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Abstract— This paper introduces a novel family of blind feedfor-
ward nonlinear least-squares (NLS) estimators for joint estimation of
the carrier phase and frequency offset of quadrature amplitude modu-
lations (QAM). An optimal or “matched” nonlinear estimator that ex-
hibits the smallest asymptotic variance within the family of envisaged
NLS-estimators is developed. A class of computationally efficient mono-
mial estimators is also proposed. The asymptotic performance of these
estimators is established in closed-form expression and compared with the
Cramèr-Rao lower bound corresponding to an unmodulated carrier. Fi-
nally, computer simulations are presented to corroborate the theoretical
performance analysis.

I. INTRODUCTION

Quadrature amplitude modulation (QAM) is a highly band-
width efficient transmission technique for digital communica-
tions [10]. One of the problems associated with the burst QAM
transmissions is that of carrier acquisition which for efficiency
reasons must be performed without the use of a preamble [4].

Recently, a number of blind phase estimators for (square and
cross) QAM modulations were reported in [3], [4], [7] and [8],
and analyzed in [10] and [11]. They exploit the angle informa-
tion contained in the fourth or higher-order statistics of the re-
ceived signal. In this paper, a family of non-data aided (NDA)
or blind feedforward nonlinear least-squares (NLS) estimators
for joint estimation of carrier phase and frequency offset of car-
riers that are fully QAM-modulated is proposed and its asymp-
totic (large sample) performance analyzed in a rigorous way.
The proposed NLS estimators exploit a generalized form of the
Maximum Likelihood feedforward algorithm, that was origi-
nally proposed by A. J. Viterbi and A. M. Viterbi as a blind car-
rier phase estimator for fully modulated M-PSK transmissions
[12], [9]. This carrier phase estimator is referred in the liter-
ature as the Viterbi and Viterbi (V&V) algorithm [7, p. 280].
This paper proposes an optimal or “matched” blind nonlinear
carrier estimator for burst QAM modulations that achieves the
smallest asymptotic variance within the family of blind NLS
estimators. Computationally efficient monomial approxima-
tions of the matched estimator are developed, too. The perfor-
mance of these algorithms is compared with the Cramèr-Rao
bound (CRB) of an unmodulated carrier, and shown to exhibit
significant improvements over the standard fourth-power esti-
mators proposed in the literature. Furthermore, the proposed
family of estimators presents high convergence rates and ad-
mits low complexity digital implementations.

II. PROBLEM FORMULATION

Consider the baseband representation of an M-QAM modu-
lated signal transmitted through an AWGN channel. Assume
that filtering is evenly split between transmitter and receiver
so that the overall channel is Nyquist. Filtering the received
waveform through a matched filter and sampling at the right

time instants yields:

x(n) = w(n)ejφ(n) + v(n), n = 0, . . . , N − 1, (1)
φ(n) = θ + 2πFeTn ,

where {w(n)} is the sequence of zero-mean unit variance
(σ2

w := E{|w(n)|2} = 1) independently and identically dis-
tributed (i.i.d.) M-QAM symbols,θ and fe := FeT stand
for carrier phase and frequency offset, respectively,T denotes
the symbol period, and{v(n)} is a zero-mean white Gaus-
sian noise process independent ofw(n) and with variance
σ2

v := E{|v(n)|2}. The Signal-to-Noise Ratio is defined as
SNR:= 10 log10(σ

2
w/σ2

v). Due to space limitations, we will
present our study only for 4-QAM and 16-QAM constellations.
The extension of this work to general square and cross QAM
constellations will be reported in a future paper.

As depicted by (1), the problem that we pose is to es-
timate the unknown phase parameters (θ and Fe) of a har-
monic embedded in unknown multiplicative (w(n)) and addi-
tive noise (v(n)), assuming knowledge of the received samples
{x(n)}N−1

n=0 . Because the input QAM constellation has quad-
rant (π/2) symmetry, it follows that the estimates ofθ andFe

present 4-fold ambiguity. Without any loss of generality, we as-
sume that the unknown phaseθ lies in the interval (−π/4, π/4)
and|2πfe| < π/4.

