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Abstract

In this paper, we investigate the issue of power con-
trol and sub-carrier assignment in a downlink OFDMA
system. We assume that a certain part of the available
bandwidth is likely to be reused by the different base
stations (and is thus subject to multicell interference)
and that the other part of the bandwidth is shared in
an orthogonal way between them (and is thus protected
from multicell interference). Although this problem of
multicell resource allocation is non-convex, we provide,
in the limit of large number of users, the general form
of its global solution. As a byproduct, we characterize
the optimal value of the frequency reuse factor.

1. Introduction

In this paper, we consider the problem of resource
allocation in the downlink of cellular OFDMA system
with imperfect channel state information at the Base
Station (BS) side. In the literature, most works on
resource allocation for OFDMA adress the single cell
case, while fewer works address the more complicated
multicell case (e.g [1], [2], [3] and [4]). In this paper,
our aim is to characterize the resource allocation strat-
egy allowing to satisfy all users’ rate requirements while
spending the least power at the transmitters’ side. Sim-
ilarly to [1], we investigate the case where the transmit-
ter CSI is limited to some channel statistics. However,
contrary to [1], our model assumes that a certain part of
the available bandwidth is shared orthogonally between
the adjacent base stations (and is thus “protected”
from multicell interference) while the remaining part
is reused by different base stations (and is thus sub-
ject to multicell interference). Note that this so-called
fractional frequency reuse is recommended in a number
of standards e.g. in [5] for IEEE 802.16 (WiMax). We
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also assume that each user is likely to modulate in each
of these two parts of the bandwidth. Thus, we stress
the fact that i) no user is forced to modulate in a sin-
gle frequency band, ii) we do not assume a priori a
geographical separation of users modulating in the two
different bands (as was the case in [2] and [3]). On the
opposite, we shall demonstrate that such a geographi-
cal separation is actually optimal w.r.t. our allocation
problem in the limit of large number of users.

2. Contributions

The main contributions of this work are: 1. Pro-
viding the form of the optimal solution to the non-
convex OFDMA joint resource allocation problem in
the context of our system model. 2. Characterizing
the asymptotic behavior of the optimal resource allo-
cation when the number of users tends to infinity and
proving the asymptotic optimality of the fractional fre-
quency reuse scheme. 3. Providing a method to calcu-
late optimal (in a certain relevant sense) reuse factors
that can be used during the network design process.

3. System Model

We consider three adjacent 120 ◦ sectors from three
adjacent circular cells, say Cells A,B and C for ex-
ample, as is illustrated by Fig. 1. For each Cell c
(c ∈ {A,B,C}), we denote by Kc the number of users.
The total number of available subcarriers is denoted
by N . For a given user k ∈ 1, 2, . . . ,Kc in Cell c,
we denote by rk the distance that separates him/her
from BS c, and by Nk the set of indices corresponding
to the subcarriers modulated by k (Nk is a subset of
{0, 1, . . . , N − 1}). The signal received by user k at the
nth subcarrier (n ∈ Nk) and at the mth OFDM block
is given by

yk(n,m) = Hk(n,m)xk(n,m) + wk(n,m), (1)
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Figure 1: System Model and Definition of sets K
A
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where xk(n,m) represents the data symbol transmit-
ted by BS c. Process wk(n,m) is an additive noise
which encompasses the thermal noise and the possible
multicell interference. Coefficient Hk(n,m) is the fre-
quency response of the channel at the subcarrier n and
the OFDM block m. Random variables Hk(n,m) For
each user k in Cell c are assumed to be Rayleigh dis-
tributed with variance denoted in the sequel by ρc

k =
E[|Hk(n,m)|2]. For a given user k, Hk(n,m) are iden-
tically distributed w.r.t. n,m, but are not supposed to
be independent. Channel coefficients are supposed to
be perfectly known at the receiver side, and unknown
at the BS side. However, variances ρk are supposed to
be known at the BS. As usual, we assume that ρk van-
ishes with rk the distance between the BS and user k,
based on a given path loss model. The set of available
sub-carriers is partitioned into four subsets: I contain-
ing the reused subcarriers shared by the three sectors;
PA, PB and PC containing the protected subcarriers
only used by users in Cell A,B and C respectively.
The reuse factor α is defined as the ratio between the
number of reused subcarriers and the total number of
subcarriers:

