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ABSTRACT

We consider carrier frequency offset (CFO) estimation fogle-
carrier and single-user transmission over a frequen®@cte¢
channel. When training is solely devoted to frequency ssmch
nization, it is important to design the training to optimiZ&O
estimation performance. In this paper we exhibit the trajrée-
guence that minimizes the Cramer-Rao bound associatediveth
carrier frequency offset and averaged over the channestitat
following a correlated Ricean fading channel model. Sirioles
show significant improvements compared to the standarddpseu
random white training sequence.

1. INTRODUCTION

In wireless communication, the transmitted signal is ugugib-
torted by inter symbol interference due to the multipathneieh
and a carrier frequency offset (CFO) caused by a local asaoill
drift or a Doppler effect. In order to retrieve the transerttidata
accurately, the receiver needs to accurately estimate i ahd
the channel. In civil applications, symbols known to theereer,
called training symbols, are sent periodically by the traitier.
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takes the following form

L—1
y(n) = > Im Z h(D)t(n —1) + w(n), (1)
1=0

where f denotes the carrier frequency offset and coefficients
h(0)...h(L — 1) represent the channel coefficients. The train-
ing sequence(0),¢(1),...,t(Nr — 1) with length Nr devoted

to CFO estimation is assumed to be transmitted periodicSiéy
quencew(n) denotes a white complex-valued circular zero-mean
Gaussian noise of variane€ = E[|w(n)|?].

In the sequel, we denote by = [h(0) ... h(L — 1)]T the un-
known channel vector and ty= [¢(0),¢(1) ...t(Nz — 1)]T the
vector of training symbols. The superscrip}™ stands for the
transpose operator.

The channel is assumed to be Rice distributeg

K 1
h= h h,
\/K+1 d+\/K+1

whereh,, also called Line-Of-Sight (LOS) component, is a de-
terministic vector normalized in such a way thit,||> = 1 and
whereh,., also called Non-Line-Of-Sight (NLOS) component, is

)

The training sequence can be employed to estimate the dhannea complex circular Gaussian random vector with zero mean and

and the carrier frequency offset. Often, both parametersti-

mated separately with two different kinds of training semes. In

this paper we focus on the carrier frequency offset estonatihen

the channel is still not a parameter of interest and is unknatv
the receive and transmit sides.

The goal of this paper is to exhibit the “optimal” training-se
guence in the sense of optimizing CFO estimation performanc
Toward this objective, we will minimize the Cramer-Rao bdas-
sociated with the CFO. In order for the solution to be indejeer
of the channel realization, we average the CRB over the @iann
statistics model. In wireless environment, it is standarcoinsider
the channel to be Rice distributed [1]. In the literature, dptimal
training sequence for carrier frequency offset estimalias been
developed in the case of uncorrelated Rayleigh channel If2].
such a case, the best training sequence is white. In this,pape
will see that as soon as the channel has either a deterroipasti
or a correlated random part, the best training sequencd ishite
anymore.

As we consider a single-carrier and single-user commuitsit
scheme, the complex envelope of receive discrete-timakign)
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covariance matri® = E[h,h!], normalized in such a way that
Tr(X) = 1. The superscript.)™ stands for the conjugate trans-
pose operator. Coefficierlt’ is the so-called Ricean factor. We
assume thak(, 3, andh, are known at both the transmitter and
the receiver sides. This assumption is realistic in mosehess
applications since the coherence time correspondirg,t&, and
h, is much larger than the coherence time correspondirg to

In order to fix our optimal training sequence selection issue
derivations and the optimization of the average CRB will bael
under the following asymptotic regime: we first assume that t
size Nt of the training sequence tends to infinity, éhdnassume
the sizeL of the channel impulse response tends to infinity. The
last assumption is equivalent to assumingy, .. L/N7 = 0
which means that < Nr. Itis worth pointing out that although
our theoretical analysis is based on this asymptotic regieadis-
tic values forNy and L are used in the simulation section.

When the number of available observatig¥is is much greater
than the number of unknown parametéfs+ 1), it is well known
that the Bayesian approach which takes into account thistatat
model of the parameters (e.g., the Maximum A Posteriori dbase
algorithm) does not provide significant improvement coredan
the deterministic approach (e.g., the Maximum Likelihoacdx



algorithm). In the case of asymptotic regime, the perforceant
the Maximum Likelihood based algorithm is described by the d
terministic Cramer-Rao bound [3, 4] associated with thetjes-
timation of the CFO and the chanrlel Therefore the use of the
deterministic Cramer-Rao bound averaged over channédtatat
as our criterion is well motivated.

