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Abstract— This paper introduces a novel family of blind feedfor- time instants yields:
ward nonlinear least-squares (NLS) estimators for joint eimation of
the carrier phase and frequency offset of quadrature amplitde modu-
lations (QAM). An optimal or “matched” nonlinear estimator that ex- z )
hibits the smallest asymptotic variance within the family d envisaged gi)(n
NLS-estimators is developed. A class of computationally gfient mono-
mial estimators is also proposed. The asymptotic performare of these . . .
estimators is established in closed-form expression andpared with the ~ Where {w(n)} is the sequence of zero-mean unit variance
Cramer-Rao lower bound corresponding to an unmodulated carrier Fi- (02 := E{|w(n)|?} = 1) independently and identically dis-
nally, computer simulations are presented to corroborate fie theoretical  {rihuted (i.i.d.) M-QAM symbols¢ and f. := F.T stand
performance analysis. for carrier phase and frequency offset, respectivEldenotes

the symbol period, andv(n)} is a zero-mean white Gaus-
I. INTRODUCTION sian noise process independentwofn) and with variance
_ _ _ _ o2 := E{Jv(n)|?}. The Signal-to-Noise Ratio is defined as

‘Quadrature amplitude modulation (QAM) is a highly bandsNR= 1010g,,(c2,/02). Due to space limitations, we will
width efficient transmission technique for digital comnasi I%resent our study only for 4-QAM and 16-QAM constellations.
tions [10]. One of the problems associated with the burst QAllhe extension of this work to general square and cross QAM
transmissions is that of carrier acquisition which for éfficy  onstellations will be reported in a future paper.
reasons must be performed without the use of a preamble [4]. A5 depicted by (1), the problem that we pose is to es-

Recently, a number of blind phase estimators for (square afhate the unknown phase parametetsaqd F.) of a har-
cross) QAM modulations were reported in [3], [4], [7] and,[8] monic embedded in unknown multiplicative:()) and addi-
and analyzed in [10] and [11]. They exploit the angle informaive noise ¢(n)), assuming knowledge of the received samples

tion contained in the fourth or higher-order statisticsta te-  1,,)1N-1  Because the input QAM constellation has quad-

w(n)ejd’(”) +v(n), n=0,....,.N—1, (1)
0+ 2rF.Tn,

(n

ceived signal. In this paper, a family of non-data aided (DA g (w]bz)oéymmetry, it follows that the estimates @and £,
or blind feedforward nonlinear least-squares (NLS) e present 4-fold ambiguity. Without any loss of generalitg, as-

for joint estimation of carrier phase and frequency offS&0-  ¢\;me that the unknown phastes in the interval {7 /4, 7 /4)

riers that are fully QAM-modulated is proposed and its asyMRind|2r f.| < /4.

totic (large sample) performance analyzed in a rigorous way The sojution that we pursue consists of evaluating first cer-
The proposed NLS estimators exploit a generalized formef thyiy generalized moments of the received signal that wll re
Maximum Likelihood feedforward algorithm, that was origi-mgye the unwanted multiplicative effects introduced bylthe

nally proposed by A. J. Viterbi and A. M. Viterbi as a blind €ar QAM modulated sequence(n). It turns out that the result-

rier phase estimator for fully modulated M-PSK transmissio jnq problem reduces to the standard problem of estimatiag th
[12], [9]. This carrier phase estimator is referred in theri yhase parameters of a constant amplitude harmonic embedded
ature as the Viterbi and Viterbi (V&V) algorithm [7, p. 280].iy additive noise, for which standard NLS-type estimatas ¢

This paper proposes an optimal or “matched” blind nonlinegg geveloped and their asymptotic variance can be estatlish
carrier estimator for burst QAM modulations that achieVes t i, cjosed form expression. The key element in deriving the

smallest asymptotic variance within the family of blind N'-Soptimal estimator consists of selecting the optimal nadin

estimators. Computationally efficient monomial approximaransformation so that the estimator's asymptotic vagaisc
tions of the matched estimator are developed, too. The perfg,inimized. In the next section, we detail this derivation.