α =
card(I)

N

so that I contains αN subcarriers, and each one of the
bands {Pc}c=A,B,C contains 1−α

3 N subcarriers. If user
k modulates a subcarrier n ∈ I, the additive noise con-
tains both thermal noise of variance σ2 and interfer-
ence. Therefore, the variance of this noise-plus-interference
process depends on k and will be denoted by σ2

k, and
is crucially related to the position of user k. We thus
define

∀n ∈ I, E[|wk(n, k)|2] = σ2
k .

Note that we assumed σ2
k a constant w.r.t. the subcar-

rier index n. This assumption is valid in a large num-

ber of OFDMA multicell systems using frequency hop-
ping or random subcarrier assignment. The remain-
ing (1 − α)N subcarriers are shared by the three cells
A,B,C in an orthogonal way. If user k modulates such
a subcarrier n ∈ Pc, the additive noise wk(n,m) con-
tains only thermal noise. In other words, subcarrier n
does not suffer from multicell interference. Then we
simply write E[|wk(n,m)|2] = σ2. The resource alloca-
tion parameters for user k are: P c

k,1 the power trans-
mitted on each of the subcarriers of the non-protected
band I allocated to him, γc

k,1 his share of I, P c
k,2 the

power transmitted on each of the subcarriers of the pro-
tected band Pc allocated to him and γc

k,2 his share of
Pc. In other words,

γc
k,1 = card(I ∩ Nk)/N γc

k,2 = card(Pc ∩ Nk)/N

Moreover, let gk,1 (resp. gk,2) be the channel Gain
to Noise Ratio (GNR) in band I (resp. Pc), namely
gk,1 = ρk/σ2

k (resp. gk,2 = ρk/σ2) and let Wk,i =
γk,iPk,i be the average power transmitted to user k in
I if i = 1 and in Pc if i = 2. “Setting a resource
allocation for cell c” means setting a value for param-
eters {γc

k,1, γ
c
k,2, P

c
k,1, P

c
k,2}k=1...Kc , or equivalently for

parameters {γc
k,1, γ

c
k,2,W

c
k,1,W

c
k,2}k=1...Kc .

4. Single Cell Resource Allocation

Before tackling the problem of optimal joint re-
source allocation in the three considered cells, it is use-
ful to consider first the simpler single cell problem. The
single cell formulation focuses on resource allocation in
one cell (say Cell A), and assumes that the resource al-
location parameters of users in the other cells are fixed.

4.1. Optimization problem

Assume that each user k has a rate requirement of
Rk nats/s/Hz. Our aim is to optimize the resource
allocation for Cell A which i) allows to satisfy all tar-
get rates Rk of all users, and ii) minimizes the power
used by BS A in order to achieve these rates. Con-
sidering a fast fading context (i.e. channel coefficients
Hk(n,m) vary w.r.t. m all along the code word), we
assume as usual that successful transmission at rate
Rk is possible provided that Rk < Ck, where Ck de-
notes the ergodic capacity associated with user k. Un-
fortunately, the exact expression of the ergodic capac-
ity is difficult to obtain in our context due to the fact
that the noise-plus-interference process (wk(n,m))n,m

is not a Gaussian process in general. Nonetheless, if
we endow the input symbols xk(n,m) with Gaussian
distribution, the mutual information between xk(n,m)
and the received signal yk(n,m) in Eq. (1) is minimum



when the interference-plus-noise wk(n,m) is Gaussian
distributed. Therefore, approximating the multicell in-
terference noise by a Gaussian noise with the same vari-
ance provides a lower bound on the true capacity. For
a given user k in Cell A, one can easily verify that the
ergodic capacity Ck is equal to the sum of the ergodic
capacities corresponding to both bands I and PA:

Ck =
∑

i=1,2

γA
k,iE

[

log

(

1 + gk,i

WA
k,i

γA
k,i

X

)]

(2)

where X represents a standard Chi-Square distributed
random variable with two degrees of freedom. The
quantity QA,(K) defined by

QA,(K) =

KA

∑

k=1

(WA
k,1 + WA

k,2) (3)

denotes the average power spent by BS A during one
OFDM block. The optimal resource allocation problem
for cell A consists in characterizing the optimal value of
{γA

k,1, γ
A
k,2,W

A
k,1,W

A
k,2}k=1...KA allowing to satisfy the

rate requirements of all users (Rk < Ck) so that the
power QA,(K) to be spent is minimum. Finally, the sin-
gle cell optimization problem for Cell c (c ∈ {A,B,C})
can be formulated as follows.

Problem 1. Minimize Qc,(K) w.r.t. (γc
k,i,W

c
k,i) i∈{1,2}

k∈{1...Kc}

under the following constraints.

C1 : ∀k,Rk ≤ Ck C4 : γc
k,1 ≥ 0, γc

k,2 ≥ 0

C2 :
Kc

∑

k=1

γc
k,1 = α C5 : W c

k,1 ≥ 0,W c
k,2 ≥ 0.

C3 :

Kc

∑

k=1

γc
k,2 =

1 − α

3
.

Here, C1 is the rate constraint, C2-C3 are the
bandwidth constraints, C4-C5 are the positivity con-
straints. We expressed the resource allocation problem
in terms of parameters γc

k,i,W
c
k,i (i = 1, 2) instead of

γc
k,i, P

c
k,i because the ergodic capacity given by Eq. (2)

is a convex function of γc
k,i,W

c
k,i. As a consequence,

Problem 1 is convex in {γc
k,1, γ

c
k,2,W

c
k,1,W

c
k,2}k.

4.2. Optimal single cell resource allocation

Since Problem 1 is convex, one can use the Lagrange
Karush-Kuhn-Tucker (KKT) conditions to solve it. In
order to present the results of solving the KKT condi-
tions, it turns out useful to regroup the users of Cell c
into a number ρK of subsets {Kc

i}1≤i≤ρK
: each subset

Kc
i is composed of the users situated on a certain line

perpendicular to the axis passing through the two adja-
cent BS, as illustrated by Fig. 1. For example, subsets
KA

i are constructed as follows. First, a line perpendic-
ular to axis BC is drawn passing through each user k
in Cell A. If more than one user happen to be on the
same line, then all of these users will be part of the
same subset KA

i . Otherwise, the corresponding subset
will contain a single element. Note that, by construc-
tion, ρKA the number of subsets satisfies ρK ≤ KA,
and that ∀i ∈ {1, . . . , ρK}, KA

i 6= ∅.
We present now the result of simplifying the KKT con-
ditions associated with Problem 1. For that sake, define
the following functions on R+

f(x) =
E [log(1 + xX)]

E

[

X
1+xX

] −x, F (x) = E

[

X

1 + f−1(x)X

]

,

where X represents a standard Chi-square distributed
random variable with two degrees of freedom. Recall
that rk denotes the distance separating user k from the
BS.

Theorem 1. Any global solution {γc
k,1, γc

k,2, W c
k,1,

W c
k,2}k=1...Kc to Problem 1 has the following property.