The paper is organized as follows: in Section 2, we introduce
the CRB associated with CFO and we derive its average over the

channel statistics under the asymptotic regime. In Se&jome

show that the average CRB can be approximated by a convex func

tion with respect to the training sequence spectrum. Seetio
presents simulations results which illustrate the mefithe pro-
posed method.

2. CRITERION EVALUATION

Proof— First of all, we writth™ R h as a linear combination of
non-central chi-square distribution. Let

[ 1
and XT:R%N K—-‘rlhr

Let R, = E[x,.x!] be the autocorrelation matrix of.. The
matrix can be diagonalized as follows

K
xa = R}/ Kri™

R, = UAU"Y

whereU is an unitary matrix in which are stacked the eigenvectors
of R, and whereA = diag(\y, - - -, Ar) with A, being thek™
eigenvalue oR .. Letx,; andx, be the following vectors

%q = A*U%x, and %, = A7Y?U",.

%4 is a deterministic vector whereas. is a circularly Gaussian

The CRB associated with CFO depends on the training sequencediStfibUtEd vector with zero-mean and unit-variance. Therget

Consider the training sequence as a realization of a zeemisia-
tionary random sequence. Then, wh¥m is large and when the

channelh is unknown at the receiver and has to be estimated too,
the CRB for the CFO can be expressed as a function of the second

order statistics of the training sequence (cf. [5]). ThisBCR
given by [5]

2
~(f|Ih fixed and unknown) = 30 L

N ERE O

where R, is the L-dimensional covariance matrix defined by
{r(k = D}k,i=0,.., .1 Withr(k — 1) = E[t(n + k)t(n + 1)].

Our goal consists of selecting the correlation matrix that-m
imizes the CFO estimation error. Obviously, minimizing Eg)
with respect toR: leads to an optimal color for the training se-

guence depending on the channel realization. This is ustieah
practical systems since the channel is unknown. Therefoee,

L
¢ =h"Rih = \lda(k) + 2 (k)|
k=1

wherez,(k) andz, (k) are thek™ component ofk; andx, re-
spectively.

Secondly, it is well known ([6] and references therein) that
weighted sum of non-central chi-square distribution of tegres
of freedom can be well approximated by a central Gamma blistri
tion. Letpc(t) be a Gamma distribution with standard parameters
(p1,p2). Then we get

pzfz 1 t

1) = —t""e

pG( ) F(pQ) t>0

Notice that the mean (resp. variance) of a Gamma distributio
is given byps/p1 (resp. p2/p1). When L is large enough, the
distribution of random variablg is close to that of a Gamma dis-

now focus on the expectation of the term (3) over the channel tribution of parameterép:, p2) such that

statistics. The resulting function, which will be our opization
criterion, only depends on the training sequence stagisticl on
the channel statistics and is defined as follows

302
2m2N3

1
hfiR:h

J(Rt) = sEn { ] with s = (4)

We would like to obtain a closed form expression J¢R..). Such
an expression is given in the next theorem.

Theorem 1 LetJ(R:) be given by Eq. (4). IL is large, we have
that

. Tr(R:A)
J(R:) =~ s(K + 1) (Tr(RtA))2 _ Tr(RtBRtC)

®)

where

= X+ Khghl
b))
S + 2KhghY,

O M B
\

and where T¢.) stands for the Trace operator.

E[¢]
E[(¢ — E[¢])?]

After straightforward but tedious algebraic manipulasipwe ob-
tain

p2/p1
2
p2/pi =

Siems M (1 + [Za(k)1?)
S A1+ 2Za(R)[)

> AL+ [Ea(R))

k=1

p1 = (6)

p2 = (7)

Thirdly, it remains to evaluate the expectationl@gf when¢ is
assumed to be Gamma distributed. One can easily check that

1 <1 p1
E|lx|~ “pa(t)dt = ——
[f] /o 72t p2—1
Thanks to Eqgs (6)-(7), one can check thats larger thanl.
Finally, we need to evaluaf® andp, with respect to the chan-

nel statistics( K, hq, ¥) and the training correlation matriR..
For doing that, recall that

