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Abstract— One of the main task to be done by a cognitive
receiver is to sense its spectral environment in order to dis-
tinguish surrounding systems from each others. Actually most
systems (such as WiMAX, WiFi, DVBT) are based on OFDM
modulations but differ from their intercarrier spacing use d in
OFDM modulation. Therefore carrying out accurate intercarrier
spacing estimator is a crucial step in cognitive radio. In this paper,
we propose a new efficient algorithm to estimate the intercarrier
spacing based on maximum-likelihood principle. Its performance
is analysed through numerical simulations and compared to
standard existing approaches.

I. I NTRODUCTION

The underlying idea for cognitive radio concept firstly intro-
duced by [1] consists in carrying out terminal which is able to
modify its transmission parameters and even its used system
with respect to its own electro-magnetic environment. There-
fore, first of all, a terminal based on cognitive radio concept
needs to characterize its spectral environment and to recognize
the standard used by others cognitive terminals/access points
blindly. Most popular standards (e.g. WiFi [2], WiMAX [3],
DAB [4], DVB-T [5], 3GPP/LTE [6]) are now based on OFDM
modulations. However the value of their intercarrier spacing
enables to distinguish them form each others. Indeed the inter-
carrier spacing is equal to15.625kHz, 10.94kHz, 312.5kHz,
1kHz 1.116kHz, 15kHz for Fixed WiMAX, Mobile WiMAX,
WiFi, DAB, DVBT, 3GPP/LTE respectively. Consequently
estimating the inter-carrier spacing of an OFDM modulated
signal is equivalent to identifying the used standard. Thispaper
thus addresses blind estimation issue of intercarrier spacing for
OFDM signal. Obviously, the proposed estimation algorithm
also applies to military contexts.

The estimation of the intercarrier spacing for OFDM signal
has already given rise to several contributions [7], [8], [9], [10],
[11]. All these methods are developed in the context of cyclic-
prefixed OFDM and are based on the second-order statistics.
Actually the useful time of the OFDM symbol (which is
equal to the inverse of the intercarrier spacing) is estimated by
detecting the main peak of the autocorrelation function of the
received signal. Indeed, as cyclic prefix occurs, a peak occurs
at the lag equal to the useful time of the OFDM symbol. When
the ratio between cyclic prefix and OFDM symbol duration is
small or when the multipath propagation channel is almost as
large as the cyclic prefix, the autocorrelation based approach
does not work well or even falls down. Obviously, under
one out of these two assumptions, the peak magnitude of

the autocorrelation at lag equal to the inverse of intercarrier
spacing is significantly reduced.

In this paper, we propose to estimate the intercarrier spacing
on relying on Maximum Likelihood principle. As no training
sequence may be available, we concentrate on Non-Data
Aided estimation technique. Then one can define a number
of Maximum Likelihood estimators [12]. Here we focus on
the so-calledDeterministicMaximum Likelihood (DML) and
GaussianMaximum Likelihood (GML). Though more com-
plex, these Maximum-Likelihood based methods are robust
to small length cyclic prefix and multipath environment in
opposition to autocorrelation based method. It can also be
suitable for time synchronization.

This paper is organized as follows: in Section II, we describe
the receive signal model thanks to matrix framework. Section
III is dedicated to the introduction of the cost functions (based
on the Maximum Likelihood). We also introduce simplified
criteria. For sake of simplicity, novel algorithms are developed
in Gaussian channel context. Section IV is devoted to numer-
ical simulations. We especially inspect the robustness of our
proposed algorithms to the presence of small cyclic prefixes,
or of multipath channels, or of timing offset. Comparison with
autocorrelation based method is also drawn.

II. SIGNAL MODEL

In additive white Gaussian channel, we consider that the
continuous-time OFDM receive signal takes the following
form

ya(t) =
1√
N

K−1∑

k=0

N−1∑

n=0

ak,ne−2iπ
n(t−DTc−kTs)

NTc ga(t − kTs)

+ ba(t) (1)

where N is the number of subcarriers and where1/Tc is
the information symbol rate in absence of guard interval. The
intercarrier spacing is then equal to1/NTc. The length of the
cyclic prefix is set toDTc. The duration of a whole OFDM
symbol isTs = (N+D)Tc. The sequence{ak,n}k,n represents
the transmit unknown data symbols at subcarriern and OFDM
block k. The shaping filterga(t) is assumed to be equal to1
if 0 ≤ t < Ts and 0 otherwise. The complex-valued noise
ba(t) is assumed to be circularly-symmetric zero-mean white
Gaussian noise. Its variance is equal toN0 per real dimension.
Finally we consider the transmission ofK OFDM symbols for



an observation window of durationT0. We haveK = ⌈T0/Ts⌉
where⌈X⌉ stands for the smallest integer not less thanX .