There exist two nonnegative numbers βc
1, β

c
2, and there

exists an integer LKc

i
∈ Kc

i for each i ∈ {1, . . . , ρK},
such that
1. For each k ∈ Kc

i such that rk < rLc

i
,

P c
k,1 = g−1

k,1f
−1 (gk,1β

c
1) P c

k,2 = 0

γc
k,1 =

Rk

E

[

log
(

1 + gk,1P c
k,1X

)] γc
k,2 = 0 (4)

2. For each k ∈ Kc
i such that rk > rLc

i
,

P c
k,1 = 0 P c

k,2 = g−1
k,2f

−1(gk,2β
c
2)

γc
k,1 = 0 γc

k,2 =
Rk

E

[

log
(

1 + gk,2P c
k,2X

)]

(5)

3.For k = Lc
i

P c
k,1 = g−1

k,1f
−1 (gk,1β

c
1)

P c
k,2 = g−1

k,2f
−1(gk,2β

c
2)

gk,1F (gk,1β
c
1) = gk,2F (gk,2β

c
2)

(6)

where βc
1, βc

2 are the Lagrange multipliers associated
with constraints C2 and C3 respectively.

Comments on Theorem 1: Theorem 1 states
that any global solution to Problem 1 is “binary” along
each line perpendicular to the axis passing through the
two adjacent BS: Except for at most one user Lc

i in each
subset Kc

i , any user k of Kc
i modulates either in the

protected band Pc (and thus γc
k,2 > 0), or in the non-

protected band I (and thus γc
k,1 > 0), but not in both.



Note that in practice, most of the subsets Kc
i would

contain only one user, and therefore ρK = Kc. In this
case, Theorem 1 will not be of real help in computing
the optimal value of the resource allocation parameters
of users of Cell c. Indeed, determining the value of
parameters βc

1, β
c
2, {L

c
i}i will require in this case the

use of prohibitively computational complex methods.
Nonetheless, when the number of users grows to infinity
in the way described in Section 6, the number of users
in each of the subsets Kc

i will also grow to infinity,
and Theorem 1 will prove very useful in this case for
characterizing the optimal resource allocation.

5. Joint Resource Allocation for Cells A, B, C

Our aim now is to jointly optimize the resource al-
location for the three cells which i) allows to satisfy the
target rates Rk of all users, and ii) minimizes the power
used by the network in order to achieve these rates.

5.1. Optimization problem

The ergodic capacity associated with user k in Cell A
is given by Eq. (2), where coefficient gk,1 in that equa-
tion coincides with

gk,1(Q
B
1 , QC

1 ) =
ρk

∑

c=B,C E [|Hc,k(n,m)|2]Qc
1 + σ2

,

(7)
where Hc,k(n,m) is the frequency response of the chan-
nel between BS c and user k at the subcarrier n and
the OFDM block m. Note that gk,1(Q

B
1 , QC

1 ) depends

on the powers QB
1 =

∑KB

k=1 WB
k,1 and QC

1 =
∑KC

k=1 WC
k,1

transmitted respectively by BS B and C in band I. The
joint allocation problem can be formulated as follows.

Problem 2. Minimize Q
(K)
T =

∑

c=A,B,C

Kc

∑

k=1

(W c
k,1 +

W c
k,2) the total power spent by the network w.r.t {γc

k,1,
γc

k,2, W c
k,1, W c

k,2}c=A,B,C
k=1...Kc

such that constraints C1−C5

of Problem 1 are satisfied for c = A,B,C.

Unfortunately, the ergodic capacity Ck is non-convex
w.r.t the optimization variables. This is due to the fact
that the gain-to-noise ratio gk,1(Q

B
1 , QC

1 ) is a function
of the resource allocation parameters of users belonging
to the interfering cells. Therefore, Problem 2 cannot be
solved by classical convex optimization methods.

5.2. Characterizing the optimal joint allocation

Even though Problem 2 is non-convex, we manage
to characterize its solution. Indeed, we prove that this

problem can be decomposed into three single cell prob-
lems similar to Problem 1.
For each cell c ∈ {A,B,C}, denote by c

′

and c
′′

the
two adjacent cells. (A

′

= B and A
′′

= C).

Theorem 2. Any global solution to Problem 2 has the
following property. For each Cell c there exist four non-

negative numbers βc
1, βc

2, Qc
′

1 , Qc
′′

1 , and there exists an
integer Lc

i ∈ Kc
i for each i ≤ ρKc , such that the re-

source allocation parameters γc
k,1, γc

k,2, P c
k,1, P c

k,2 are
given by Eq. (4), (5) and (6), where gk,1 in these equa-

tions coincides with gk,1(Q
c
′

1 , Qc
′′

1 ) defined by (7).