K

% — A-V2UHRY/2
Xd t VK1

hg




which implies that

L K
> Mlza(k)® = K—_thRthd
k=1
and
L K "
2~ 2
;Akkl'd(k) = mhd RtERthd.
As A represents the diagonal matrix of eigenvalueR.gf we have
< 1
> M =Tr(R,) = 71 TRe)
k=1
and
1
2
Z)\k Tr(R2) = &P Tr(R:ZR:X)

which concludes the prooll

The expression provided in Theorem 1 is an extension of the

one reported in [2] for the iid Rayleigh channel case (Whee- 0
andX = (1/L)Id.). Given the expression of (R:), the op-
timization problem associated with the minimization of E&)
with respect to the matriR: subject to power constraint seems
to be intractable in closed-form. In next section, we wilWewer
see that under the asymptotic regindéR:) can be well approx-
imated by a convex function. This implies that our probleniso
down to a standard convex optimization issue.

3. CRITERION OPTIMIZATION

By simplifying Eq. (5), the proposed criterion gives riseataon-
vex optimization problem for which we are able to obtain ntime
cal solutions for the covariance matrix of the training suee, or
equivalently its spectrum.

First of all, let us focus on the simplification g{R:) given by
Eqg. (5). WhenL is large, the(L x L) Toeplitz matrixR.; can be
almost diagonalized in the Fourier basis [7]. Consequewiyget

R; = FA,F"
whereF is the (L x L) Fourier matrix and wheré\; is a di-

agonal matrix whosé™ component is equal to the spectrum of
t at FFT binl/L. As a consequence/(R:) only depends on

At = [A1,...,Ar] and takes the following approximated form,
denoted byA; — Jo(At),
L
A
Ja(Ae) = s(K +1)—7 2oimy M 8)
(i daun)? = 320 =y AeAibricu

whereay;, br;, andey,; are the components of thé® row andi*®
column of matriceA = FPAF, B = FEBF, andC = FECF,
respectively.

In next theorem, we show that the criteridp — Jo(A¢) is
convex.

Theorem 2 WhenL is large,R; — J(R.) can be replaced with
At — Ja(A¢) defined by Eq. (8). Such a function is convex with
respect to\; as soon as\, > Oforalll € {1,---, L}.

Proof— Instead of proving directly the convexity Of (A¢), we
prove more easily the convexity ¢{A;) = —s(K + 1)/Ja(Ar).

As J, is, by construction, positive whatever the mafx and as
the inverse function is also convex, the convexityspamplies the
convexity of J,. Therefore we now concentrate dn +— ¢(A¢)

which can be written as follows

L L
> k=1 A Aibricik
S
1=1 MU =1

To prove the convexity op(A:), we calculate its Hessian ma-
trix, defined as follows

2
g = |20 Ar)
8)\ma)‘n m,n=1,---,L

d(Ae) =

After tedious but straightforward algebraic manipulasipwe
have

0% 1
Ry S { Cmn D ]
- % |:2bmmcmmannAm + 2bnnCrnGmmAn
S3,

L
+  amm Z M (benCnk + brkcrn)

k=1
k#n

L
+ Ann Z )\k (bkmcmk + bmkcmk):|

k=1
k#m
+ 1 20mma z A Aibric
Sit mmUnn kAIOKICLE
k=1
with Sx, = S5, Nau.

We need to prove that the Hessian mafkixs positive. There-
fore we focus on the following term = xTHx wherex =
[£1,---,2L]T is a real-valued vector of length. Let T =
B & C” where® stands for the element-by-element Hadamard
product. We easily obtain that

2
Sx,

(AFTx + A T x)Sx
Sx,

(AfTA,)S2
53,

T
c= x Tx —

with Sx = Zle Tiay.
SinceB andC are hermitian positive, so [¥ [8]. As a conse-
guence, we can apply the following Schwartz inequality

IALTx|? < A/ TA)(x Tx)
leading to
2
T
m_ \/At T)\t'Sx| >0
At At

which concludes the prod
Our optimization problem thus is convex since the function t
be minimized is convex and the constraints are also convex

L
- Z)‘l -
=1

LP and X\ >0, VI 9)



To obtain numerical values for optimal, we can use a standard
gradient or Newton search algorithm. The convexity of oiteer
rion ensures proper convergence of the latter algorithm.