The continuous-time received signalya(t) is sampled at
sampling frequency1/Te where Te is the sampling period.
The ratioq = Tc/Te denotes the sampling factor. The discrete-
time receive signal is denoted byy(m) = ya(mTe). In order to
keep the information carrying by the continuous-time signal,
the sampling frequency must be larger than the OFDM signal
bandwidth, i.e., greater than1/Tc. The number of available
samples is then equal toM = ⌊T0/Te⌋ where⌊X⌋ stands for
the largest integer not greater thanX . We get

y(m) =
1√
N

K−1∑

k=0

N−1∑

n=0

ak,ne−2iπnm
Te

NTc e2iπn(k+1) DTc

NTc

× ga(mTe − k(N + D)Tc) + b(m) (2)

with b(m) = ba(mTe).
In practice, the terminal just has the knowledge of

{y(m)}M−1
m=0 , M , T0, Te and wishes to estimate the values of

N , NTc, DTc. For selecting the used standard, the cognitive
terminal firstly needs the knowledge of the intercarrier spacing,
given by the inverse ofNTc. Notice that, in Eq. (2),K and
ak,n are unknown as well.

We stack all the receive samples in an unique vectory =
[y(0), · · · , y(M−1)]T where(.)T stands for the transposition.
Since Eq. (2) is linear with respect to transmit data, it exists
a matrixHθ of sizeM ×KN depending onN , DTc et NTc

such that

y = Hθa + b (3)

where

• θ = [N, DTc, NTc]
• ak = [ak,0, · · · , ak,N−1]

T of sizeN × 1
• a = [aT

0 , · · · ,aT
K−1]

T of sizeKN × 1
• b = [b(0), · · · , b(M − 1)]T of sizeM × 1

Before going further, we will obtain a closed-form expression
for Hθ. As ga(t) is only non-null on the interval[0, Ts], we
have

0 ≤ mTe − k(N + D)Tc < (N + D)Tc

which implies that

m
Te

(N + D)Tc

− 1 < k ≤ m
Te

(N + D)Tc

.

Consequently, for a givenm, it exists only an unique value of
k, denoted bykm. Hθ is then composed by null components
except the next ones

Hθ(m, kmN + n) =
1√
N

e−2iπnm
Te

NTc e2iπn(km+1) DTc

NTc

for m = 0, . . . , M − 1 andn = 0, · · · , N − 1.
Once this signal model provided, we are able to carry

out Maximum-Likelihood based estimators for parametersN ,
DTc, andNTc. We remind that we are particularly interested
by the estimation ofNTc.

III. M AXIMUM -L IKELIHOOD BASED ALGORITHMS

In blind estimation context, we recall that transmit dataa in-
troduced in Eq. (3) are unknown at the receiver. Consequently
carrying out the true Maximum-Likelihood based estimator of
N , DTc, andNTc is complex since the likelihood ofy given
a, N , DTc, andNTc has to be averaged over the vectora. To
overcome the problem, it is proposed to consider the vector
a as parameters of interest too which leads to the so-called
Deterministic Maximum Likelihood or to consider vectora as
Gaussian (even ifa is not Gaussian vector) which leads to the
so-called Gaussian Maximum-Likelihood [12].

A. Deterministic Maximum-Likelihood approach (DML)

Let p(y|θ̃, ã) be the likelihood ofy given the trial values
θ̃ = [Ñ, D̃Tc, ÑTc] and ã. The deterministic Maximum-
Likelihood is defined as follows [12]

[θ̂, â] = argmax
θ̃,ã

p(y|θ̃, ã)

In practice, the signal bandwidth (given by1/Tc) can be
assumed to be roughly known. This enables us to choose a
reasonnable value for1/Te and also to filter the receive signal
by an ideal low-pass filter of unit-magnitude and bandwidth
1/Tc. This induces that the discrete-time noise has the follow-
ing autocorrelation function

rb(n) = E[b(m + n)b(m)] =
2N0

Tc

sinc

(
πn

q

)
.