Comments on Theorem 2: Theorem 2 implies
that the optimal allocation parameters of users in Cell A
in the multicell case are solution to the single cell prob-
lem (Problem 1). Of course, similar result holds for
Cells B and C. We conclude that in each cell, the bi-
nary property stated by Theorem 1 holds. It is worth
mentioning that the proof of Theorem 2 is not a sim-
ple generalization of the single cell case. Indeed, prov-
ing Theorem 2 required solving the KKT conditions of
a modified optimization problem derived from Prob-
lem 1.

6. Asymptotic Analysis

We characterize now the asymptotic behavior of the
optimal resource allocation when the number of users
in each cell tends to infinity. The interest of this anal-
ysis is threefold. First, the optimal resource allocation
in the asymptotic regime can be fully characterized, in
contrast to the case of finite number of users. Second,
the asymptotic expressions do not depend on the ex-
act position of each user in the cell and his exact rate
requirement. Instead, they only depend on a “global”
characterization of these parameters. This property is
very useful to define an “optimal” reuse factor. Third,
the above two aspects of the asymptotic regime inspires
a simplified, yet relevant, method to perform resource
allocation for finite number of users.

6.1. Asymptotic Regime

In the sequel, we denote by B the total bandwidth
of the system in Hz, and by uk the data rate of user k in
nats/sec (uk = BRk, where Rk is the rate in nats/sec/Hz).
We focus first on Cell A, and we consider the asymp-
totic regime where the number KA of users in cell A
tends to infinity. As KA tends to infinity, note that

the total rate
∑KA

k=1 uk (in nats/sec) which should be
delivered by the BS tends to infinity as well. Thus,
we need to let the bandwidth B grow to infinity in or-
der to satisfy the growing data rate requirement. In



fact, the asymptotic regime will be characterized by
KA → ∞, B → ∞ and KA/B → aA where aA is a
positive constant. Let (rk, θk) be the polar position
of user k in Cell A (rk is the distance previously de-
fined). The channel variance ρk of user k will be writ-
ten as ρk = ρ(rk) where ρ(r) models the path loss
and depends only on the distance separating user k
from BS A. Typically, function ρ(r) has the form
ρ(r) = ηr−s where η is a certain gain and where s
is the path-loss coefficient, s ≥ 2. In the sequel, we de-

note by g2(r) = ρ(r)
σ2 the received signal to noise ratio in

the protected band, for a user at distance r. This way,
g2(rk) = gk,2. Similarly, we define g1(r, θ,Q

B
1 , QC

1 ) as
the signal-to-noise ratio received in the non-protected
band, for a user at position (r, θ) when the average
power transmitted by BS B and C in the non-protected
band I is equal to QB

1 and QC
1 respectively. For a par-

ticular user k, g1(rk, θk, QB
1 , QC

1 ) = gk,1. Note that
gk,1 depends on θk the angular position of user k in the
cell. This is because the distances separating user k
from BS B and C are both functions of θk.

6.2. Statistical tools for the asymptotic regime

We characterize now the asymptotic behavior of

Q
(K)
T the total transmit power as K → ∞. Recall

that Q
(K)
T =

∑

c

∑

k W c
k,1 +W c

k,2. One can expect that
summation w.r.t k in the latter expression would be re-
placed by integration when K → ∞. In order to obtain
this integral expression, note that user k is completely
characterized by the triple (rk, θk, uk) and define mea-
sure νA,(K) on the Borel sets of R+ × R × R+ as

νA,(K)(I, J, L) =
1

K

KA

∑

k=1

δ(rk,θk,uk)(I, J, L),

where I, J, L are intervals of R+, R and R+ respec-
tively and where δrk,θk,uk

is the Dirac measure at point
(rk, θk, uk). We assume in the sequel that ∀k, rk ∈
[ε,D], θk ∈ [−π

3 , π
3 ] and uk ∈ [0, umax], where umax is

an upper bound on all required data rates and ε > 0 is
a minimum distance from the BS.

