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Training Sequence Optimization
for Joint Channel and Frequency Offset Estimation

Philippe Ciblat, Pascal Bianchi, and Mounir Ghogho

Abstract— We consider single-carrier and single-user transmis-
sions over a frequency-selective channel. We address the problem
of joint estimation of the channel and the carrier frequency
offset using a known training sequence (TS). Since in general
the TS that is optimum for CFO estimation is not optimum for
channel estimation, here we design the TS to minimize the Mean-
Square Error on the soft estimates of the data symbols obtained
using a Wiener equalizer after CFO compensation. Our design
results apply to the general scenarios of correlated and/orRicean
channel taps. Simulations measuring the bit error rate showan
interesting gain when using the proposed training schemes in lieu
of standard schemes.

I. I NTRODUCTION

In wireless communications, the transmitted signal is usu-
ally affected by inter symbol interference due to the multipath
channel and carrier frequency offset (CFO) caused by the
Doppler effect or/and a local oscillator drift. Before applying
a CFO correction and an equalizer, the channel impulse
response (CIR) and the CFO have to be estimated. In most
practical systems, this estimation task is carried out by trans-
mitting a known training sequence (TS) prior to transmitting
information-bearing data. It is therefore of interest to design
the TS at the transmitter side so that accurate estimates of the
unknown parameters can be obtained at the receiver side.

When the only unknown parameter is the CIR, it is well-
known that the best TS (i.e. the TS that minimizes the Cramér-
Rao bound (CRB)) is the pseudo-random white sequence
[1], [2]. However, when both the CIR and CFO need to be
estimated, the design of an optimal TS is still an open issue,
in general. Suboptimum training designs were proposed in the
literature using different criteria. In [3], [4], the authors used
the worst-case asymptotic CRB, i.e., the large-sample CRB
associated with the worst channel realization and showed that
the white TS is then optimal. In [5], the TS was designed
to render the exact (i.e. finite-sample) CRB of the CFO
independent of the channel zeros. The developed TS design
was shown to outperform the white TS design when the length
of the TS is small/moderate. For a large TS, the white sequence
is still optimal when considering the criterion in [5]. Here, we
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only consider TS designs based on asymptotic performance
metrics.

In the above approaches, the channel was considered de-
terministic and thus any likely correlation between the CIR
components was not taken into account when designing the
TS. An approach which considers random CIR was proposed
in [6], where a channel-independent design criterion was
obtained by statistically averaging the CRB of the CFO over
the CIR realizations. However, the work in [6] only consid-
ered the case where the CIR components are independent
and identically distributed (i.i.d.) and their magnitudesare
Rayleigh distributed. In such a case, the best TS for CFO
estimation was shown to be white [6]. In fact, in this case, the
optimal TS for the joint CFO/CIR estimation is still white.
Indeed, if the CIR components are i.i.d., the averaged channel
frequency response is flat and thus the training power should
be equally split between all the frequencies. However, the
Rayleigh i.i.d. assumption in [6] may be restrictive in practice
(see e.g. [9], [10], [11], [12].) A correlation between the CIR
coefficients will render the channel statistically frequency-
selective, in which case there is no reason to expect a white
TS to be optimal. In such a context (i.e., correlated Rayleigh
components of the impulse response), a first characterization
of the TS minimizing the CRB of the CFO is available in
[13]. Similarly, if the channel is Ricean, the deterministic part
of the CIR should play a part in shaping the spectrum of the
TS. Of course, in the absence of CFO, the TS optimizing the
CRB associated with the CIR estimation is white regardless
of the statistics of the channel, when considering asymptotic
performance1.

No training design for the joint CFO and channel estimation
problem has been proposed for the case of correlated CIR taps
and/or Ricean CIR in the literature. The goal of this paper
is to fill this gap. The design difficulty in this case stems
from the fact that the optimal TS designs for CFO and CIR
estimations are different, unlike the Rayleigh i.i.d. casewhere
the white TS was optimal for both estimations. Therefore, the
individual estimation performance metrics are not sufficient to
develop a single TS selection strategy for the joint estimation
problem. This leads to the need of selecting a criterion that
combines these metrics in accordance with their respective
impact on the overall system performance. The criterion we
propose to use is the Mean Square Error (MSE) between the
transmitted and received symbols when the receiver consists of

1When the length of the TS is small, a Bayesian approach could be used to
estimate the CIR at the receiver, and in this case, the optimal TS is not white.
However, as the length of the TS increases, the spectrum of the optimal TS
becomes more and more flat
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a frequency compensation and a Wiener linear equalizer. This
MSE is obtained by statistically averaging the conditional(on
the channel) MSE over the channel realizations. This enable
us to find an ”optimal” TS which is relevant to both channel
and CFO estimations.

The paper is organized as follows: in Section II, we in-
troduce the signal model, the channel statistics model, the
receiver model as well as the criterion that we wish to
optimize. In Section III, we express the proposed criterion
in closed-form. Section IV is devoted to the optimization
of the criterion derived in Section III. In Section V, we
propose numerical illustrations in order to observe the gain
in performance provided by our approach.