mance of these algorithms is compared with the Cramer-Rao

bound (CRB) of an unmodulated carrier, and shown to exhibif]|. ESTIMATORS FOR 4-QAM CONSTELLATIONS

significant improvements over the standard fourth-powt+ es Matched Nonli Carri hroni

mators proposed in the literature. Furthermore, the pr@qbof" atc onlinear Carrier Synchronizer

family of estimators presents high convergence rates and adFor 4-QAM constellationyv(n) takes a value from the set

mits low complexity digital implementations. {exp(j(n/4 + m=/2)), m = 0,1,2,3}. Consider the polar
representation:

Il. PROBLEM FORMULATION z(n) = p(n)el?™ (2)

Consider the baseband representation of an M-QAM modand define the procegsn) via the nonlinear transformation:
lated signal transmitted through an AWGN channel. Assume ,
that filtering is evenly split between transmitter and reeei y(n) := F(p(n))er*e™) (3)
so that the overall channel is Nyquist. Filtering the reediv
waveform through a matched filter and sampling at the righthereF'(-) is a general (arbitrary) nonlinear function.



Conditioned on the transmitted signaln), =(n) is nor- . phly o
mally distributed with the probability density functiondf) @o =angle{ — Y y(n)e "}
flxz(n)|wn) = exp(j(r/4 + mn/2)), 0 < m < 3) ~ n=0
N (w(n)exp(jp(n)), o). Throughout the paper, the notation One can observe that the fre i
. » Y ) i quency offset estimator can be
/() will stand for the pdf of certain RVs. Due to (2), it follows iy niemented efficiently by means of the Fast Fourier Trans-

that: form (FFT) algorithm applied on the sequenge). It is well-
j(x 4 me) p(n) (P m)41) )0 known that estimator (10) is asymptotically unbiased and co
f(p(n), p(n)w(n) = etat2)) = e T sistent, and also almost asymptotically efficient at highRSN
v [2] and [5].

- e2p(n)cosle(n)—m/4=mm/2=¢(m)]/o  (4)  Following a procedure similar to the one presented in [2],
o ) one can express the asymptotic variances(w;) of the NLS-
Based on (4), the joint and marginal pdflf») andy(n) take  estimatesy;, [ = 0,1, as:
the expressions:

. B-D 1 1 (1+2)!
3 avar(w;) = . : [ }, (11)
1 (x o me Cz  2NZHT 2l 1 L(11)2(1 —1)!
Flp(n),o(n)) = 2 > Fp(n), p(n)|w(n) = /3757
4 UZ::O ( ) B := E{ly(n)|*} = E{F*(p(n))} . (12)
3 2 2p(n)
1 p(n) — R 200 coglo(n)— 7 —mn—g(n)] Is(*557)
P O DB = B0 ) @9
fp(n)) = / f(p(n), o(n))de(n) Next, we determine an optimal or “matched” nonlinearity
7 F(-) which minimizes the asymptotic variance (11). Since in
_ 20(0) __(p2my1ys02 g (2P(0) 6) (11), onlyB, C, D depend on¥(-), finding an optimalF'(-)
5 € 0 2 ) (6) . “ .
oy oy resorts to solving the optimization problem:
wherel, (-) stands for the zero-order modified Bessel function o _ . B-D
of the first kind [1, eq. (9.6.16)]. Using (5), some calcudat min(p(n)) = arg mm —s3

show that: . . . :
Using (8), (12) and (13)Fmin(-) is obtained using Cauchy-

E{y(n)} = E{F(p(n))e?*¢(M} = ced"H4¢(m) = (7)  Schwarz’ inequality and admits the expression:
2p(n
I ( p( )) 14(%;))

4\7 52
C:=[E{y(n)}| = E{F(P(n))W} ) (8) Fain(p(n)) = A (2600 g (200
2 o(Toz) — 1s(552