Assumption 1. As KA tends to infinity, the sequence
of measures νA,(K) converges weakly to a measure νA.
This limit measure satisfies dνA(r, θ, u) = dλA(r, θ) ×
dζA(u) where λA is the limit distribution of users’ lo-
cations and ζA is the limit distribution of rates. Here
× denotes the product of measures.

The fact that νA is a product measure is motivated
by the observation that the rate requirement of a given
user is usually not related to the position (rk, θk) of the
user in the cell. Here λA describes users’ geographic

distribution in the cell. For instance, if we assume that
λ has a density, say p(r, θ): dλA(r, θ) = p(r, θ)rdrdθ.
Then, p(r, θ) is simply equal to the density of users
around position (r, θ) in the cell. Similarly, ζA cor-
responds to the distribution of rate requirements in
[0, umax].

6.3. Multicell allocation in the asymptotic regime

Define C(x) on R+ as C(x) = E
[

log(1 + f−1(x))
]

,

and recall the notation c
′

and c
′′

which designates the
two adjacent cells for each cell c ∈ {A,B,C}.

Theorem 3. Assume that Kc → ∞ for c ∈ {A,B,C}
such that Kc/K → ac. Let ρ̄c be the average rate
requirement per channel use ρ̄c = ac

∫ umax

0
u dζc(u).

There exist 9 positive numbers (βc
1, β

c
2, Q

c
1)c∈{A,B,C} such

that the total power Q
(K)
T spent by the network when

users’ resource allocation parameters are global solution
to Problem 2 converges to QT =

∑

c Qc
1 + Qc

2, where

Qc
1 = ρ̄c

∫ π

3

−π

3

∫ dc(θ)

ǫ

f−1(g1(r, θ,Q
c
′

1 , Qc
′′

1 )βc
1)dλc(r, θ)

g1(r, θ,Qc
′

1 , Qc
′′

1 )C(g1(r, θ,Qc
′

1 , Qc
′′

1 )βc
1)

(8)

Qc
2 = ρ̄c

∫ π

3

−π

3

∫ D

dc(θ)

f−1(g2(r)β
c
2)dλc(r, θ)

g2(r)C(g2(r)βc
2)

, (9)

where (dc(θ), βc
1, β

c
2) ∈ [ǫ,D] × R+ × R+ is the unique

solution to the system Sc(Qc
′

1 , Qc
′′

1 ) formed by:

g1(d
c(θ), θ,Qc

′

1 , Qc
′′

1 )F (g1(d
c(θ), θ,Qc

′

1 , Qc
′′

1 )βc
1) =

g2(d
c(θ))F (g2(d

c(θ))βc
2) (10)

ρ̄c

∫ π

3

−π

3

∫ dc(θ)

ǫ

dλc(r, θ)

C(g1(r, θ,Qc
′

1 , Qc
′′

1 )βc
1)

= α (11)

ρ̄c

∫ π

3

−π

3

∫ D

dc(θ)

dλc(r, θ)

C (g2(r)βc
2)

=
1 − α

3
. (12)

Comments on Theorem 3: a) Denote by Q
c,(K)
1

(resp. Q
c,(K)
2 ) the power transmitted by BS c in the

non-protected band I (resp. the protected band Pc)

when optimal allocation is used i.e, Q
c,(K)
i =

∑

k WA
k,i

(i = 1, 2). The quantities QA
1 and QA

2 given by Eq. (8)

and (9) can be considered as the limit of Q
c,(K)
1 and

Q
c,(K)
2 respectively. Eq. (10) results from the third

equality of Eq. (6) of Theorem 1. As for Eq. (11) and
(12), they can be considered as the respective limit of
constraints C2 and C3 of Problem 1.
b) A careful look at integration boundaries in Eq. (11)
and (12) reveals that optimal resource allocation in the
asymptotic regime is “binary”: The protected band Pc



is shared only between users k satisfying rk > dc(θk);
and the non-protected band I is assigned only to users
satisfying rk < dc(θk). This result proves that the frac-
tional frequency reuse scheme [5] is asymptotically op-
timal with respect to our resource allocation problem.
c) Theorem 3 reduces the problem of characterizing the
optimal resource allocation in the asymptotic regime
into the problem of determining the value of a limited
number of parameters: (βc