Notation: Overline · , superscriptsT andH denote complex
conjugate, transposition, and conjugate transposition, respec-
tively. E[B‖A] andEA[B] denotes the conditional expectation
of B with respect toA and the average expectation ofB

over A, respectively.ℜ[A] and ℑ[A] denote the real and
imaginary parts ofA, respectively. Finally,‖a‖ and Tr(A)
denote the L2-norm of vectora and the trace of matrixA,
respectively. For any vectorp = [p(−L1), · · · , p(L2)]

T of
length (L1 + L2 + 1), we denote its Fourier transform by
P (ν) =

∑L2

l=−L1
p(l)e−2iπνn.

II. PROBLEM STATMENT

A. Signal Model

We focus on single-carrier and single-user communications.
We assume that the transmission consists of a training mode
during which a TSt = [t(0), t(1), . . . , t(NT − 1)]T of
length NT , which is known to the receiver, is transmitted,
followed by a data mode during which a data sequence
d = [d(0), d(1), . . . , d(ND−1)]T of lengthND is transmitted.
Notice that training and data samples may be complex-valued.
The discrete-time baseband received signal,y(n), has the
following form:

y(n) = e2iπfn
L−1
∑

l=0

h(l)s(n − l) + w(n), (1)

wheref denotes the (normalized) CFO,{h(0), . . . , h(L−1)}
represent the channel coefficients,s(n) is eithert(n) or d(n)
depending on the mode of transmission at time instantn, and
w(n) denotes a circularly symmetric white Gaussian noise
with varianceσ2 = E[|w(n)|2]. Let h = [h(0) . . . h(L − 1)]T

be the unknown channel vector. For the sake of simplicity,
d is assumed to be an i.i.d. sequence with varianceσ2

d =
E[|d(n)|2]. Note however that our results can be generalized
to the case whered is a colored sequence.

In order to obtain an expression for the proposed criterion
that is simple and tractable to optimize, we will consider
the system performance in the ”asymptotic” regime,i.e., we
assume thatboth NT , the size of the TS, andND, the size
of the data sequence, tend to infinity, while the ratioND/NT

converges to a constant, i.e.,

lim
NT →∞

ND

NT
= α

where α is a constant depending on the system of interest.
We also assume that the length of the channel filterL and
the length of the equalizer filterLg tend to infinity, at the
same rate. Note that we will first consider that the sizes of the
sequences (ND andNT ) are large, andthen assume the filters
lengths (L andLg) are large, which means that

lim
NT→∞

L or Lg

NT
= 0

or equivalentlyL, Lg ≪ ND, NT . In Proof of Lemma 2 re-
ported in Appendix B, we actually need a little bit more restric-
tive assumption. We will in fact assume that(L or Lg)/

√
NT

is bounded whenNT becomes large. Although for the analysis
we assume large values forL andLg, we will consider realistic
values for these parameters in the simulation section.

B. Channel Model

The channel is assumed to be Rice distributedi.e.,

h =

√

K

K + 1
hd +

√

1

K + 1
hr (2)

wherehd is a deterministic vector normalized in such a way
that‖hd‖2 = 1, andhr is a complex circular Gaussian random
vector with zero mean and covariance matrixΣ = E[hrh

H
r ],

normalized in such a way that Tr(Σ) = 1. CoefficientK is
the so-called Ricean factor. In this paper, we assume thatK,
Σ, andhd are known at both the transmitter and the receiver
sides.

This channel model can be justified in the following two
ways. Firstly, in most wireless applications, it is usual tocon-
sider that the channel can be decomposed into two parts: the
first part refers to the Line of Sight (LOS), which corresponds
to the first term of the righthand side of (2), and the second part
is associated with the non-line of sight (NLOS) components
of the channel, which corresponds to the second term of the
righthand side of (2). The knowledge ofK, Σ, and hd at
both sides is motivated by the fact that the coherence times
corresponding toK, Σ, andhd are much larger than that of
hr [9], [10], [11], [12]. Secondly, even when the Rice model
does not hold true, it is often possible to decomposeh as
depicted in Eq. (2). For instance, consider the case where
the receiver estimates the CIR and the CFO and feedbacks
these estimates to the transmitter. The latter therefore has a
partial knowledge of the CIR, which can be described as in Eq.
(2) where the random part represents the uncertainties due to
estimation/feedback errors and time-variations of the channel.
Notice that the estimation errors are Gaussian asymptotically,
i.e., when the length of the TS is large enough, which justifies
the Rice model.

C. Receiver model

First, the receiver compensates for the CFO using the
estimated valuêf of f . It then generates the signalyc(n) =

e−2iπf̂ny(n). For eachn ≥ NT + L, we have that

yc(n) = e−2iπ∆fn
L−1
∑

l=0

h(l)d(n − NT − l) + w(n). (3)
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where∆f = f̂ − f . Note that CFO compensation does not
change the statistics of the white noise. Thus, to simplify
notations, the same variable is used to denote the noise before
and after CFO compensation. The receiver then compensates
for the channel distortion using a standard Wiener filter with
coefficientsĝ = [ĝ(−Lg), . . . , ĝ(Lg)]. The linear equalizer̂g
should be calculated using the estimated valueĥ of h. The
output equalizerz(n) is defined by

z(n) =

Lg
∑

k=−Lg

ĝ(k)yc(n − k).

Finally, a detector is used on the equalizer output in order to
recover the transmitted data symbols.