P
o.’U

(14)

wherely(-) denotes the kth-order modified Bessel function afhere) is an arbitrary nonzero constant. The asymptotic vari-
the first kind [1, eq. (9.6.19)], the expectation in (8) istwit ances ofy;, | = 0, 1, corresponding to the matched nonlinear-
respect to (w.r.t.) the marginal distribution afn) (6) and the ity (14) can be expressed as:
resulting amplitud€ is a real constant. Sinee(n) andv(n
are i.i.d. and mutually independent, it follows thafn) := 1 1 [ (l+2)! r

l )

avarmin (W) =

y(n) — E{y(n)}isi.i.d., too. Consequently, TONTHL i1 Lan2(1 -1
. 1
y(n) = Cedm M) Ly(n) , n=0,1,...,N -1, (9) () . (15)
4 g—%

andy(n) can be viewed as a constant amplitude harmonic em- E{ 2 (M)—Io (M)Is (m) }
bedded in white noise. Note that, in genetdl,) is not circu- 0N el % %
lar.

Letw := [ —C wo wi]" = [ —C 40 8nf]", andintroduce 5 \onomial Nonlinear Etimators

the following NLS estimator (c.f. [2]): ) )
As can be observed from (14);,in (p(n)) is a function that

@ =argmin J(®@) , depends on the SNR. This is not a restrictive requiremeonésin
d blind SNR estimators that exhibit good performance can be

~ 1 Nl 2 S ot |2 used. However, if estimating the SNR is not desirable, we
J@)=+ > Jyln) — Cel Zizo@m |, (10)  show next that there exist optimal monomial approximations
n=0 p"(n), k = 0,...,4, of the matched nonlinearit§,,i, (p(n))

mat have almost the same asymptotic variance as (15) aind the
performance does not necessitate knowledge of the SNR.
It turns out that at high SNRs (SNR o dB ), based on [9,
] Nl eq. (15)], the optimal monomial i€, (p(n)) = p(n). Simi-
&1 = arg max — | Z y(n)e*JW1n|27 larly, at low SNRs (SNR« 0 dB), based on [9, eq. (16)], the
@ N optimal monomial iS5 (p(n)) = p*(n).

After some algebra manipulations, the NLS estimates
wy, 1 = 0,1, are obtained as [2]:

n=0



Define the class of processggn), n = 0,..., N, viathe Plugging (19), (20) and (21) back into (18), a closed-form

monomial transformations: expression for the asymptotic varianeesr(w*)) is obtained
fork =0,...,4andl = 0,1. Note that at hlgh SNR-{ oo

_ k 4o (n _
yr(n) = pE ()™ k=0,....4. (16) gp), using [1, eq. (13.1.4)], some calculations show that:
Now it is interesting to study the asymptotic performance of lim Cp=1, (23)
the following class of NLS estimators: SNR—00

foranyk = 0,1,...,4. Hence, based on (18), (19), (22) and

o) ,argmm_ Z lyi (n) e Tio@Pn! ‘ (17) (23) we obtain:

(k> 0 1
" lim avar(® l( )) —
which can be viewed as a special case of (10) and whose SNR—o0 SNR
asymptotic variances are given by: which does not depend on the estimator orker.e., it turns
out that at high SNRs, the performance of estimators (17) for

Br — D 1 1 [+2)! 12 different orders: is asymptotically the same.
avar(@) ) === T T [(1!()2(1 _)1)!} (18) S
2k ok IV. ESTIMATORS FOR 16-QAM CONSTELLATIONS
By, = E{|yx(n)["} = E{p (”)4} ; Following a similar approach to the one presented above, one
Cr == |E{yr(n)}| = |[E{p*(n)e?**™}|, can develop matched nonlinear estimators for joint estonat
= [E{2(n)}| = |E{p2k(n)ej8<,o(n)}| . of the carrier phase and frequency offset for 16-QAM modula-

tions.