1, β
c
2, Q

c
1)c=A,B,C , which is

addressed in the sequel.
Determination of (βc

1, β
c
2, Q

c
1)c=A,B,C :

Consider first Cell A. Note that for a fixed value of
QB

1 and QC
1 , (βA

1 , βA
2 ) is defined as the unique solution

to the system SA(QB
1 , QC

1 ) formed by Eq. (10)-(12).
The issue of solving this system is addressed in the
extended version of this paper. The difficulty resides in
the determination of the optimal QA

1 , QB
1 , QC

1 . Denote

by Qc
1 = Jc(Qc

′

1 , Qc
′′

1 ) the value of Qc
1 given by Eq. (8).

Define the vector function J(QA
1 , QB

1 , QC
1 ) = (JA(QB

1 ,
QC

1 ), JB(QA
1 , QC

1 ), JC(QB
1 , QA

1 )). Note that for any
global solution, (QA

1 , QB
1 , QC

1 ) is a fixed point of J:

(QA
1 , QB

1 , QC
1 ) = J(QA

1 , QB
1 , QC

1 ) .

First consider the case when J admits a unique fixed
point. In this case, a classic fixed point algorithm
(the fixed point iteration) can be used to determine
(QA

1 , QB
1 , QC

1 ). Unfortunately, we did not manage to
analytically prove the uniqueness of the fixed point.
Therefore, it might happen that the fixed point iter-
ation does not converge or oscillates between different
fixed points. In this case, the most immediate approach
would consist in an exhaustive search with respect to
two out of the three values QA

1 , QB
1 , QC

1 .
Applications:
1. Selection of the optimal reuse factor αopt: In
practice, the reuse factor should be fixed prior to re-
source allocation and its value should be independent of
the particular cells’ configurations. Here we propose to

select αopt as αopt = arg minα limK→∞ Q
(K)
T (α) , where

limK→∞ Q
(K)
T (α) is given by Theorem 3.

2. Simplified resource allocation: The binary form
of the optimal allocation in the asymptotic regime stated
by Theorem 3 can inspire a simplified scheme to per-
form resource allocation for finite number of users. The
exact description of this scheme and its performance
will be provided in the extended version of this paper.

7. Simulations

We considered a free space loss model characterized
by a path loss exponent s = 2 along with Okumura-
Hata model for open areas. The signal bandwidth is
equal to 5 MHz and the thermal noise power spectral

density is equal to N0 = −170 dBm/Hz. Each cell has
a radius D = 500m and the same uniform distribution
of users: λA = λB = λC = λ and dλ(r, θ) = rdrdθ/|C|,
where |C| is the cell surface. The rate requirement is
assumed the same for all the users in the three cells.
For each value of the reuse factor α, denote by QT (α)
the minimal total power spent by the network in the
asymptotic regime as given by Theorem 3. Define r̄ as
the average rate per channel use per cell surface unit
i.e, r̄ = ρ̄/|C|, where ρ̄ = ρ̄A was defined in Theorem 3.
Fig. 2 represents, for an average data rate requirement
of r̄ = 4 and 6 bits/sec/Hz/km2 respectively, the value
of QT (α) normalized by its minimum value w.r.t α, i.e
the ratio QT (α)/QT (αopt) in dB (αopt is the value of
the reuse factor α that minimizes QT (α)). Power gains
are considerable compared to the extreme cases α = 0
(the available bandwidth is shared in an orthogonal
way between Cells A, B and C) and α = 1 (all the
available bandwidth is reused).
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Figure 2: Total Power vs. α for D = 500 m
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