When the receiver has statistical knowledge on the param-
eters to be estimated, one can use the bayesian approach to
estimate the parameters of interest. Nevertheless, this approach
has the drawback of complicating the performance analysis.
Furthermore, when the SNR is large and/or when the number
of available training samples,NT , is large, which is the case
in the asymptotic regime, the best Bayesian estimator and
the best deterministic estimator (Maximum Likelihood - ML)
lead to the same performance since the a priori contribution
is bounded whereas the likelihood grows with the number of
available observations. Therefore, in this paper, we concentrate
on the standard deterministic approach based on the ML
estimator2. As a consequence, it is reasonable to consider that
the estimation errors on the CIR and CFO are well described
by the deterministic CRB in the asymptotic regime.

D. The proposed criterion

A natural approach would be to design a training strategy
which leads to the minimum bit error rate at the detector
output. Unfortunately, such a criterion is very difficult to
express as a simple function of the training strategy. Here,
we propose to minimize the MSE at the equalizer output. In
the sequel, we define

MSEn(t) = E
[

|z(n) − d(n − NT )|2 ‖t
]

.

It is worth noting thatz(n) is a non stationary sequence
due to the presence of factore−2iπ∆fn. Therefore, the above
expression of the MSE depends on indexn. It is obviously
impractical to minimize the MSE for all possible values of
n. Here, we propose to minimize the average MSE, i.e. MSE
averaged over all data symbols:

MSE(t) =
1

ND

NT +ND−1
∑

n=NT

MSEn(t). (4)

The above criterion depends on the TS,t, via the estimation
errors on parametersh and f . The objective of the next
subsection is to express MSE(t) in closed-form.

Our TS design strategy basically consists of searching for
the TS that minimizes the MSE on the data symbols at the
output of the Wiener filter. Our TS will be ‘optimal’ when the
receiver is as described above.

2Notice that ML estimator can be easily carried out by means ofcorrelation
and periodogram [1], [2]

III. C RITERION DERIVATIONS

To derive the MSE in eq. (4), we firstly focus on MSE(t‖h)
which is the MSE given a realization of the channel and which
satisfies

MSE(t) = Eh[MSE(t‖h)].

The main steps of the derivations are as follows

• In Subsection III-A, we provide a simple expression for
MSE(t‖h) as a function of the estimation errors on
parametersh andf . Results are drawn in Lemma 2.

• In Subsection III-B, we relate the estimation errors to the
training strategy. Results are given in eq. (22).

• In Subsection III-C, we finally average MSE(t‖h) over
the channel using our statistical model in eq. (2). Results
are given in eqs. (27) and (32).

A. MSE(t‖h) as a function of the estimation error

Let ∆h = ĥ − h and ∆g = ĝ − g whereg denotes the
Wiener filter associated withh. We recall that̂g is the Wiener
filter based on the estimate filter̂h.

After straightforward but tedious algebraic manipulations
reported in Appendix A, we obtain the following lemma.

Lemma 1: Let MSE(t‖h, ĥ, f̂) denote the MSE for a given
realization of the channel, a realization of the channel estimate
and a realization of the CFO estimate. We get

MSE(t‖h) = E
ĥ,f̂ [MSE(t‖h, ĥ, f̂)]

where

MSE(t‖h, ĥ, f̂)= σ2
d + σ2

∫ 1

0

|(G + ∆G)(ν)|2dν

+ σ2
d

∫ 1

0

|H(ν)|2|(G + ∆G)(ν − ∆f)|2dν

− 2σ2
dℜ
[

S(∆f)

∫ 1

0

(G + ∆G)(ν − ∆f)H(ν)dν

]

with

S(ν) =
1

ND

NT +ND−1
∑

n=NT

e−2iπνn.

In order to obtain a simple link between MSE(t‖h) and
the estimation errors, we consider the ”asymptotic” regime
described in Subsection II-A. We recall (cf. [1], [2]) that the
MSE on channel estimation is of order1/NT while the MSE
on CFO estimation is of order1/N3

T . Consequently, function
S(f) can be decomposed as follows

S(∆f) = 1 − iπ(2 + α)NT ∆f

− 2π2(1 + α + α2/3)N2
T (∆f)2 + op(1/NT )(5)

whereop(1/NT ) refer to terms that are negligible compared
to 1/NT in probability. Based on the above decomposition, we
obtain the following lemma whose proof is given in Appendix
B.

Lemma 2: Assuming the asymptotic regime, we have that

MSE(t‖h) = e0 + e1 + e2 + e3 + op(1/NT )
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where

e0 = σ2
d +

∫ 1

0

(σ2
d|H(ν)|2 + σ2)|G(ν)|2dν

− 2σ2
dℜ
[∫ 1

0

H(ν)G(ν)dν

]

(6)

e1 =

∫ 1

0

(σ8
d|H(ν)|4 + σ4

dσ4)

(σ2
d|H(ν)|2 + σ2)3

γh,h(ν)dν

− 2ℜ
[

∫ 1

0

σ6
dσ2H(ν)

2
γ̃h,h(ν)

(σ2
d|H(ν)|2 + σ2)3

dν

]

(7)

e2 = 2σ2
d(2 + α)πNTℑ

[∫ 1

0

H(ν)
σ2

dσ2γh,f (ν)

(σ2
d |H(ν)|2 + σ2)2

− h(ν)
σ4

dH(ν)
2
γh,f (ν)

(σ2
d |H(ν)|2 + σ2)2

dν

]

(8)

e3 = 4σ2
dπ2(1 + α + α2/3)N2

T

× γf,fℜ
[∫ 1

0

G(ν)H(ν)dν

]

(9)

with

γh,h(ν) = E[|∆H(ν)|2] (10)

γ̃h,h(ν) = E[∆H(ν)2] (11)

γh,f (ν) = E[∆H(ν)∆f ] (12)

γf,f = E[(∆f)2]. (13)
Notice that the terme0 represents the error at the output of

the Wiener filter whenh andf are perfectly known. Errore1

and e3 are the extra term associated with the mis-estimation
of h and off respectively. Finallye2 is an extra error caused
by the mis-estimation of bothh andf .