Exploiting (6) and [6, eq. (6.643.4)], the following relai

was derived in [12, (AL7)]: A. Matched Nonlinear Carrier Synchronizer

Fig. 1 illustrates a representation of a 16-QAM consteailati

k 2 in terms of four 4-QAM constellations, each of them defined
B = Z ( ) o2 . ql . (19) by a specific amplitude and phase shift. Thus, for a generic
q=0 pointw(n) of the 16-QAM constellation, it holds that:
Using (6), it turns out that: w(n) € {L{)e]’(ﬂ'/4+mﬂ'/2)7 eI(mo+mm/2) - gi(—mo+mm/2)
1 . 5 0 2
— _— pi(mt+de(n)) ,—3 k+1,—% 3 _
B{u(n)} = e/t [T e F a0 L s a8
where: o := /2/0,, v := o? and( := ap(n). Based on ‘
[6, eq. (6.643,2)] and [1, eq. (13.1.32)], can be expressed in - . . .
terms of the confluent hypergeometric functib, -, -):
Dk +3)e 3 /k ¥
Cp = —2—7——®(=+3,5 ). 20 s ° ° .
F () (3+353) (20) \q
Similarly, /'”0
Ik + 5)6_% ~ Ll
Dy=——F——P(k+59,=). 21 :
P T(9)0r ( *o ’2) (1) _
Following a similar approach to that presented in [12], one Y L L
can obtain a slightly more compact expression for the conflue Coom om0 s e
hypergeometric function in (21): Fig. 1. 16-QAM Constellation
Lk _ NS Therefore, we can express the joint and marginal p@{ of
1 44+k\ (3—k+p 2\? ' p J ginalp
D= — [4* p!( )< > — andp(n) as
* 7’“[ pZ::O p p (7) e(n)
_ Fp(n), ¢(n)) =
A k+1 44+ k+p .
5+kok, —2
+H(=1)T 2 ( ) Z( ) ip(n){ i:ef(%%(p?(n)%) 2041) cosfip(n)— § ~ 757 ~(n)]
(41 k) p=0 16 o2 —
44+ K) s2\P !
— = if k=0,1,2,3 3
(3—k—p)!<’y) } ! e Z ()+3) Y cosle(m) =~ 4 (n)]

Dp=1,ifk=4. (22)

m=0



of (27) in terms of simple monomial transformations. Howeve
because of their computational efficiency and simplicitys i
m=0 still of interest to study the performance of monomial noeér

+§:e‘ﬁ(”2(")+” 2602) Gosip(n) o — 257 — ()]

3 L2n 262 Gosfip(m) 0 — % — (. estimators for higher-order QAM constellations.
+Y e 7 (PPt +1) 7oz coslpln)tmo o )]}, Adopting a similar procedure to the one presented in the
m=0 previous section, one can find that the asymptotic variances
(n) [ —L(Pw+1) . (2p(n) of monomial nonlinear estimatesvF, | = 0,1, and k =
flp(n) = S—51e *'Io - 0,---,4, in the case of 16-QAM constellations can still be ex-
202 V52
v Ty pressed by (18), where:
~ L (Pm)+2) , (6p(n) - L (m+1), (2p(n)
7o "o +2e 7 Iy . k 2 k— k—
(\/503) ( oy )} Bkza—?’kZ(k) q!ml "+7k Tt g "’
Similarly to the derivations presented in Section Ill-a,doy- 4 =0 \1 28
sidering the procesg(n) (see eg. (3)), it follows thaj(n) can oFT(E + 3) k
be interpreted as the sum (9). Based on the above expressions (¢, = 22 [65 (l) q)<_ +3,5, E)
it is not difficult to find that the NLS estimator (10) is asymp- 4r'(5) 2 2 2
totically unbiased and consistent in the presence of 16-QAM —3 (0324 k 35, 3
constellations, and the asymptotic variancesogf! = 0,1, te (3) (5 + )
are still given by (11), wher8, C, D take the following ex- W om k -
pressions: — 2cos(4mp)e” 2 (7) <I>(§ +3,5,?)] ,
o o2k
B= i F?(p(n))& (p(n))dp(n) , (24) Dy = F ’”5 { —72 k 5,9, )
(oo}
c=/ F(p(n))é(p(n))dp(n) , (25) <1>( +5,9, )
o 2 _n o7
D= F?(p(n))&s(p(n))dp(n) , (26) + 2 cos(8mo)e” 2 (— 5 ) <I><k: +5,9, )
0
with with 1 := 2/02, 75 := 2/502 andys := 18/502. In the
¢ ( (n)) . f( (n)) next section, we will compare the performance of monomial
1 = ’ nonlinear estimators to that of the optimal estimator (28).
p(n) —2e ¢ 1 2p(n)
& (p(n)) = 552 ¢ {e 14(\/502) + V. SIMULATION RESULTS
3 6p(n) : e 2/)(;;) In this section, we study thoroughly the performance of es-
I —2cos(4ng)e °% Iy , timators (10) and (17) for 4-QAM and 16-QAM constellations
Ul
\/_UU using computer simulations. The experimental mean-sarare
p(n) —22m 1 ror (MSE) results of (17) will be compared with the theoratic
&3 (P(n)) =T e voqe Tilg asymptotic bounds. The experimental results are obtaiged b
20 2
(n) v (v) performing a number of 200 Monte Carlo trials and the addi-
6p - n tive noise is generated as zero-mean Gaussian white ndise wi
53 o2 .
¢ vl (\/_g ) + 2 cos(8mo)e 18( )} variances2.