The solution that we pursue consists of evaluating first cer-
tain generalized moments of the received signal that will re-
move the unwanted multiplicative effects introduced by theM-
QAM modulated sequencew(n). It turns out that the result-
ing problem reduces to the standard problem of estimating the
phase parameters of a constant amplitude harmonic embedded
in additive noise, for which standard NLS-type estimators can
be developed and their asymptotic variance can be established
in closed form expression. The key element in deriving the
optimal estimator consists of selecting the optimal nonlinear
transformation so that the estimator’s asymptotic variance is
minimized. In the next section, we detail this derivation.

III. ESTIMATORS FOR 4-QAM CONSTELLATIONS

A. Matched Nonlinear Carrier Synchronizer

For 4-QAM constellation,w(n) takes a value from the set
{exp(j(π/4 + mπ/2)), m = 0, 1, 2, 3}. Consider the polar
representation:

x(n) = ρ(n)ejϕ(n) , (2)

and define the processy(n) via the nonlinear transformation:

y(n) := F
(
ρ(n)

)
ej4ϕ(n) , (3)

whereF (·) is a general (arbitrary) nonlinear function.



Conditioned on the transmitted signalw(n), x(n) is nor-
mally distributed with the probability density function (pdf)
f(x(n)|w(n) = exp(j(π/4 + mπ/2)), 0 ≤ m ≤ 3) ∼
N (w(n) exp(jφ(n)), σ2

v). Throughout the paper, the notation
f(·) will stand for the pdf of certain RVs. Due to (2), it follows
that:

f
(
ρ(n), ϕ(n)|w(n) = ej( π

4 + mπ
2 )

)
=

ρ(n)

πσ2
v

e−(ρ2(n)+1)/σ2
v

· e2ρ(n) cos[ϕ(n)−π/4−mπ/2−φ(n)]/σ2
v . (4)

Based on (4), the joint and marginal pdf ofρ(n) andϕ(n) take
the expressions:

f
(
ρ(n), ϕ(n)

)
=

1

4

3∑

m=0

f
(
ρ(n), ϕ(n)|w(n) = ej( π

4 +mπ
2 )

)

=
1

4

3∑

m=0

ρ(n)

πσ2
v

e
−

ρ2(n)+1

σ2
v e

2ρ(n)

σ2
v

cos[ϕ(n)−π
4 −

mπ
2 −φ(n)]

, (5)

f
(
ρ(n)

)
=

∫ π

−π

f
(
ρ(n), ϕ(n)

)
dϕ(n)

=
2ρ(n)

σ2
v

e−(ρ2(n)+1)/σ2
vI0

(2ρ(n)

σ2
v

)
, (6)

whereI0(·) stands for the zero-order modified Bessel function
of the first kind [1, eq. (9.6.16)]. Using (5), some calculations
show that:

E{y(n)} = E
{
F

(
ρ(n)

)
ej4ϕ(n)

}
= Cej(π+4φ(n)) , (7)

C :=
∣∣E{y(n)}

∣∣ = E
{
F

(
ρ(n)

)I4

( 2ρ(n)
σ2

v

)

I0

( 2ρ(n)
σ2

v

)
}

, (8)

whereIk(·) denotes the kth-order modified Bessel function of
the first kind [1, eq. (9.6.19)], the expectation in (8) is with
respect to (w.r.t.) the marginal distribution ofρ(n) (6) and the
resulting amplitudeC is a real constant. Sincew(n) andv(n)
are i.i.d. and mutually independent, it follows thatu(n) :=
y(n) − E{y(n)} is i.i.d., too. Consequently,

y(n) = Cej(π+4φ(n)) + u(n) , n = 0, 1, . . . , N − 1 , (9)

andy(n) can be viewed as a constant amplitude harmonic em-
bedded in white noise. Note that, in general,u(n) is not circu-
lar.

Let ω := [ −C ω0 ω1]
T = [ −C 4θ 8πfe]

T , and introduce
the following NLS estimator (c.f. [2]):

ω̂ = argmin
ω̄

J(ω̄) ,

J(ω̄) =
1

N

N−1∑

n=0

∣∣y(n) − C̄ej
∑1

l=0 ω̄ln
l∣∣2 . (10)

After some algebra manipulations, the NLS estimates of
ωl, l = 0, 1, are obtained as [2]:

ω̂1 = argmax
ω̄1

1

N

∣∣
N−1∑

n=0

y(n)e−jω̄1n
∣∣2,

ω̂0 = angle
{
−

N−1∑

n=0

y(n)e−jω̂1n
}

.

