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Abstract— An opportunistic radio is a radio able to detect the
spectrum unused bands, and to adapt its transmission parameters
in order to transmit within these free bands. An opportunistic
terminal has also to be able to detect opportunistic access points
and to recognize their used standards. As most standards arenow
based on OFDM modulation with distinct intercarrier spacing,
this parameter can be estimated to build standard recognition
algorithm. We hence propose in this paper an algorithm for blind
estimation of the intercarrier spacing of an OFDM modulation
based on the second order statistics of the received signal.The
algorithm construction is explained in detail. Some theoretical
results are derived and numerical simulations show the gainin
regard to the state of art methods.

I. I NTRODUCTION

The cognitive radio concept has been first introduced by
[1] and consists in developing flexible terminals able to adapt
their transmission parameters to their spectral environment.
One of the classical application is the opportunistic access
to the spectrum resources. An opportunistic access point has
advanced sensing capabilities to detect spectrum holes and
to adapt its transmission parameters to transmit within these
holes. An opportunistic terminal has hence to be able to detect
the opportunistic access points, and to recognize their used
standards in non data aided contexts.

This paper focuses on this issue and we therefore assume
that the opportunistic access point uses a standard based
on an OFDM modulation. In practice, this assumption is
not restrictive since most popular modulation schemes are
based on this modulation (e.g. WiFi [2], WiMAX [3], DVB-T
[4], 3GPP/LTE [5]). As each standard has a different inter-
carrier spacing value (e.g.15.625kHz, 10.94kHz, 312.5kHz,
1.116kHz, 15kHz for Fixed WiMAX, Mobile WiMAX, WiFi,
DVBT, 3GPP/LTE respectively), this property can be used to
perform the standard classification. Consequently, this paper
focus on the blind intercarrier estimation of an OFDM signal.
Obviously, the proposed results also apply to military appli-
cations.

Only a few methods can be found in the litterature dealing
with this estimation issue. Mainly in [6], [7], [8], [9] which
exploit the correlation induced by the cyclic prefix of an
OFDM signal. Indeed, the cyclic prefix of an OFDM signal
is added by copying the lastD samples at its beginning. The
correlation functions of these signals thus exhibit a peak at
a time lag equal to the useful time of the OFDM signal. As
the useful time is also the inverse of the intercarrier spacing,
the system recognition can be performed accordingly. It is

nevertheless straightforward to understand that if the cyclic
prefix is short (in regard to the useful time of the OFDM
symbol) or if the length of the channel impulse response is
close to the cyclic prefix length, then the correlation peak is
strongly decreased and the method may fail.

In the litterature, an important property is omitted to detect
the useful time of an OFDM signal which is that the correlation
peak is periodic since it appears for each OFDM symbol.
We propose in this paper a new cost function that jointly
exploit the correlation induced by the cyclic prefix and its
periodicity. In regard to existing methods, the proposed method
is equivalent to jointly estimate the useful time and the symbol
time of an OFDM signal instead of performing this estimation
in a two steps algorithm [9]. As it will be shown in the
simulation section, this joint estimation significantly increase
the performance of the intercarrier spacing estimation.

The paper is organized as follows: in section II, we recall
the signal model and we explain how we perform the esti-
mation. In section III, we give some theoretical results on
the behaviour of the proposed algorithm and in section IV
we give some numerical estimation of its performance and we
compare it with the performance of the state of art algorithms.
We conclude in section V.

II. COST FUNCTION FOR BLIND ESTIMATION OF THE

INTERCARRIER SPACING

We consider the OFDM signal generated by the transmitter.
Its time-continuous expression is as follows

xa(t) =
∑

k∈Z

N−1∑

n=0

ak,n√
N

e−2iπ n
NTc

(t−DTc−kTs)ga(t − kTs) (1)

whereN is the number of subcarriers,D is the cyclic prefix
length and1/Tc is the information symbol rate in absence
of guard interval (i.e.D = 0). The inter-carrier spacing is
then equal to1/NTc. {ak,n} is the transmitted sequence of
symbols assumed to be independent and identically distributed
(i.i.d). We also assume that all the carriers are used to transmit
data. The shaping filterga(t) is assumed to be equal to1 if
0 ≤ t < Ts = (N + D)Tc and0 otherwise.