In this section, we also compare the asymptotic performance

Using (24)—(26) and the Cauchy-Schwarz' inequality t+§f the proposed estimators w.r.t. the CRB of an unmodulated
minimize (11), one can obtain the optimal nonlinearity asd i carrier, which has the expression (c.f. [5]):

corresponding asymptotic variance: CRB(G) — o2 1 { (1+2)! r
Fo (o) = A 5202() - aNZHL 2+ 1 Lz -0
min { P(TY == 3
€1 (p(n)) — & (p(n)) Experiment 1-Asymptotic variancesof estimators(14)-(10) and
. 1 1 (I+2) 72 (16)-(17): Figs. 2 and 3 illustrate the theoretical asymptotic
avarmin (W) = ON2+ 9141 {(“)2(1 _ l)!} variances of estimators (10) and (17) versus SNR. Since the
1 difference between the asymptotic varianced adnd F, is
O : (28) just a constant for a given SNR, only the variance fof
fo mdﬂ(n) is plotted. The theoretical asymptotic variances are com-
pared with the CRB. Fig. 2 depicts the performance loss
] . . of the asymptotic variances (15) and (18) w.r.t. CRB (i.e.,
B. Monomial Nonlinear Estimators —101logy,[avar(&®) /CRB(&)]) for a -QAM modulation. It
Unfortunately, due to the complicated form@(p( )), = canbe seenthat the proposed estimators exhibit good agcura

1,2, 3, it appears difficult to express an optimal apprOX|mat|om high SNR range, their performance coincides with the CRB.



In low SNR range (near 0 dB), the estimators (17) exhibit good
performance only for low order nonlinearity ordeks=€ 1 and -
2). From Fig. 2, we can also observe that at high SNRs, the,
monomial estimators (16)-(17) for different ordérsexhibit F
the same asymptotic variance in the case of 4-QAM constel- ¢
lations. Fig. 3 depicts the asymptotic variances (15) a®) (1 -
versus SNR, assuming a 16-QAM constellation and the num-% .
ber of samplesV = 500. Opposed to the results obtained in

the case of 4-QAM modulations, the monomial approximation
corresponding t& = 4 appears to exhibit good performance

—a

at low SNRs. However, at high SNRs, the optimum nonlinearrig. 2. performance loss w.r.t. CRB versus SNR for 4-QAM miaiiton.

estimator provides a significant improvement.
Experiment 2-Comparison of MSE of estimators (17) with the

theoretical bounds: In Figs. 4 — 6, the theoretical bounds (18) =~
are compared with experimental MSEs of the estimators (17). ...

The results are plotted versus SNR in Fig. 4, assuming 50,
0 =0, F. T =0.011 and 4-QAM modulation, while in Figs. 5—
6 the following parameters are adoptdd = 500, § = 0.2,

F.T = 0.05 and 16-QAM constellation. These figures show " .-

that for medium and high SNR, the experimental results are
well predicted by the asymptotic bounds derived in this pape

107°

VI. CONCLUSIONS Fig. 3.

In this paper, we have introduced and analyzed a family of
blind feedforward joint carrier phase and frequency ofésgi

mators for QAM modulations. A matched nonlinear estimator =~

together with a class of monomial nonlinear estimators \were
troduced and their performance established. In a futurempap
we will extend this work to large dimensional QAM constella-
tions.
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