One can observe that the frequency offset estimator can be
implemented efficiently by means of the Fast Fourier Trans-
form (FFT) algorithm applied on the sequencey(n). It is well-
known that estimator (10) is asymptotically unbiased and con-
sistent, and also almost asymptotically efficient at high SNR
[2] and [5].

Following a procedure similar to the one presented in [2],
one can express the asymptotic variancesavar(ω̂l) of the NLS-
estimateŝωl, l = 0, 1, as:

avar(ω̂l) =
B −D
C2

· 1

2N2l+1
· 1

2l + 1

[ (l + 2)!

(l!)2(1 − l)!

]2

, (11)

B := E{|y(n)|2} = E
{
F 2

(
ρ(n)

)}
, (12)

D :=
∣∣E{y2(n)}

∣∣ = E
{
F 2

(
ρ(n)

)I8

( 2ρ(n)
σ2

v

)

I0

( 2ρ(n)
σ2

v

)
}

. (13)

Next, we determine an optimal or “matched” nonlinearity
F (·) which minimizes the asymptotic variance (11). Since in
(11), onlyB, C, D depend onF (·), finding an optimalF (·)
resorts to solving the optimization problem:

Fmin

(
ρ(n)

)
= argmin

F

B −D
C2

.

Using (8), (12) and (13),Fmin(·) is obtained using Cauchy-
Schwarz’ inequality and admits the expression:

Fmin

(
ρ(n)

)
= λ

I4

( 2ρ(n)
σ2

v

)

I0

( 2ρ(n)
σ2

v

)
− I8

( 2ρ(n)
σ2

v

) , (14)

whereλ is an arbitrary nonzero constant. The asymptotic vari-
ances of̂ωl, l = 0, 1, corresponding to the matched nonlinear-
ity (14) can be expressed as:

avarmin(ω̂l) =
1

2N2l+1
· 1

2l + 1
·
[ (l + 2)!

(l!)2(1 − l)!

]2

· 1

E
{ I2

4

(
2ρ(n)

σ2
v

)

I2
0

(
2ρ(n)

σ2
v

)
−I0

(
2ρ(n)

σ2
v

)
I8

(
2ρ(n)

σ2
v

)
} . (15)

B. Monomial Nonlinear Estimators

As can be observed from (14),Fmin

(
ρ(n)

)
is a function that

depends on the SNR. This is not a restrictive requirement since
blind SNR estimators that exhibit good performance can be
used. However, if estimating the SNR is not desirable, we
show next that there exist optimal monomial approximations
ρk(n), k = 0, . . . , 4, of the matched nonlinearityFmin

(
ρ(n)

)
that have almost the same asymptotic variance as (15) and their
performance does not necessitate knowledge of the SNR.

It turns out that at high SNRs (SNR→ ∞ dB ), based on [9,
eq. (15)], the optimal monomial isGh

(
ρ(n)

)
= ρ(n). Simi-

larly, at low SNRs (SNR� 0 dB), based on [9, eq. (16)], the
optimal monomial isGl

(
ρ(n)

)
= ρ4(n).



Define the class of processesyk(n), n = 0, . . . , N , via the
monomial transformations:

yk(n) = ρk(n)ej4ϕ(n) , k = 0, . . . , 4 . (16)

Now it is interesting to study the asymptotic performance of
the following class of NLS estimators:

ω̂
(k) = arg min

ω̄
(k)

1

N

N−1∑

n=0

∣∣yk(n) − C̄ej
∑ 1

l=0 ω̄
(k)
l

nl ∣∣2 , (17)

which can be viewed as a special case of (10) and whose
asymptotic variances are given by:

avar(ω̂
(k)
l )=

Bk −Dk

C2
k

· 1

2N2l+1
· 1

2l + 1
·
[ (l + 2)!

(l!)2(1 − l)!

]2

(18)

Bk := E{|yk(n)|2} = E{ρ2k(n)} ,

Ck := |E{yk(n)}| = |E{ρk(n)ej4ϕ(n)}| ,

Dk := |E{y2
k(n)}| = |E{ρ2k(n)ej8ϕ(n)}| .