In the following, we assume thatD > 0. It is then
straightforward to check that:

∀k ∈ Z, ∀t ∈ [0, DTc] , xa(kTs+t+DTc) = xa(kTs+t) (2)



For sake of simplicity, we firstly consider a flat fading
channel. Theoretical results in more general contexts are
derived in next sections.

We also assume that the received signal is sampled at a rate
Te that satisfies the Shannon condition (e.g.Te < Tc). The
receiver collects the following samples:

y(m) =
√

Esxa(mTe) + σb(m)

where Es is the signal power,b(m) is the additive white
Gaussian noise with zero-mean and unit-variance, andσ2 is
the noise power.

Because of the correlation induced by the cyclic prefix,
the correlation function of the received signal,Ry(n, m) =
E{y(n + m)y∗(n)}, is a sum of3 terms:

Ry(n, m) = Ry(n, 0)δ(m) + Ry(n, α0)δ(m − α0)

+ Ry(n,−α0)δ(m + α0) (3)

where α0 = NTc/Te. We recall that the standard used by
the terminal can be recognized thanks to the value ofα0.
Therefore our main objective is to estimate this parameter.

In the following, we assume thatα0 is an integer. This
assumption is purely technical, and if it is not satisfied
the proposed algorithm still works. The first termRy(n, 0)
simplifies toEs + σ2 and does not depend onn. The second
term simplifies to (see Eq. (1)):

Ry(n, α0) = Es

∑

k∈Z

g(n+α0−kα0(1+β0))g
∗(n−kα0(1+β0))

(4)
whereβ0 = D/N andg(n) = ga(nTe). Note thatα0(1 + β0)
is the number of samples encompassed in an OFDM symbol,
andα0β0 is the number of samples encompassed in the cyclic
prefix. The intercarrier spacing estimation of the received
signaly will rely on Ry(n, α0).

As Ry(n, α0) is a pseudo-periodic function (or a periodic
function if α0(1 + β0) is an integer), it can be written as a
Fourier series:

Ry(n, α0) =
∑

p

R(p/α0(1+β0))
y (α0)e

2iπ np

α0(1+β0) (5)

In Eq. (5), R(p/α0(1+β0))
y (α0) is the cyclic correlation coef-

ficient of the signaly at the cycle frequencyp/α0(1 + β0).
R

(p/α0(1+β0))
y (α0) is computed as:

lim
M→∞

1

M

M−1∑

m=0

E{y(m + α0)y
∗(m)}e−2iπ mp

α0(1+β0) (6)

In the literature (e.g., [6], [7], [8], [9]), the methods aimto
estimate bothα0 andα0(1+β0). They proceed therefore into
two steps as follows:

1) They first estimateα0 as:

α̂0 = argmax
α

∣∣∣R(0)
y (α)

∣∣∣

This is equivalent to compute the time average autocor-
relation function of the received signal and to search for
the peak

2) Then, onceα0 has been correctly estimated, they per-
form the estimationα0(1+β0) as the first positive cycle
frequency ofRy(n, α0)

In this paper, we propose to perform this estimation jointly
instead of successively. We therefore introduce the cost func-
tion J

(Nb)
y (α, β):

J (Nb)
y (α, β) =

1

2Nb + 1

Nb∑

p=−Nb

∣∣∣R(p/α(1+β))
y (α)

∣∣∣
2

where Nb is the number of cycle frequencies taken into
account to compute this function, andα andβ are the tested
values of the useful time (̂NTc/Te) and the ratioD̂/N . Note
that α belongs to a set of strictly positive integers, andβ
belongs to the set{1/4, 1/8, 1/16, 1/32}. Note also that if
Nb = 0, J

(0)
y (α, β) does not depend onβ and we boil down

to the first step of the state of art methods.
Thanks to Eq. (3), one can easily check that, whatever the

value ofβ, J
(Nb)
y (α0, β) > 0 and:

∀α > 0 , α 6= α0, J
(Nb)
y (α, β) = 0

Further, asJ
(Nb)
y (α0, β) ≤ J

(Nb)
y (α0, β0), and asβ takes

only a few values, the estimation performance ofα0 can be
improved by also searching for the correct value ofβ. We
hence propose to perform the estimation ofα0 as follows:

α̂0 = argmax
α

{
max

β∈{ 1
4 , 18 , 1

16 , 1
32 }

J (Nb)
y (α, β)

}

Furthermore, the following result holds:
Theorem 1:The cost functionJ (Nb)

y (α, β) is insensitive to
frequency offsets.

Proof: With a frequency offset, the received samples
write:

z(m) =
√

Esxa(mTe)e
2iπm∆f + σb(m)

where∆f is the discrete time equivalent frequency offset. The
correlation function ofz at time lagα writes:

Rz(n, α) = Ry(n, α)e2iπα∆f

and, whatever the values ofp and β, R
(p/α(1+β))
z (α) =

e2iπα∆fR
(p/α(1+β))
y (α). HenceJ

(Nb)
z (α, β) = J

(Nb)
y (α, β).

In the following, we assume that the received signal has no
frequency offset. In the next section, we derive some theoret-
ical results on the behaviour of the cost functionJ

(Nb)
y (α, β)

in more general contexts. Before that, we give

III. SOME THEORETICAL RESULTS ON THE BEHAVIOUR OF

THE COST FUNCTIONJ
(Nb)
y (α, β)

The performance of the proposed algorithm depends on
three factors:

• The value taken by the cost function at point(α0, β0).
• The behaviour of the cost function at pointsα 6= α0.

In flat fading channels, we expect the cost function to



vanish as long asα > 0 and α 6= α0. In multi-path
fading channels, this property is not true anymore.

• In practice, the cost functionJy(α, β) is not known
and has to estimated. This implies some additionnal
estimation noise which impacts the performance of the
algorithm.

In this section, these three points will be theoretically ana-
lyzed.

A. Impact ofNb on J
(Nb)
y (α0, β0)

In this subsection, we inspect the influence ofNb on the
numerical value of the cost function at the point(α0, β0).

Theorem 2:The modulus of the cyclic correlation coeffi-
cient of R(p/α0(1+β0))

y (α0) writes as:

∣∣∣R(p/α0(1+β0))
y (α0)

∣∣∣ =

∣∣∣∣∣∣
Es

α0(1 + β0)

sin
(
π β0

1+β0
p
)

sin
(
π p

α0(1+β0)

)

∣∣∣∣∣∣
Proof: Thanks to Eqs. (4) and (6), we can rewrite

R
(p/α0(1+β0))
y (α0) as:

R(p/α0(1+β0))
y (α0) =

Es

α0(1 + β0)

α0(1+β0)−1∑

n=α0

e
−2iπ np

α0(1+β0)

It is then straightforward to deduce the expected result.
Note that , when p > 1

β0
, the values taken by

R
(p/α0(1+β0))
y (α0) are small in regard to the value taken

aroundp = 0. We assume in the following thatNb < 1
β0

.

J
(Nb)
y (α0, β0) writes then in term ofNb as:

1

2Nb + 1

(
Es

α0(1 + β0)

)2 Nb∑

p=−Nb

∣∣∣∣∣∣

sin
(
π β0

1+β0
p
)

sin
(
π p

α0(1+β0)

)

∣∣∣∣∣∣

2

As long asNb < 1
β0

, J
(Nb)
y (α0, β0) is a decreasing function

of Nb. This result means that a good choice ofNb to ensure
a great value ofJ (Nb)

y (α0, β0) is Nb = 0.
In multi-path channel context, the received signal writes:

z(m) =
√

Es

L−1∑

l=0

h(l)xa((m − l)Te) + σb(m) (7)

where{h(l)}l are the equivalent channel impulse response of
lengthL. We assume thatL < α0β0, i.e., the channel impulse
response is shorter than the cyclic prefix.