Notice that minimizing the CRB of the CFO with respect to the
training sequence has been partially treated in the litezaf9] se-
lects the training sequence which minimizes the worst CRB, (i
the maximum of the CRB over all normalized channel realire)
whereas [2] characterizes the training sequence whichnmiies
the average CRB when the channel is assumed to be i.i.d. iBlayle
(i.e., K = 0 andX proportional to the identity matrix). In both of
the above references, the white training was found to benapbti
In [10], the training sequence was designed to render the @
finite-sample) CRB of the CFO independent of the channelszero
The developed design was shown to outperform the whiteitigin
design when the length of the training sequence is smallénatel.
For a large training sequence, the white sequence is stithap
when considering the criterion in [10]. Here we have deritrezl
training sequence minimizing the average CRB when the @iann
is assumed to be Rice whatever the ricean faiipthe determin-
istic parth, and the color of the random pag. We have shown
that white training may be far from being optimum.

In practice, a training sequence with optimal power spectru
A: can be generated as the output of a digital filter with relevan
coefficients excited by a known white sequence. The gewerafi
this optimal training sequence can be achieved without aay- a
tional computational complexity compared to a traditiofwethite)
training sequence since the above filter has to be evaluatgd o
when the channel statistics vary.

4. SIMULATIONS

Unless otherwise stated, we 9éf = 50, L = 5, and SNR=10dB.
The carrier frequency offset is fixed tb = 0.1. All simulated
points are averaged ovén00 Monte-Carlo runs for which we
have modified the deterministic and random part of the cHanne
We assume that the correlation between two ta@sd! of the
channel impulse response is givend§~"! wherep € [0,1).

In Figure 1, we compare the CRB given by Eq. (4) with its
approximation provided by Eq. (8) versiis We have considered
R: = Id;, A+ = diagId.), K = 2, p = 0.75. We remark
that the approximation is tight enough since both curveslase
to each other even for small value bf This implies that the best
training sequence deduced from the optimization done on(&q.
is still relevant for the original problem characterizedty. (4).

In Figure 2, we plot the approximate CRB verdtigor uncorre-
lated channeld = 0) and with white or optimal training sequence.
We observe that for smalt’ the white sequence is almost optimal.
However, as soon &k’ is larger thars, it is preferable to choose
a training sequence different from the white one to estimaiee
accurately the frequency offset.

In Figure 3, we display\: the spectrum of the optimal train-
ing sequence associated with one specific realizatidn;ofThe
Ricean factor is fixed td{ = 10. We observe that the energy
of the spectrum is concentrated on the frequency maximittiag
spectrum ofh,;. We remind that, if the channdi is perfectly
known at the transmitter, the spectrum of the optimal trajrse-
quence is a spectral line at the frequency maximizing thetgjra
of h. Consequently, whelk is large enough, the choice of the
optimal training sequence spectrum can be done in a simagr w
but based o, instead ofh.

In Figure 4, we still display\: the spectrum of the optimal

15 x 10" CRB and its approximation with K=2, rh0=0.75, SNR=10dB
. T

CRB via Eq. (4)

—©— Approximate CRB via Eq. (8)
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Fig. 2. Approximate CRB versu& (p = 0)

training sequence associated with one specific realizatidn,
but with a low Ricean factol = 2. In such a caséy; does not
provide enough information aboklt To avoid frequency fading of
h, the optimal training sequence is thus spread over all FRS. bi

In Figure 5, we plot the approximate CRB verspsfor a
Rayleigh channelX = 0). The gain in performance is of interest
for p > 0.5. The correlation thus needs to be strong to observe a
difference between optimal training and white training.

In Figure 6, we display\; the spectrum of the optimal training
sequence for Rayleigh channel wjth= 0.5. We also plot the
mean channel spectrum given by— E[|h(v)|?]. We remark that
the optimal training sequence spectrum has a shape simithet
mean spectrum which concentrates its energy at low fredegnc

5. CONCLUSION

We have inspected the training sequence design issue foercar
frequency offset estimation in the context of frequendecére
channel when the channel impulse response is assumed tode Ri
distributed with arbitrary correlation. As a criterion, Wwave cho-
sen the Cramer-Rao bound for the carrier frequency offser- a
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aged over the channel statistics. The proposed criteriansiva-
plified under an asymptotic assumption on the length of thi@r
ing sequence and the length of the channel impulse respdhee.
we proved that the simplified criterion is convex which eeabl
us to find numerically the optimal training sequence. Sithoies
showed that the gain was significant.
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