B. MSE(t‖h) as a function of the TS statistics

In the sequel, we expressγh,h(ν), γ̃h,h(ν), γh,f (ν) and
γf,f (ν) as functions of the TS statistics. Indeed, since we focus
on the asymptotic regime, the design of the TS is equivalent
to the design of its statistics, as it is justified by the CRB
expressions below. Therefore, we treat the TS as a realization
of a zero-mean stationary random sequence, whose statistics,
namely its covariance matrix, will be designed to minimize
the total averaged MSE defined above.

When NT is large, it is known that the asymptotic co-
variance of the ML channel coefficients and CFO estimates
coincides with the CRB, which is reported below (cf. [3])

E[∆h∆hH] =
σ2

NT

(

R−1
t +

3

2

hhH

hHRth

)

(14)

E[∆h∆hT] = − 3σ2

2NT

hhT

hHRth
(15)

E[∆h∆f ] = −i
3σ2

2πN2
T

h

hHRth

E[(∆f)2] =
3σ2

2π2N3
T

1

hHRth
(16)

whereRt is theL-dimensional covariance matrix defined by
the entries{r(k − l)}k,l=0,··· ,L−1 with r(k − l) = E[t(n +
k)t(n + l)]. When the CFO is known and does not need to be

estimated, the second term in the RHS of Eq. (14) vanishes.
One can remark that the estimation error only depends on the
second order statistics of the TS and not on each realizationof
the TS. If we assume that the sequence{r(k); k = 0,±1, · · · }
is absolutely summable, then we can define the following
spectrum associated with the TS

Stt(ν) =
∑

k∈Z

r(k)e−2iπkν

It is easy to check that

r(k) =

∫ 1

0

Stt(ν)e2iπkudu

This implies that

hHRth =

∫ 1

0

Stt(ν)|H(u)|2du

Thanks to Eq. (11), we have

γ̃h,h(ν) = dL(ν)E[∆h∆hT]dL(ν)T

wheredL(ν) = [1, · · · , e−2iπ(L−1)ν ]. Using Eq. (15) leads to

γ̃h,h(ν) = − 3σ2

2NT

(H(ν))2
∫ 1

0
Stt(ν)|H(u)|2du

(17)

Similar algebraic manipulations can be done to obtain

γh,f (ν) = −i
3σ2

2πN2
T

H(ν)
∫ 1

0
Stt(ν)|H(u)|2du

(18)

γf,f =
3σ2

2π2N3
T

1
∫ 1

0
Stt(ν)|H(u)|2du

. (19)

Deriving a closed-form expression forγh,h(ν) is a com-
plicated task since we have to handle matrixR−1

t . More
precisely,γh,h(ν) depends ondL(ν)R−1

t dL(ν)H. In order to
expressγh,h(ν) as a simple function ofq(ν), we notice that
when the channel lengthL is large enough,Rt becomes a
large Toeplitz matrix, which implies that its inverseR−1

t can
be well approximated by the circulant matrix (cf. [7], [14])
whose first row is

[∫ 1

0

1

Stt(ν)
e2iπkudu

]

k=0,··· ,L−1

(20)

Based on this approximation, we obtain

γh,h(ν) =
σ2

NT

(

L

Stt(ν)
+

3

2

|H(ν)|2
∫ 1

0 Stt(ν)|H(u)|2du

)

When bothNT andL are large, putting Eqs. (17), (18), (19),
and (20) into Eqs. (6), (7), (8), and (9) leads to the following
expression for MSE(t‖h)

MSE(t‖h) = MSEknown(h) + MSEunknown(t‖h) (21)

where MSEknown(h) represents the MSE that one would have
observed if parameter estimation was perfect, and is given by

MSEknown(h) =

∫ 1

0

σ2
dσ2

σ2
d|H(ν)|2 + σ2

dν
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and where the ‘excess MSE’, MSEunknown(t‖h), due to the
mis-estimation of CIR and CFO, has the following form

MSEunknown(t‖h)=
σ2

dσ2

NT

(∫ 1

0

c1(ν‖h)

Stt(ν)
dν

+β
1

∫ 1

0
c2(ν‖h)Stt(ν)dν

)

(22)

with β = 27/2 + 9α + 2α2 and

c1(ν‖h) = Lσ2
d

σ4
d|H(ν)|4 + σ4

(σ2
d|H(ν)|2 + σ2)3

(23)

c2(ν‖h) =
|H(ν)|2

∫ 1

0

σ2
d
|H(u)|2

σ2
d
|H(u)|2+σ2 du

. (24)

In Eq. (22), notice that the MSE depends on the color of the
TS. Now we would like to find the color that minimizes the
MSE but independently of the channel realizationh. Therefore
the last step of our criterion derivations consists of averaging
the MSE in eq. (21) overh.