Exploiting (6) and [6, eq. (6.643.4)], the following relation
was derived in [12, (A17)]:

Bk =
k∑

q=0

(
k

q

)2

σ2q
v · q! . (19)

Using (6), it turns out that:

E{yk(n)} =
1

αk
ej(π+4φ(n))e−

γ
2

∫
∞

0

ζk+1e−
ζ2

2 I4(αζ)dζ ,

where: α :=
√

2/σv, γ := α2 andζ := αρ(n). Based on
[6, eq. (6.643,2)] and [1, eq. (13.1.32)],Ck can be expressed in
terms of the confluent hypergeometric functionΦ(·, ·, ·):

Ck =
Γ(k

2 + 3)e−
γ
2

Γ(5)σ4−k
v

Φ
(k

2
+ 3, 5,

γ

2

)
. (20)

Similarly,

Dk =
Γ(k + 5)e−

γ
2

Γ(9)σ8−2k
v

Φ
(
k + 5, 9,

γ

2

)
. (21)

Following a similar approach to that presented in [12], one
can obtain a slightly more compact expression for the confluent
hypergeometric function in (21):

Dk =
1

γk

[
γk

4+k∑

p=0

p!

(
4 + k

p

)(
3 − k + p

p

)(−2

γ

)p

+(−1)5+k2ke−
γ
2

(2

γ

)k+1 3−k∑

p=0

(
4 + k + p

p

)

· (4 + k)!

(3 − k − p)!

( 2

γ

)p
]

, if k = 0, 1, 2, 3 ,

Dk = 1 , if k = 4 . (22)

Plugging (19), (20) and (21) back into (18), a closed-form
expression for the asymptotic variancesavar(ω̂

(k)
l ) is obtained

for k = 0, . . . , 4 andl = 0, 1. Note that at high SNR (→ ∞
dB), using [1, eq. (13.1.4)], some calculations show that:

lim
SNR→∞

Ck = 1 , (23)

for anyk = 0, 1, . . . , 4. Hence, based on (18), (19), (22) and
(23) we obtain:

lim
SNR→∞

avar(ω̂
(k)
l ) ∝ 1

SNR
,

which does not depend on the estimator orderk, i.e., it turns
out that at high SNRs, the performance of estimators (17) for
different ordersk is asymptotically the same.

IV. ESTIMATORS FOR 16-QAM CONSTELLATIONS

Following a similar approach to the one presented above, one
can develop matched nonlinear estimators for joint estimation
of the carrier phase and frequency offset for 16-QAM modula-
tions.

A. Matched Nonlinear Carrier Synchronizer

Fig. 1 illustrates a representation of a 16-QAM constellation
in terms of four 4-QAM constellations, each of them defined
by a specific amplitude and phase shift. Thus, for a generic
pointw(n) of the 16-QAM constellation, it holds that:

w(n) ∈
{ 1√

5
ej(π/4+mπ/2), ej(η0+mπ/2), ej(−η0+mπ/2),

3√
5
ej(π/4+mπ/2), m = 0, · · · , 3

}
, η0 := tan−1(1/3).

−4 −3 −2 −1 0 1 2 3 4
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0
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0

Fig. 1. 16-QAM Constellation

Therefore, we can express the joint and marginal pdf ofρ(n)
andϕ(n) as:

f
(
ρ(n), ϕ(n)

)
=

1

16

ρ(n)

πσ2
v

{ 3∑

m=0

e
−

1
σ2

v
(ρ2(n)+ 1

5 )
e

2ρ(n)
√

5σ2
v

cos[ϕ(n)−π
4 −

mπ
2 −φ(n)]

+

3∑

m=0

e
−

1
σ2

v
(ρ2(n)+ 9

5 )
e

6ρ(n)
√

5σ2
v

cos[ϕ(n)−π
4 −

mπ
2 −φ(n)]



+

3∑

m=0

e
−

1
σ2

v
(ρ2(n)+1)

e
2ρ(n)

σ2
v

cos[ϕ(n)−η0−
mπ
2 −φ(n)]

+

3∑

m=0

e
−

1
σ2

v
(ρ2(n)+1)

e
2ρ(n)

σ2
v

cos[ϕ(n)+η0−
mπ
2 −φ(n)]

}
,

f
(
ρ(n)

)
=

ρ(n)

2σ2
v

{
e
−

1
σ2

v
(ρ2(n)+ 1

5 )
I0

(2ρ(n)√
5σ2

v

)
+

e
−

1
σ2

v
(ρ2(n)+ 9

5 )
I0

(6ρ(n)√
5σ2

v

)
+ 2e

−
1

σ2
v

(ρ2(n)+1)
I0

(2ρ(n)

σ2
v

)}
.

