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Abstract An accurate blind frequency offset estimator adapted to QAM modulated signal is proposed. For coherent
100Gbit/s QAM PolMux transmission, frequency offset can be recovered with an accuracy of a few kHz.

Introduction
M-ary quadrature amplitude modulation (M-QAM) for-
mats combined with coherent detection and digital sig-
nal processing (DSP) are promising candidates for the
implementation of next generation optical transmission
systems. However, those modulation formats are more
sensitive to signal distortions and phase errors than
QPSK. These phase errors may correspond to con-
stant phase offset, frequency offset (FO) and laser
phase noise1. Several FO estimators have been al-
ready presented for QPSK based optical transmissions.
These algorithms rely either on the phase difference
between two adjacent receive samples2,3 or the max-
imisation of the discrete-frequency spectrum of the
fourth-power receive samples4. Let N be the number
of available independent receive samples. The Mean
Square Error (MSE) on the FO decreases as 1/N for
the first kind of algorithms, and as 1/N2 for the second
kind of algorithms. As M-QAM is more sensitive to FO,
designing more accurate estimators is still required.

We here propose a new non-data-aided FO estima-
tor for any QAM format in PolMux context. We espe-
cially show that its MSE decreases as 1/N3. Note that
this algorithm can be adapted to PSK formats as well.

Frequency estimator description
The proposed estimator is carried out after the com-
pensation of group velocity dispersion (GVD) and polar-
isation dispersion (PMD). As a consequence, assuming
a perfect compensation, the receive signal on polarisa-
tion p (with p ∈ {X, Y }) takes the following form

yp(k) = sp(k)e2jπ(φ0,p+kφ1) + np(k) (1)

where {sp(k)} are independent sequences of QAM
symbols, np(k) is the additive channel noise. The term
φ0,p corresponds to the constant phase while φ1 =

∆fTs is the discrete-time FO to be estimated where
∆f is the continuous-time FO expressed in Hertz and
Ts is the symbol period. Eq. (1) holds if ∆f � 1/Ts.

If sp(k) is a QPSK modulated data stream, it has
been remarked for a long time that s4

p(k) is constant
and independent of the data stream. Consequently
it is possible 5 to build FO estimate based on y4

p(k).
When sp(k) is QAM modulated, s4

p(k) is not constant
anymore. But a QAM modulated signal is fourth-order
non-circular 6, i.e., E[s4

p(k)] 6= 0. Based on this nice

property, it is still possible to build FO estimate based
on y4

p(k) in QAM context.
Indeed, by following the approach described in7, one

can remark that y4
p(k) can be decomposed as

y4
p(k) = Ape2jπ4(φ0,p+kφ1) + ep(k) (2)

where Ap = E[s4
p(k)] is a constant amplitude and

where ep(k) a zero mean process that can be viewed
as a noise process. The most important thing is to re-
mark that y4

p(k) is actually a constant-amplitude com-
plex exponential with frequency 4φ1 disturbed by a zero
mean additive noise. Therefore one can deduce a
FO estimate based on the maximization of the peri-
odogram of y4

p(k) as proposed below
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1
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and with N the number of available samples.
Unlike what is usually done in optical communica-

tions, we propose to compute the maximisation of peri-
odogram into two steps as follows

1. a coarse step which detects the maximum magni-
tude peak which should be located at around the
sought frequency . This is carried out by a N -Fast
Fourier Transform (N -FFT). This step is been al-
ready implemented for QPSK format 4. One can
easily check that MSE associated with this step is
of order of magnitude 1/N2.

2. a fine step which inspects the cost function around
the peak detected by the coarse step. This step
is implemented by a gradient-descent algorithm.
MSE associated with this step7 is of order of mag-
nitude 1/N3.

Finally, to the best of our knowledge, our proposition
of treating both polarisation ways jointly is new.

Numerical results
The performance of the algorithm is evaluated by us-
ing Monte-Carlo simulations. A 100Gbit/s transmis-
sion is achieved by multiplexing both polarisations
with 16-QAM modulated signals which corresponds
to 12.5Gbaud transmission per polarisation. The
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linewidths of lasers are set to zero. The polarisation
dependent effects (PDE) are simulated using the con-
catenation of random birefringence matrices 8.

At the receiver, the continuous-time signal is sam-
pled at symbol rate. The linear PDE is compensated
using a 5 taps FIR MIMO filters calculated by means of
CMA algorithm9. Afterwards, FO is estimated by using
one of the four following methods: i) coarse step based
on an unique periodogram associated with polarisation
X (this algorithm is usually carried out in QPSK con-
text), ii) coarse step based on the sum of both pe-
riodograms associated with polarisations X and Y, iii)
coarse and fine step based on an unique periodogram
associated with polarisation X, and iv) coarse and fine
step based on the sum of both periodograms associ-
ated with polarisations X and Y. At each Monte-Carlo
trial, FO is randomly located between 0 and 3.12GHz.
The number of Monte-Carlo runs is fixed to 100.

In Fig. 1, MSE of FO (defined as E[|φ1 − φ̂1,N |2])
is plotted versus OSNR for N = 256 and N = 4096.
One observe that the outliers effect10 at low SNR is
stronger for the methods based on one polarisation
than for those based on both polarisations. We also
confirm that the convergence speed is faster with fine
step than with coarse step. Notice that MSE for FO esti-
mation by using Leven algorithm2 is around 10−5 when
N = 4096 whereas the proposed method achieves a
MSE less than 10−12 for the same value of N .

Fig. 1: MSE vs. OSNR for a) N = 256, b) N = 4096

In Fig. 2, Bit Error Rate (BER) is analysed with re-
spect to OSNR when N = 512. BER of 10−4 is ob-
tained at OSNR=20dB with the proposed method. Us-
ing the usual method leads to an error floor preventing
to reach BER of 10−4.

In Fig. 3, BER is plotted versus frequency offset
∆f when OSNR=19dB and N = 512. The extrema
of considered interval are chosen such that 4∆fTs are
two adjacent FFT points k0/N and (k0 + 1)/N with
k0 = 450. Thanks to the fine step, our algorithm is
insensitive to the location of the frequency offset.

Fig. 2: BER vs. OSNR

Fig. 3: BER vs. frequency offset ∆f

Additional simulations (not plotted in the paper due
to the space limitation) show that the proposed FO es-
timate tolerates more amounts of GVD and PMD. Nev-
ertheless if the estimation algorithm is applied before
CMA algorithm, we have observed a failure probability
of about 5%.

Conclusion
We proposed an accurate non-data aided FO estimator
when QAM modulated signals are considered. Conse-
quently we showed that frequency offset can be prop-
erly mitigated which implies that coherent 16-QAM may
remain an attractive candidate for 100Gbit/s transmis-
sion.
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