C. Averaging MSE(t‖h) over h

Under the assumption thatNT andL are large, the averaged
MSE can, using the above equations, be expressed as

MSE(t) = MSEknown +
σ2

dσ2

NT
J(Stt) (25)

where MSEknown = Eh[MSEknown(h)] is a constant represent-
ing the average MSE in the absence of mis-estimation of the
channel and CFO, and where the ‘excess MSE’ is proportional
to J(Stt), which is given by

J(Stt) = Jh(Stt) + Jf (Stt) (26)

where

Jh(Stt) =

∫ 1

0

c1(ν)

Stt(ν)
dν, (27)

Jf (Stt) = Eh

[

1
∫ 1

0 c2(ν‖h)Stt(ν)dν

]

, (28)

with c1(ν) = Eh[c1(ν‖h)].
The functionStt 7→ J(Stt) is the proposed criterion that

we would like to minimize in order to select a relevant power
spectrumStt(ν). Notice thatJ(Stt) is a linear combination
of two terms. The first term,Jh(Stt), is associated with the
channel estimation error. Nonetheless, this term is not directly
related to the CRB for the CIR. Indeed, the asymptotic CRB
for the CIR (when CFO is known) is equal to the integral
of the inverse of the power spectrum of the TS (cf. Eqs.
(14) and (20)). It is the functionc1(ν) that prevents us from
having a direct relationship between the CRB for the CIR
and the impact of channel estimation error on the MSE. The
second term,Jf (Stt), is associated with the CFO estimation
error. Once again,Jf (Stt) is not proportional to the averaged
CRB associated with CFO estimation due to the presence
of c2(ν‖h). Nevertheless, at high SNR, one can remark that
c2(ν‖h) tends to|H(ν)|2 which implies thatJf (Stt) becomes
proportional to the CRB for the CFO described in Eq. (19).

We now would like to derive a closed-form expression for
the expectations inJh(Stt) and Jf (Stt). Let us start with
Jh(Stt). Thanks to Eq. (2), it is easy to check thatH(ν), for
anyν, is Gaussian distributed with mean

√

K/(K + 1)Hd(ν)
and variance

σ2
H(ν) = E[|Hr(ν)|2]/(K + 1). (29)

Besides,H(ν) minus its mean is circularly symmetric. There-
fore the probability density function of|H(ν)|2 takes the
following form

p|H(ν)|2(x) =
K + 1

E[|Hr(ν)|2]e
−

(K+1)x+K|Hd(ν)|2

E[|Hr(ν)|2]

× I0

(
√

2K
|Hd(ν)|2

E[|Hr(ν)|2]x
)

1x≥0

whereI0(.) is the modified Bessel function of first kind and
where1x≥0 is equal to1 when x is positive and equal to0
otherwise. Consequently, we get

c1(ν) =
Lσ2

d(K + 1)

E[|Hr(ν)|2] e
−

K|Hd(ν)|2

E[|Hr(ν)|2]

×
∫ ∞

0

σ4
dx2 + σ4

(σ2
dx2 + σ2)3

e
− (K+1)x

E[|Hr(ν)|2]

× I0

(
√

2K
|Hd(ν)|2

E[|Hr(ν)|2]x
)

dx (30)

Although this integral cannot be expressed in closed-form,a
numerical computation can be easily carried out. Oncec1(ν)
is evaluated, another numerical integration is carried outto
evaluateJh(Stt).

For Jf (Stt), one can remark that the expression (24) can be
greatly simplified when the high SNR regime is considered,
as follows

Jf (Stt)
high SNR≈ Eh

[

1
∫ 1

0 |H(ν)|2Stt(ν)dν

]

Next, we will derive a closed-form expression for the high-
SNR approximation ofJf (Stt), given the above equation.
Since Eqs. (16) and (19) represent the same term, we deduce
that

Jf (Stt) = Eh

[

1

hHRth

]

(31)

The next theorem is proved in Appendix C.
Theorem 1: Let Jf (Stt) given by Eq. (31). IfL is large,

we have that

Jf (Stt) = (K + 1)
ℓ1

ℓ2
1 − ℓ2

(32)

where

ℓ1 = Tr(Rt(Σ + Khdh
H
d ))

ℓ2 = Tr(RtΣRt(Σ + 2Khdh
H
d )).

Using the above expressions forJh(Stt) and Jf (Stt), we
next address the issue of training optimization.
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IV. CRITERION OPTIMIZATION

As mentioned in the previous section, our training design
is based on the minimization ofJ(Stt), which is a weighted
sum ofJh(Stt) andJf (Stt). This optimization problem is, in
general, intractable in closed-form, due to the highly nonlinear
relationship betweenJ(Stt) and the power spectrum of the TS.
Nevertheless, we show in this section that this optimization
problem is convex, which implies that any gradient-type
descent algorithm will provide the global optimum solution.
Further, in the case of high Rice factor (K → ∞), we are able
to obtain closed-form solutions using the Lagrange multiplier-
based method.