Similarly to the derivations presented in Section III-a, bycon-
sidering the processy(n) (see eq. (3)), it follows thaty(n) can
be interpreted as the sum (9). Based on the above expressions,
it is not difficult to find that the NLS estimator (10) is asymp-
totically unbiased and consistent in the presence of 16-QAM
constellations, and the asymptotic variances ofω̂l, l = 0, 1,
are still given by (11), whereB, C, D take the following ex-
pressions:

B =

∫
∞

0

F 2
(
ρ(n)

)
ξ1

(
ρ(n)

)
dρ(n) , (24)

C =

∫
∞

0

F
(
ρ(n)

)
ξ2

(
ρ(n)

)
dρ(n) , (25)

D =

∫
∞

0

F 2
(
ρ(n)

)
ξ3

(
ρ(n)

)
dρ(n) , (26)

with

ξ1

(
ρ(n)

)
:= f

(
ρ(n)

)
,

ξ2

(
ρ(n)

)
:=

ρ(n)

2σ2
v

e
−

ρ2(n)

σ2
v

{
e
−

1
5σ2

v I4

(2ρ(n)√
5σ2

v

)
+

e
−

9
5σ2

v I4

(6ρ(n)√
5σ2

v

)
− 2 cos(4η0)e

−
1

σ2
v I0

(2ρ(n)

σ2
v

)}
,

ξ3

(
ρ(n)

)
:=

ρ(n)

2σ2
v

e
−

ρ2(n)

σ2
v

{
e
−

1
5σ2

v I8

(2ρ(n)√
5σ2

v

)
+

e
−

9
5σ2

v I8

(6ρ(n)√
5σ2

v

)
+ 2 cos(8η0)e

−
1

σ2
v I8

(2ρ(n)

σ2
v

)}
.

Using (24)–(26) and the Cauchy-Schwarz’ inequality to
minimize (11), one can obtain the optimal nonlinearity and its
corresponding asymptotic variance:

Fmin

(
ρ(n)

)
= λ

ξ2

(
ρ(n)

)

ξ1

(
ρ(n)

)
− ξ3

(
ρ(n)

) , (27)

avarmin(ω̂l) =
1

2N2l+1
· 1

2l + 1
·
[ (l + 2)!

(l!)2(1 − l)!

]2

· 1
∫
∞

0

ξ2
2(ρ(n))

ξ1(ρ(n))−ξ3(ρ(n))dρ(n)
. (28)

B. Monomial Nonlinear Estimators

Unfortunately, due to the complicated form ofξi

(
ρ(n)

)
, i =

1, 2, 3, it appears difficult to express an optimal approximation

of (27) in terms of simple monomial transformations. However,
because of their computational efficiency and simplicity, it is
still of interest to study the performance of monomial nonlinear
estimators for higher-order QAM constellations.

Adopting a similar procedure to the one presented in the
previous section, one can find that the asymptotic variances
of monomial nonlinear estimates:̂ωk

l , l = 0, 1, and k =
0, · · · , 4, in the case of 16-QAM constellations can still be ex-
pressed by (18), where:

Bk =
σ2k

v

4

k∑

q=0

(
k

q

)2

q!
2γk−q

1 + γk−q
2 + γk−q

3

2k−q
,

Ck =
σk

vΓ(k
2 + 3)

4Γ(5)

[
e−

γ2
2

(γ2

2

)2
Φ

(k

2
+ 3, 5,

γ2

2

)

+ e−
γ3
2

(γ3

2

)2
Φ

(k

2
+ 3, 5,

γ3

2

)

− 2 cos(4η0)e
−

γ1
2

(γ1

2

)2
Φ

(k

2
+ 3, 5,

γ1

2

)]
,

Dk =
σ2k

v Γ(k + 5)

4Γ(9)

[
e−

γ2
2

(γ2

2

)4
Φ

(
k + 5, 9,

γ2

2

)

+ e−
γ3
2

(γ3

2

)4
Φ

(
k + 5, 9,

γ3

2

)

+ 2 cos(8η0)e
−

γ1
2

(γ1

2

)4
Φ

(
k + 5, 9,

γ1

2

)]
,

with γ1 := 2/σ2
v, γ2 := 2/5σ2

v andγ3 := 18/5σ2
v. In the

next section, we will compare the performance of monomial
nonlinear estimators to that of the optimal estimator (28).