Theorem 3:The cyclic correlation coefficient of the signal

z, R
( p

α0(1+β0) )
z (α0) writes

R
( p

α0(1+β0)
)

y (α0)

∫ 1

0

H(ν)H∗

(
ν − p

α0(1 + β0)

)
dν

whereH(ν) =
∑

l h(l)e−2iπlν .
Proof: The correlation function of the signalz(p) writes

as:
Rz(n, α0) =

∑

l

|h(l)|2Ry(n − l, α0)

Using the Fourier decomposition ofRy(n − l, α0) given by
(5), we deduce:

R
( p

α0(1+β0)
)

z (α0) = R
( p

α0(1+β0)
)

y (α0)
∑

l

|h(l)|2e−2iπ pl

α0(1+β0)

Using the Parseval equality on the sum in this latter equation
leads to the expected result.

From Theorem 3, we deduce that as long asp takes low
values and the coherence bandwidth of the channel is large
enough, the choice ofNb can be done as if the channel was
flat. Consequently, to increase the value ofJ

(Nb)
y (α0, β0), we

would like to chooseNb as small as possible.

B. Impact ofNb on J
(Nb)
y (α, β) whenα 6= α0

We consider the model of received signal given by Eq. (7)
and we now evaluate the autocorrelation function of the signal
z(m). As the channel impulse response lengthL is smaller
thanα0β0, the signalz(m) is correlated at pointsα = v and
α = α0 + v where |v| < α0β0. Indeed, its autocorrelation
function writes in term of the autocorrelation function of the
signaly(m) as:

Rz(n, v) =
∑

l

h(l)h∗(l − v)Ry(n − l + v, 0) (8)

Rz(n, α0 + v) =
∑

l

h(l)h∗(l − v)Ry(n − l + v, α0)(9)

The following results hold:
Theorem 4:If |v| < α0β0 and asα 6= α0, J

(Nb)
z (α, β)

simplifies as follows

J (Nb)
z (α, β) =

1

2Nb + 1

∣∣∣R(0)
z (α)

∣∣∣
2

Theorem 5:If v 6= 0, and as long as it does not ex-
ist (p1, p2) ∈ {−Nb, · · · , Nb}2 such as p1

(α0+v)(1+β) =
p2

(α0)(1+β0)
, J

(Nb)
z (α0 + v, β) simplifies as follows

J (Nb)
z (α0 + v, β) =

1

2Nb + 1

∣∣∣R(0)
z (α0 + v)

∣∣∣
2

We just give the proof of the second theorem. The first one
can be proved using the same method.

Proof: Thanks to (9), it is straight forward to check
that Rz(n, α0 + v) is a time periodic function ofn of period
α0(1 + β0). As J

(Nb)
z (α0 + v, β) tests the cycle frequencies

p
(α0+v)(1+β) which are not the cycle frequencies of the signal
z at the time lagα0 + v, we can deduce that:

∀p 6= 0,
∣∣∣R(p/(α0+v)(1+β))

z (α0 + v)
∣∣∣
2

= 0 (10)

From these both theorems, we deduce that decreasing the
value of J (Nb)

y (α, β) for α 6= α0 needs to choosing a large
value forNb.



C. Impact ofNb on the estimation accuracy of̂J (Nb)
y (α, β)

In practice, the cost functionJ (Nb)
y (α, β) is not known and

has to be estimated. We denotêJ
(Nb)
y (α, β) the estimate of

J
(Nb)
y (α, β) given by:

Ĵ (Nb)
y (α, β) =

1

2Nb + 1

Nb∑

p=−Nb

∣∣∣R̂(p/α(1+β))
y (α)

∣∣∣
2

where

R̂(p/α(1+β))
y (α) =

1

M

M−1∑

m=0

y(u + α)y∗(m)e−2iπ mp

α(1+β) (11)

whereM is the number of received samples. In this section, we
analyze some properties of̂J

(Nb)
y (α0, β0) under the following

assumptions:

• M large enough in order to obtain asymptotic behaviors.
• Low signal-to-noise ratio (SNR), i.e.Es << σ2.
• Flat fading channel.