A. General case

First, we will simplify Jf (Stt) given in Eq. (32). We recall
that Jf (Stt) can be written as follows

Jf (Stt) = (K + 1)
Tr(RtÃ)

(Tr(RtÃ))2 − Tr(RtB̃RtC̃)

with

Ã = Σ + Khdh
H
d

B̃ = Σ

C̃ = Σ + 2Khdh
H
d

This expression is an extension of that reported in [6] for
the iid Rayleigh channel case (obtained whenK = 0 and
Σ = (1/L)IdL).

To solve our optimization problem, i.e. minimization of
J(Stt) in Eq. (26), we again assume that the channel length
L is large. We recall that this assumption has already been
made in the previous section to obtain closed-form expression
of J(Stt). Hence, theL×L Toeplitz matrixRt can be almost
diagonalized in the Fourier basis for largeL. Consequently,
we get

Rt = FΛttF
H

whereF is an L × L Fourier matrix andΛtt is a diagonal
matrix whoseℓth diagonal element isλℓ = Stt(ℓ/L). As
a consequence,Jf (Stt) is completely captured byλ =
[λ1, . . . , λL] and can be rewritten as

Jf (λ) = (K + 1)

∑L
l=1 λlall

(
∑L

l=1 λlall)2 −
∑L

k,l=1 λkλlbklclk

(33)

where akl, bkl, and ckl are the components of thekth row
and lth column of matricesA = FHÃF, B = FHB̃F, and
C = FHC̃F, respectively.

As to Jh(Stt), using the fact that for largeL, the integral
in Eq. (27) can be approximated by a Riemman sum with a
grid equal to1/L, we obtain

Jh(λ) =

L
∑

l=1

sl

λl
(34)

with sl = c1(l/L)/L.
In the next theorem, we state that the criterion (26) is convex

with respect toλ when Jh an Jf satisfy Eqs. (34) and (33)
respectively. The proof is reported in Appendix D.

Theorem 2: WhenL is large, minimizingJ(Stt) is equiv-
alent to minimizingJg(λ) defined as follows

Jg(λ) =

L
∑

l=1

sl

λl
+ β

∑L
l=1 λlall

(
∑L

l=1 λlall)2 −
∑L

k,l=1 λkλlbklclk

(35)
The above function is convex with respect toλ if λl ≥ 0 for
all l ∈ {1, · · · , L}.

Since theλl’s are positive by definition,Jg(λ) is convex.
Hence, our optimization problem is convex since the function
to be minimized is convex and the constraints

Tr(Rt) =

L
∑

l=1

λl = LP and λl ≥ 0, ∀l (36)

are also convex. To obtain numerical values for the optimal
λ, we can use a standard convex optimization toolbox.

B. Large K case

WhenK, the Rice factor, is large, we can replaceH(ν) in
(26) with the transfer functionHd(ν). This approximation is
supported by the fact that for any continuous mappingF of
the channel coefficientsh, E [F(h)] converges toF(hd) as the
Ricean factorK tends to infinity.

The simplified TS design criterion is then defined by

Jd(Stt) =

∫ 1

0

cd
1(ν)

Stt(ν)
dν + β

1
∫ 1

0 cd
2(ν)Stt(ν)dν

. (37)

wherecd
1(ν) is obtained by removing the mathematical expec-

tation and by replacingH(ν) with Hd(ν) in c1(ν), and where
cd
2(ν) is obtained by replacingH(ν) with Hd(ν) in Eq. (24).

Of course, the above criterionJd(Stt) is likely to be a valid
approximation ofJ(Stt) provided that the Ricean factorK
is large enough. The training strategy proposed is therefore
appropriate whenK is large. However, we will show in the
simulation part that, even for moderate and realistic values of
K, the proposed training strategy based on the minimization
of Jd(Stt) outperforms classical training strategies.

Once again, we replace the integrals with their Riemann
sums. Then

Jd(λ) =
1

N

N
∑

n=1

αn

λn
+ β

1
1
N

∑N
n=1 βnλn

(38)

with αn = cd
1(n/N), βn = cd

2(n/N), andN being an integer.
In the following theorem, we show that the minimization of

Jd(λ) w.r.t. λ under the following constraint

Tr(Rt) = L

∫ 1

0

Stt(ν)dν = L
1

N

N
∑

n=1

λn = LP (39)

reduces to a convex optimization problem. Unlike the general
case, we are here able to develop the Lagrange optimization
method and thus obtain a closed-form expression for the
optimal λ. This result, which is summarized in Theorem 3,
is proven in Appendix E.
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Theorem 3: The criterionJd defined by Eq. (38) is convex
and minimum under the power constraint (39) for

λm = P

√

αm/(µ − βm)
1
N

∑N
n=1

√

αn/(µ − βn)
(40)

whereµ is such that

1

N

N
∑

n=1

βn

√

αn/(µ − βn) =
√

β.

As N can be taken arbitrarily large, we finally have that

Stt(ν) = P

√

cd
1(ν)/(µ − cd

2(ν))
∫ 1

0

√

cd
1(u)/(µ − cd

2(u))du
(41)

whereµ is such that
∫ 1

0
cd
2(u)

√

cd
1(u)/(µ − cd

2(u))du =
√

β.

C. Comments

We recall that our approach holds when the TS sizeNT , the
data sizeND, and channel lengthL are large. In practice, a
TS with power spectrum provided by means of Theorems 2 or
3 can be very simply generated as the output of a digital filter
with relevant coefficients excited by a pre-generated pseudo-
random sequence. Further, this filtering does not have to be
performed frequently since the channel statistics, unlikethe
channel state information, are likely to change very slowly
with time. Therefore, the additional computational complexity
of the proposed training design is low.