V. SIMULATION RESULTS

In this section, we study thoroughly the performance of es-
timators (10) and (17) for 4-QAM and 16-QAM constellations
using computer simulations. The experimental mean-squareer-
ror (MSE) results of (17) will be compared with the theoretical
asymptotic bounds. The experimental results are obtained by
performing a number of 200 Monte Carlo trials and the addi-
tive noise is generated as zero-mean Gaussian white noise with
varianceσ2

v .
In this section, we also compare the asymptotic performance

of the proposed estimators w.r.t. the CRB of an unmodulated
carrier, which has the expression (c.f. [5]):

CRB(ω̂l) =
σ2

v

2N2l+1
· 1

2l + 1
·
[ (l + 2)!

(l!)2(1 − l)!

]2

.

Experiment 1-Asymptotic variances of estimators (14)-(10) and
(16)-(17): Figs. 2 and 3 illustrate the theoretical asymptotic
variances of estimators (10) and (17) versus SNR. Since the
difference between the asymptotic variances ofθ̂ and F̂e is
just a constant for a given SNR, only the variance ofF̂e

is plotted. The theoretical asymptotic variances are com-
pared with the CRB. Fig. 2 depicts the performance loss
of the asymptotic variances (15) and (18) w.r.t. CRB (i.e.,
−10 log10[avar(ω̂

(k)
l )/CRB(ω̂l)]) for a 4-QAM modulation. It

can be seen that the proposed estimators exhibit good accuracy.
In high SNR range, their performance coincides with the CRB.



In low SNR range (near 0 dB), the estimators (17) exhibit good
performance only for low order nonlinearity orders (k = 1 and
2). From Fig. 2, we can also observe that at high SNRs, the
monomial estimators (16)-(17) for different ordersk exhibit
the same asymptotic variance in the case of 4-QAM constel-
lations. Fig. 3 depicts the asymptotic variances (15) and (18)
versus SNR, assuming a 16-QAM constellation and the num-
ber of samplesN = 500. Opposed to the results obtained in
the case of 4-QAM modulations, the monomial approximation
corresponding tok = 4 appears to exhibit good performance
at low SNRs. However, at high SNRs, the optimum nonlinear
estimator provides a significant improvement.
Experiment 2-Comparison of MSE of estimators (17) with the
theoretical bounds: In Figs. 4 – 6, the theoretical bounds (18)
are compared with experimental MSEs of the estimators (17).
The results are plotted versus SNR in Fig. 4, assumingN = 50,
θ = 0, FeT = 0.011 and 4-QAM modulation, while in Figs. 5–
6 the following parameters are adoptedN = 500, θ = 0.2,
FeT = 0.05 and 16-QAM constellation. These figures show
that for medium and high SNR, the experimental results are
well predicted by the asymptotic bounds derived in this paper.

VI. CONCLUSIONS

In this paper, we have introduced and analyzed a family of
blind feedforward joint carrier phase and frequency offsetesti-
mators for QAM modulations. A matched nonlinear estimator
together with a class of monomial nonlinear estimators werein-
troduced and their performance established. In a future paper,
we will extend this work to large dimensional QAM constella-
tions.
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reer Award No. CCR-0092901.
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Fig. 2. Performance loss w.r.t. CRB versus SNR for 4-QAM modulation.
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Fig. 3. Theoretical performance ofFeT versus SNR for 16-QAM modulation.
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Fig. 4. MSEs ofF̂eT versus SNR for 4-QAM modulation (zero-padding
1024).
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Fig. 5. MSEs of̂θ versus SNR for 16-QAM modulation (zero-padding 8192).
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Fig. 6. MSEs ofF̂eT versus SNR for 16-QAM modulation (zero-padding
8192).