1) Behaviour ofĴ (Nb)
y (α0, β0): We first address the be-

haviour of the cost function estimate at pointα0, β0:
Ĵ

(Nb)
y (α0, β0). Thanks to (11) and to the large number law,

R̂
(p/α(1+β))
y (α) is asymptotically normal. Further, as

lim
M→∞

E

{
R̂(p/α0(1+β0))

y (α0)
}

= R(p/α0(1+β0))
y (α0)

which does not vanish, we can deduce (see [10] for more
details) that

√
M
(
Ĵ

(Nb)
y (α0, β0) − J

(Nb)
y (α0, β0)

)
is also

asymptotically normal, with zero-mean and varianceσĴ . The
impact ofNb on J

(Nb)
y (α0, β0) has already been discussed in

section III-A. The impact on its variance is described by the
following result:

Theorem 6:As long asEs << σ2, σ2
Ĵ

the asymptotical
variance writes as:

σ2
Ĵ

= O

(
1

2Nb + 1

)

We omit the proof of this result in this paper. For additionnal
information, the reader can refer to [10].

2) Behaviour ofĴ (Nb)
y (α, β) whenα 6= α0: We now focus

on the impact ofNb on the mean and variance of̂J
(Nb)
y (α, β)

whenα 6= α0.
Theorem 7:The asymptotical mean of̂J (Nb)

y (α, β) equals:

lim
M→∞

ME{Ĵ (Nb)
y (α, β)} =

(
Es + σ2

)2
+ O

(
E2

s

)

As long asEs << σ2, the asymptotic mean of̂J (Nb)
y (α, β)

does not depend onNb.
Proof: This result is obtained thanks to some

calculations. Indeed, ME{Ĵ (Nb)
y (α, β)} writes as

1
2Nb+1

∑Nb

n=−Nb
ME|R̂(p/α(1+β))

y (α)|2. In terms of the

received signaly(m), ME|R̂(p/α(1+β))
y (α)|2 equals:

1

M

∑
m1
m2

E{y(m1+α)y∗(m1)y
∗(m2+α)y(m2)}e−

2iπk(m1−m2)

α(1+β)

(12)

Writing the fourth order moment in terms of the fourth order
cumulant,E{y(m1 + α)y∗(m1)y

∗(m2 + α)y(m2)} expands
to:

cum(y(m1 + α), y∗(m1), y
∗(m2 + α), y(m2))(13)

+ E{y(m1 + α)y∗(m1)}E{y∗(m2 + α)y(m2)}
+ E{y(m1 + α)y(m2)}E{y∗(m1 + α)y∗(m1)}
+ E{y(m1 + α)y∗(m2 + α)}E{y∗(m1)y(m2)}

As y(m + α) and y(m) are independent whenα > 0 and
α 6= α0, the first term vanishes. The second term vanishes
sinceα 6= α0. The third term vanishes sincey(m) is circular.
The fourth order moment rewrites hence, in terms of the
autocorrelation function of the received signal:

E{y(m1 + α)y∗(m1)y
∗(m2 + α)y(m2)}

= Ry(m2 + α, m1 − m2)R
∗
y(m2, m1 − m2)

We deduce from this result that Eq. (12) does not vanish only
if m1 = m2, m1 = m2 + α0 or m1 = m2 −α0. If m1 = m2,
we obtain the sum simplifies to(Es + σ2)2. For the other
cases, we get the termO (Es). This concludes the proof.