It is worth pointing out that our derivations enable us to
analyze the scenario where the channel has to be estimated
but no CFO is present. In this case, criteriaJg(λ) andJd(λ)
can be simplified by removing the second term in the RHS
of Eq. (35) and of Eq. (38) respectively. The optimization
problem is still convex in this case. By adapting the derivations
in Appendix E, the power allocation at FFT binn, denoted
by λn, is found to be

√
sn in the general case and to

√
αn in

the high Ricean factor case. Consequently the best TS may be
colored (if the sequences or α is not constant). We recall that
the TS that minimizes the CRB of the channel (when no CFO
is present) is white regardless of the channel statistics. This
means that the minimization of the channel CRB and of the
symbol MSE may lead to two different kinds of TS designs.
This leads to the following question: which criterion is the
most relevant? When a Wiener-type equalizer is carried out,
the MSE of the output of the Wiener filter represents better
the true performance of the overall system than the CRB of
the channel since the CRB of the channel does not take into
account the receiver structure. Nevertheless, by simulations,
we observed that the improvement due to the color of the TS
is negligible when no CFO is present. Therefore, in this case,
the white TS remains a good candidate for channel estimation.

We can also address the CFO estimation problem in
frequency-selective channel when the channel is not a param-
eter of interest as it was the case in [4], [6]. This problem may
occur when synchronisation is carried out more frequently
than channel estimation. As mentioned in Section III-C, at
high SNR, the MSE degradation due to CFO estimation is
proportional to the CRB for the CFO. Unlike for channel
estimation, for CFO estimation, the CRB and MSE criteria

lead to the same TS design. Minimizing the CRB with respect
to the TS has been partially treated in the literature. [4] selects
the TS which minimizes the worst CRB (i.e., the maximum
of the CRB over all normalized channel realizations), [5]
selects the TS that renders the finite-sample CRB for the
CFO channel-independent, and [6] characterizes the TS which
minimizes the average CRB when the channel coefficients are
assumed i.i.d. and Rayleigh (i.e.,K = 0 andΣ is proportional
to the identity matrix). Here, by adapting Theorems 2 or 3,
we design the TS which minimizes the average CRB when the
channel is Rice whatever the Ricean factorK and the color of
the random part. In the general case, criterionJg(λ) can be
simplified by removing the first term in the RHS of Eq. (35).
Obviously, the optimization problem remains convex and a
standard optimization tool can be applied to find the optimum
TS spectrum. In the case where the channel has a high Ricean
factor,K, Jd(λ) can be simplified by ignoring the first term in
the RHS of Eq. (38). In this case,λ has one non-zero element
(i.e. a TS with one nonzero FFT bin only), which is associated
with the maximumβn.

V. SIMULATIONS

Unless otherwise stated, we setNt = 50, L = 5 and
α = 10. The CFO is fixed tof = 0.1. All simulated points
are averaged over1000 Monte-Carlo runs. In each run, the
channel was independently generated according to model (2).
We assume that the correlation between two channel tapsh(k)
and h(l) of the CIR is given byρ|k−l| where ρ belongs to
[0, 1).

In Figure 1, we plot the spectrum of one realization ofhd

and the normalized spectrum of the associated optimal TS
whenK = 3, ρ = 0 and SNR=10dB. We observe that the TS
spectrum gives an important role to the best frequencies of the
deterministic part of the channel to ensure a good estimation of
the CFO but also is spread over a large enough band to ensure
an accurate estimation of the random part of the channel.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5
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4.5

Normalized Frequency

TS and Rice part spectra for K=3, rho=0, SNR=10dB, Nt=50, L=5, and alpha=10

 

 

TS spectrum

Rice part spectrum

Fig. 1. Spectrum shape for one realization ofhd and the optimal TS (for
K = 3 andρ = 0)

In Figure 2, we plot the theoretical and empirical data MSE.
The MSE when the parameters (i.e. CFO and CIR) are known
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is also depicted for comparison purposes. We have considered
Rt = P IdL, K = 10 and ρ = 0. When the parameters are
estimated, we display the theoretical MSE depicted in Eq. (26)
and the one drawn in Eq. (27) and Eq. (32). We thus observe
that all our approximations are accurate since the empirical
MSE is close to the approximated theoretical MSE.
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10
0

10
1

SNR
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E

MSE versus SNR for Nt=50, alpha=10, K=10, and rho=0

Perfect knowledge (theoretical)
Perfect knowledge (empirical)
White TS (theoretical)
White TS (approximate)
White TS (empirical)

Fig. 2. Approximation MSE versus SNR

In Figure 3, we display the theoretical data MSE versus
SNR (with K = 10 and ρ = 0) when the parameters are
perfectly known and when the parameters are estimated with
either a white TS or the colored TS suggested by Theorem 3
for largeK. We observe that the colored TS exhibits a gain
in terms of MSE but this gain seems to be small.
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MSE versus SNR w.r.t the training sequence for Nt=50, alpha=10, K=10, and rho=0
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Perfect knowledge
White TS
Optimal TS (large K)

Fig. 3. MSE versus SNR (forK 6= 0 andρ = 0)

In Figure 4, we plot the theoretical data MSE versusK (with
SNR=20dB andρ = 0). We observe that the optimization
carried out under the assumption of largeK provides non-
negligible gain as soon asK > 3. In many practical situations,
it is reasonable to assume the Ricean factor to be larger than
3 (cf. [9], [10], [11], [12].) Therefore, Theorem 3 can be of
great interest in realistic scenarios.

