convex

Tr(Rt) =

L
X

l=1

λl = LP and λl ≥ 0, ∀l (9)



To obtain numerical values for optimalλt, we can use a standard
gradient or Newton search algorithm. The convexity of our crite-
rion ensures proper convergence of the latter algorithm.

Notice that minimizing the CRB of the CFO with respect to the
training sequence has been partially treated in the literature. [9] se-
lects the training sequence which minimizes the worst CRB (i.e.,
the maximum of the CRB over all normalized channel realizations)
whereas [2] characterizes the training sequence which minimizes
the average CRB when the channel is assumed to be i.i.d. Rayleigh
(i.e.,K = 0 andΣ proportional to the identity matrix). In both of
the above references, the white training was found to be optimal.
In [10], the training sequence was designed to render the exact (i.e.
finite-sample) CRB of the CFO independent of the channel zeros.
The developed design was shown to outperform the white training
design when the length of the training sequence is small/moderate.
For a large training sequence, the white sequence is still optimal
when considering the criterion in [10]. Here we have derivedthe
training sequence minimizing the average CRB when the channel
is assumed to be Rice whatever the ricean factorK, the determin-
istic parthd and the color of the random partΣ. We have shown
that white training may be far from being optimum.

In practice, a training sequence with optimal power spectrum
λt can be generated as the output of a digital filter with relevant
coefficients excited by a known white sequence. The generation of
this optimal training sequence can be achieved without any addi-
tional computational complexity compared to a traditional(white)
training sequence since the above filter has to be evaluated only
when the channel statistics vary.

4. SIMULATIONS

Unless otherwise stated, we setNt = 50, L = 5, and SNR=10dB.
The carrier frequency offset is fixed tof = 0.1. All simulated
points are averaged over1000 Monte-Carlo runs for which we
have modified the deterministic and random part of the channel.
We assume that the correlation between two tapsk and l of the
channel impulse response is given byρ|k−l| whereρ ∈ [0, 1).

In Figure 1, we compare the CRB given by Eq. (4) with its
approximation provided by Eq. (8) versusL. We have considered
Rt = IdL, λt = diag(IdL), K = 2, ρ = 0.75. We remark
that the approximation is tight enough since both curves areclose
to each other even for small value ofL. This implies that the best
training sequence deduced from the optimization done on Eq.(8)
is still relevant for the original problem characterized byEq. (4).

In Figure 2, we plot the approximate CRB versusK for uncorre-
lated channel (ρ = 0) and with white or optimal training sequence.
We observe that for smallK the white sequence is almost optimal.
However, as soon asK is larger than3, it is preferable to choose
a training sequence different from the white one to estimatemore
accurately the frequency offset.

In Figure 3, we displayλt the spectrum of the optimal train-
ing sequence associated with one specific realization ofhd. The
Ricean factor is fixed toK = 10. We observe that the energy
of the spectrum is concentrated on the frequency maximizingthe
spectrum ofhd. We remind that, if the channelh is perfectly
known at the transmitter, the spectrum of the optimal training se-
quence is a spectral line at the frequency maximizing the spectrum
of h. Consequently, whenK is large enough, the choice of the
optimal training sequence spectrum can be done in a similar way
but based onhd instead ofh.

In Figure 4, we still displayλt the spectrum of the optimal
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training sequence associated with one specific realizationof hd

but with a low Ricean factorK = 2. In such a case,hd does not
provide enough information abouth. To avoid frequency fading of
h, the optimal training sequence is thus spread over all FFT bins.

In Figure 5, we plot the approximate CRB versusρ for a
Rayleigh channel (K = 0). The gain in performance is of interest
for ρ > 0.5. The correlation thus needs to be strong to observe a
difference between optimal training and white training.

In Figure 6, we displayλt the spectrum of the optimal training
sequence for Rayleigh channel withρ = 0.5. We also plot the
mean channel spectrum given byν 7→ E[|h(ν)|2]. We remark that
the optimal training sequence spectrum has a shape similar to the
mean spectrum which concentrates its energy at low frequencies.

5. CONCLUSION

We have inspected the training sequence design issue for carrier
frequency offset estimation in the context of frequency-selective
channel when the channel impulse response is assumed to be Rice-
distributed with arbitrary correlation. As a criterion, wehave cho-
sen the Cramer-Rao bound for the carrier frequency offset, aver-
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aged over the channel statistics. The proposed criterion was sim-
plified under an asymptotic assumption on the length of the train-
ing sequence and the length of the channel impulse response.Then
we proved that the simplified criterion is convex which enables
us to find numerically the optimal training sequence. Simulations
showed that the gain was significant.

6. REFERENCES

[1] V. Erceg et al., ”Channel models for fixed wireless appli-
cations”,IEEE 802.16 broadband wireless access working
group report, July 2001.

[2] H. Minn, X. Fu, and V. Bhargava, ”Optimal periodic train-
ing signal for frequency offset estimation in frequency-
selective fading channels”,IEEE Trans. on Comm., vol. 54,
pp. 1081-1096, Jun. 2006.

[3] M. Morelli and U. Mengali, ”Carrier frequency estimation
for transmissions over selective channels”,IEEE Trans. on
Comm., vol. 48, pp. 1580-1589, Sep. 2000.

[4] P. Ciblat and L. Vandendorpe, ”On the Maximum-

0 0.2 0.4 0.6 0.8 1
10

−6

10
−5

10
−4

CRB versus rho w.r.t the training sequence for Nt=50, SNR=10dB, and K=0

rho

C
R

B

White TS
Optimal TS

Fig. 5. Approximate CRB versusρ (K = 0)

0 5 10 15 20
0

1

2

3

4

5

6

FFT bin

Training spectrum with K=0, rho=0.5, Nt=50, SNR=10dB

Correlation induced spectrum
Optimal training spectrum

Fig. 6. Optimalλt for ρ = 0.5 andK = 0

Likelihood based data-aided frequency offset and channel
estimates”, inEUSIPCO, Sep. 2002.

[5] P. Stoica and O. Besson, “Training sequence design for fre-
quency offset and frequency-selective channel estimation”,
IEEE Trans. on Comm., vol. 51, pp. 1910-1917, Nov. 2003.

[6] Q.T. Zhang and D.P. Liu, ”A simple capacity formula for
correlated diversity Ricean fading”,IEEE Communications
Letters, vol. 6, issue 11, pp. 481-483 , Nov. 2002.
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