The discrete-time noise is not white. In order to simplify
the DML estimator, the discrete-time noise will be however
assumed to be white. Obviously, in simulation part, the noise
process color will not be neglected.

By assuming the noise vectorb uncorrelated and by con-
sideringKN ≤ M , it is well known that the DML estimator
can take the following form [12]

[N̂ , D̂Tc, N̂Tc] = arg min
Ñ, gDTc, gNTc

JD(Ñ , D̃Tc, ÑTc) (4)

with

JD(Ñ , D̃Tc, ÑTc) =
∥∥∥
(
IdM − H

θ̃

(
HH

θ̃
H

θ̃

)
−1

HH
θ̃

)
y

∥∥∥

and where(.)H stands for the conjugate-transposition.
If T0/Ts is an integer, one can prove that

HH
θ̃
H

θ̃
= q̃

(
1 +

D̃Tc

ÑTc

)
IdK̃Ñ . (5)

If T0/Ts is not an integer, the previous equation does not
hold. Nevertheless, in order to remove the matrix inversionin
Eq. (4) and to simplify the DML estimator, we propose an
approximate DML estimator whereHH

θ̃
H

θ̃
is replaced with

q̃(1 + D̃Tc/ÑTc)IdK̃Ñ even if T0/Ts is not an integer. Thus
we obtain

[N̂ , D̂Tc, N̂Tc] = arg min
Ñ, gDTc, gNTc

JAD(Ñ , D̃Tc, ÑTc) (6)



with

JAD(Ñ , D̃Tc, ÑTc) =

∥∥∥∥∥

(
IdM −

H
θ̃
HH

θ̃

q̃(1 + D̃Tc/ÑTc)

)
y

∥∥∥∥∥ .

Notice thatq̃ depends on the trial valuẽθ.

B. Gaussian Maximum-Likelihood approach (GML)

In this subsection, the transmit data vectora is assumed
to be an i.i.d. random vector. Its true power density function
(pdf) is a product of a sum of Dirac distribution for which
the location is given by the used constellation (either PAM or
PSK or QAM). Due to the high complexity of derivations, it is
usual to model the vectora as a circularly-symmetric Gaussian
multivariate process with zero mean and covarianceσ2

a per
real dimension [12]. Then the so-called Gaussian likelihood,
denoted bypg(y|θ̃), can be expressed in closed-form whena

is assumed as above.
Consequently the multivariate processy is circularly-

symmetric Gaussian process with zero mean and covariance
matrix E[yyH] = 2σ2

aHθH
H
θ

+ 2N0IdM and yields the
following likelihood

pg(y|θ̃) =
1

(2π)M det
(
2σ2

aHθ̃
HH

θ̃
+ 2N0IdM

)

× e−
1
2yH(σ2

a
H

θ̃
HH

θ̃
+N0IdM)

−1
y

Let Id and A be the identity matrix and an other matrix
compatible in size respectively. We remind thatdet(Id +
AAH) = det(Id+AHA) and(Id+AAH)−1 = Id−A(Id+
AHA)−1AH. This leads to

pg(y|θ̃) ∝ 1

det
(
2σ2

aH
H
θ̃
H

θ̃
+ 2N0IdK̃Ñ

)

× e
σ
2
a

N0
yHH

θ̃(2σ2
a
HH

θ̃
H

θ̃
+2N0IdK̃Ñ)−1

HH
θ̃
y

As maximizing pg(y|θ̃) is equivalent to minimizing
− log pg(y|θ̃), we get

[N̂ , D̂Tc, N̂Tc] = arg min
Ñ, gDTc, gNTc

JG(Ñ , D̃Tc, ÑTc)

with

JG(Ñ , D̃Tc, ÑTc)= log(det(2σ2
aH

H
θ̃
H

θ̃
+ 2N0IdK̃Ñ ))

− σ2
a

2N0
yHH

θ̃

(
σ2

aH
H
θ̃
H

θ̃
+N0IdK̃Ñ

)
−1

HH
θ̃
y.