We now focus on the asymptotic variance ofĴ
(Nb)
y (α, β)

defined as:

lim
M→∞

M2E

∣∣∣Ĵ (Nb)
y (α, β) − E

{
Ĵ (Nb)

y (α, β)
}∣∣∣

2

The following result holds:
Theorem 8:As long asα 6= α0

2 , the asymptotic variance of
Ĵ

(Nb)
y (α, β) is given by:

O

((
Es + σ2

)4

2Nb + 1

)
+ O

(
E4

s

)

Proof: We just give a sketch of proof: To compute this

variance we first writeE

∣∣∣MĴ
(Nb)
y (α, β)

∣∣∣
2

in terms of the
cyclic coefficients. We then apply the decomposition (13) to
the cyclic coefficients (instead of applying it to the signaly).
We get:

M2E

∣∣∣Ĵ (Nb)
y (α, β) − E

{
Ĵ (Nb)

y (α, β)
}∣∣∣

2

=
M2

(2Nb + 1)
2

∑

k1,k2

∣∣∣E
{

R̂(k1/α(1+β))
y (α)R̂(k2/α(1+β))

y (α)
}∣∣∣

2

+
M2

(2Nb + 1)
2

∑

k1,k2

∣∣∣E
{

R̂(k1/α(1+β))
y (α)

(
R̂(k2/α(1+β))

y (α)
)∗}∣∣∣

2

The result only requires to compute both expectations. The
first oneE{R̂(k1/α(1+β))

y (α)R̂
(k2/α(1+β))
y (α)} vanishes except

if α = α0

2 . The second one can be computed as the expectation
that has been computed for the asymptotic mean.

As a conclusion, we have shown thatNb has a negative
impact on the value reached by the cost functionJ

(Nb)
y at

point (α0, β0) but a positive impact on the value reached by
the cost functionJ (Nb)

y at point(α, β) with α 6= α0 and also
a positive impact on the variance of the estimation noise. The
choice ofNb is hence a trade-off. This fact is illustrated in
the next section devoted to numerical simulations.
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Fig. 1. Correct detection rate vs. SNR (D/N = 1/4)

IV. SIMULATIONS

We have evaluated the performance of our algorithm thanks
to Monte-Carlo simulations as the number of realisations
where the estimate ofα0 match the correct value ofα0 up
to 1%. Another possible criterion is the mean square error
between our estimate and the correct value but as we expect to
recognize a system we had rather focus on the good detection
rate. As in practice the smallest gap between the intercarrier
spacing of the different standard is1%, we also used this value
for the estimation of the performance of our algorithm.

Two cases have been considered. For each case, we used an
oversampling rateTc/Te = 2, 5 OFDM symbols have been
generated and a multi-path fading channel has been simulated
with a length equal toL = α0β0/4. A Gaussian noise has also
been added to the simulated received samples before applying
the estimation algorithm. Its variance is defined as:

σ2 =
Tc

Te

1

M

M−1∑

m=0

∣∣∣∣∣
L∑

l=1

h(l)sa((m − l)Te)

∣∣∣∣∣

2

10−SNR/10

whereλl and τl are the magnitude and delay of thelth path
respectively. The performance has been evaluated over1000
realizations. Note that the caseNb = 0 corresponds to the
existing method.

On Figure 1, we have generated OFDM signals withβ0 =
D/N = 1/4. For these signals,N = 64 carriers have
been used to transmit data. Obviously, the performance ofα0

estimation is significantly increase withNb = 2 or Nb = 3. We
can also observe that the performance obtained withNb = 4
is worst than the one obtained withNb = 3 which illustrates
the conclusion of the previous section.

On Figure 2, we have generated OFDM signals withβ0 =
D/N = 1/32 and N = 2048. Once again, taking into
account several cyclic frequencies significantly improve the
performance ofα0’s estimation. Further in these contexts, the
existing method is not able to perform a correct estimation of
α0 in 100% of cases whereas our method does.
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Fig. 2. Correct detection rate vs. SNR (D/N = 1/32)

V. CONCLUSION

In this paper, we have introduced a new method based on
the second order statistics of an OFDM signal to perform the
estimation of the intercarrier spacing. The algorithm consists
in jointly detecting the correlation induced by the cyclic
prefix and its periodicity. We have therefore introduced a cost
function that depends onNb the number of cyclic frequencies
considered to perform the detection. Several theoretical results
on the impact of this parameter have been derived and it has
been shown that this parameter should be chosen as a trade-
off between the different factors that impact on the estimation
performance. These results have been illustrated with some
simulations where the gain induced by our algorithm in regard
to the existing method has been highlighted.
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