Notice thatK̃ depends on the trial valuẽθ. Similar estimator
has been already introduced by [13] in the context of symbol
period estimation for single carrier modulated signal.

Once again, if Eq. (5) holds, the GML estimator can be well
approximated by

[N̂ , D̂Tc, N̂Tc] = arg min
Ñ, gDTc, gNTc

JAG(Ñ , D̃Tc, ÑTc)

with

JAG(Ñ , D̃Tc, ÑTc) = K̃Ñ ln(2σ2
aq̃(1 +

D̃Tc

ÑTc

) + 2N0)

− (σ2
a/N0)

2(σ2
aq̃(1 +

gDTc

gNTc

) + N0)
yHH

θ̃
HH

θ̃
y.

Notice thatq̃ and K̃ depend on the tested parametersθ̃. So,
as done in [13], the first term of the RHS can not be removed.
Moreover Signal-to-Noise Ratio (provided byσ2

a/N0) has to
be estimated prior to computing GML estimators.

IV. SIMULATIONS

This section is devoted to numerical simulations in order
to evaluate the performance and the merit of proposed algo-
rithms. Except otherwise stated, the number of carriers (N )
is fixed to64, the ratio between the cyclic prefix length over
the useful OFDM symbol time (CP := D/N ) is equal to1/8.
The duration of the useful part of OFDM symbol (NTc) is
64µs. The number of available OFDM symbols (T0/Ts) is 5.
The sampling rateTe is chosen asTe = Tc/2, i.e., q = 2.

In practice, the receive continuous-time signal is not only
disturbed by additive white Gaussian noise but also by mul-
tipath propagation continuous-time channel for which the
dispersion time is denoted byTd. Actually the receive discrete-
time signal, now denoted bỹy(m), can be modeled as

ỹ(m) =

L∑

ℓ=0

hℓx(m − ℓ) + b(m)

wherex(m) is the noiseless part ofy(m) defined by Eq. (2)
and whereL = ⌈Td/Te⌉. Each component of channel impulse
response is assumed to be Gaussian distributed with zero mean
and same variance. Then each channel realization is normal-
ized. Unless otherwise stated, the continuous-time channel
dispersion time is fixed to be a quarter of the cyclic prefix
duration, which means thatTd/DTc = 1/4. No frequency
offset has been considered. We firstly assume that the terminal
is perfectly time-synchronized. Each curve is averaged over
1000 Monte-Carlo runs. The SNR is defined asσ2

a/N0 and
fixed to 10dB.

As our practical issue related to cognitive radio consists
in operating system identification, we are only interested to
the estimation accuracy ofNTc. Therefore, in the sequel,
the performance onN and DTc is omitted. Actually we
have observed that performance onNTc, DTc, or N always
yields close performance. In addition, identifying the right
system (WiMAX, WiFi, DAB, DVB-T or 3GPP/LTE, etc)
boils down to comparingN̂Tc to its theoretical value for
each considered system. Since the smallest gap between two
inter-carrier spacing values is little larger than1% (cf. Section
I), we do not need a tight estimation ofNTc but we only
need an estimation of1/NTc up to 1%. Consequently rather
than considering the Mean Square Error as usually done in
estimation issue, we prefer considering the detection rate
defined as follows: we assert that the inter-carrier spacing
estimation is correct if1/N̂Tc is close to1/NTc up to 1%.



In practice, to obtainN̂Tc, we have calculated the cost
function for each trialÑTc belonging to the grid of step
0.64µs starting at 25µs and ending at100µs. This leads
to a gap equal to1% between two adjacent tested inter-
carrier spacing compared to the true value64µs. For each
considered value of̃NTc, D̃Tc takes values in the set̃NTc ×
{1/2, 1/4, 1/8, 1/16, 1/32}, and Ñ takes its value in the set
{256, 128, 64, 32}. Finally the performance has been evaluated
as the number of wrong detection, i.e. the number of realiza-
tions for which theN̂Tc is different fromNTc up to 0.64µs.

In Figure 1, we display the wrong detection rate for pro-
posed algorithms and autocorrelation based method (denoted
by COR) versusCP in AWGN context (i.e.,Td = 0). We
remark that ifCP is equal to1/4, proposed algorithms and
autocorrelation based algorithm offer the same performance.
In contrast, our algorithms are more robust to small values
of CP. For instance AGML and ADML algorithm still work
well in absence of cyclic prefix. Notice that standardCP varies
from 1/32 (DVB-T in France) to1/4 (WiFi). Consequently,
our proposed algorithms are more appropriate for the cog-
nitive radio than the autocorrelation based method. Indeed,
autocorrelation method does not enable system identification
if encountered systems employ small cyclic prefix as done in
DVB-T and some Wimax configurations.
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Fig. 1. Wrong detection rate vs.CP

In Figure 2, we plot the wrong detection rate versusTd/DTc

for proposed algorithms and autocorrelation based method.We
oberve that our algorithms are more robust to the presence of
multipath channels. For instance, even if the channel impulse
response lies on the entire cyclic prefix, DML, GML and
AGML still perform well. In contrast, the autocorrelation
based method falls down as soon as the continuous-time chan-
nel length is more thanDTc/10. Notice that the performance
of the autocorrelation based method in previous-cited papers
is usually evaluated by numerical simulations withCP = 1/4
and AWGN which prevents to show these drawbacks.

In Figure 3, we plot the wrong detection rate versus SNR
for proposed algorithms and autocorrelation based method.As
CP = 1/8 and Td/DTc = 1/4, the autocorrelation based
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Fig. 2. Wrong detection rate vs.Td/DTc

method fails whatever the SNR. Proposed algorithms (espe-
cially, GML, and AGML) are able to offer good performace
even at low SNR such as0dB.
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Fig. 3. Wrong detection rate vs.SNR

In Figure 4, we analyse the wrong detection rate versus
T0/Ts for proposed algorithms and autocorrelation based
method. Once again, asCP = 1/8 and Td/DTc = 1/4, the
autocorrelation based method fails whatever the observation
window length. In contrast, proposed algorithms (especially,
GML, and AGML) yield interesting performance even when
one OFDM symbol is available. We remark that in four
already-introduced figures, the Gaussian ML algorithms are
better than the Deteministic ones. Morever, the AGML is better
than GML and easier to be computed since it does not require
matrix inversion.

We now consider that the receive signal is not time-
synchronized that is to say that the beginning of the receive
signal does not coincide with the beginning of an OFDM
symbol. Then the receive signalỹ(m) takes the following form

ỹ(m) =

L∑

ℓ=0

hℓx(m − ℓ − τ) + b(m).

In Figure 5, we inspect the wrong detection rate versusτ/Ts
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Fig. 4. Wrong detection rate vs.T0/Ts

for proposed algorithms and autocorrelation based method in
AWGN context (Td = 0). Our algorithms are just slightly
robust to time offset. As it is well-known, the autocorrelation
is insensitive to time offset. Consequently to carrying out
proposed algorithms, we need either implementing a prior
time-synchronisation or adding parameterτ to the parameters
of interestθ.
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Fig. 5. Wrong detection rate vs.τ/Ts

In Figure 6, we modify our algorithms by considering the
vector of parametersθ = [N, DTc, NTc, τ ]. We plot the
performance of proposed algorithms and autocorrelation based
method versus SNR when the signal is time-desynchronized
and when the channel is AWGN. Compared to Figure 3 (done
in frequency-selective channel context and not in AWGN con-
text), we observe that our algorihms are now insensitive to mis-
synchronisation. In return, we have increased the complexity
of our algorithms.

We now consider that the received signal is not perfectly in
baseband. Consequently the receive signal writes as

ỹ(m) = e2iπ∆fm

L∑

ℓ=0

hℓx(m − ℓ) + b(m)

where∆f is the so-called frequency offset. Due to the lack
of space, we do not display the associated figures. Actually
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Fig. 6. Wrong detection rate vs. SNR in time-missynchronisation context

we have observed that our algorithms are once again very
sensitive to frequency offset whereas autocorrelation based
method performance is independent of frequency offset. As
done in time-missynchronisation context, the frequency offset
has to be added into the vector of parameters of interest.

V. CONCLUSION

In this paper, we proposed new ML based algorithms.
Their performance has been evaluated by means of numerical
simulations. We showed that new methods outperform auto-
correlation based method in some useful contexts.
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