In Figure 5, we plot the Bit Error Rate (BER) versus SNR
(with K = 10 and ρ = 0) when a frequency compensation
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MSE versus K w.r.t the training sequence for Nt=50, alpha=10, SNR=20dB, and rho=0

K

M
S

E

Perfect knowledge
White TS
Optimal TS (large K)

Fig. 4. MSE versusK (for SNR=20dB andρ = 0)

and a Wiener equalizer based on the estimated values of
the parameters are employed. The training is either white or
colored as suggested by Theorem 3. We remark that the gain in
performance is significant, which advocates TS optimization
at the transmitter.
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Fig. 5. BER versus SNR (forK 6= 0 andρ = 0)

In Figure 6, we display the MSE versusρ (for K = 0)
when optimal training or white training are employed and
when the parameters are assumed perfectly known. The gain
in MSE obtained by selecting the best TS is very small. One
can remark that the gap between the case of known parameters
and that of unknown parameters is small as well. Actually the
correlation between the channel taps needs to be strong in
order to observe a difference between the optimal TS and the
white TS. Nevertheless, as we will see in the next figures,
a little difference in the MSE may lead fortunately to an
important gain in BER, which is the ultimate criterion.

In Figure 7, we plot the MSE versus SNR in a correlated
Rayleigh channel environment. Once again, the gain is small
whatever the SNR.

In Figure 8, we plot the BER versus SNR in a correlated
Rayleigh channel environment. Unlike the MSE criterion, we
observe a non-negligible gain between the white TS and the
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Fig. 6. MSE versusρ (for SNR=20dB andK = 0)
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Fig. 7. MSE versus SNR (forK = 0 andρ = 0.95)

optimal TS. Consequently, in a correlated Rayleigh environ-
ment, it is worth performing an optimization of the TS at the
transmitter.

In Figure 9, we plot the BER versuŝρ where ρ̂ is an
estimation of the true correlation factor which is fixed to
ρ = 0.95 as before. The SNR is20dB. The other parameters
are as in Figure 8. We remark that the design of the TS is
not so sensitive to the perfect knowledge of the corrrelation
factor.

VI. CONCLUSION

In this paper, we develop a new method to design optimum
training sequences which efficiently account for the errors
due to channel and carrier frequency offset estimation. This
method is based on the minimization of the mean square
error on data estimation at the output of the Wiener-type
equalizer averaged over the channel statistics. The obtained
criterion is simplified by invoking an asymptotic regime. Then
we prove that the criterion is convex which enables us to
find numerically the optimal training sequence. Closed-form
solutions are obtained in the case of channels with high Ricean
factors. Simulations show that the gain in bit error rate can
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Fig. 8. BER versus SNR (forK = 0 andρ = 0.95)
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Fig. 9. BER versuŝρ (for K = 0 andρ = 0.95)

be significant in many scenarios. In recent systems, multi-
carrier modulations are being considered instead of single
carrier modulations. Our work may be extended to such a
scenario. We guess that the MSE to be minimized will offer a
similar expression (if the number of subcarriers is assumedto
be large) but the part associated with a mis-estimation of the
CFO should have a stronger contribution because of the high
sensitivity to the CFO in multicarrier systems.

APPENDIX

A. Proof of Lemma 1

We have that MSEn(t‖h, ĥ, f̂) = E[|z(n) − d(n −
NT )|2‖t,h, ĥ, f̂ ] which can be easily decomposed as follows

MSEn(t‖h, ĥ, f̂) = σ2
d +

Lg
∑

l,l′=−Lg

ĝ(l)ĝ(l′)rycyc
(l′ − l)

− 2ℜ





Lg
∑

l=−Lg

ĝ(l)rdyc
(n,−l)



 (42)

where rycyc
(τ) = E[yc(n + τ)yc(n)] and rdyc

(n, τ) =
E[yc(n + τ)d(n − NT )]. Thanks to Eq. (3), one can prove
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that

rycyc
(τ) = σ2

d

Lh
∑

k=0

h(k + τ)h(k)e2iπ∆fτ + σ2δ(τ)

= σ2
d

∫ 1

0

|H(ν)|2e2iπ(ν+∆f)τdν + σ2δ(τ)

We also remark that

rdyc
(n, τ) = σ2

dh(τ)e2iπ∆f(n+τ).

The second term of the RHS of Eq. (42) can then be simplified
as follows

Lg
∑

l,l′=−Lg

ĝ(l)ĝ(l′)rycyc
(l′ − l)=σ2

d

∫ 1

0

|H(ν)|2|Ĝ(ν + ∆f)|2dν

+σ2

∫ 1

0

|Ĝ(ν)|2dν

By similar algebraic manipulations, we obtain

Lg
∑

l=−Lg

ĝ(l)rdyc
(n,−l)=σ2

de2iπ∆fn

Lg
∑

l=−Lg

ĝ(l)h(−l)e−2iπ∆fl

=σ2
de2iπ∆fn

∫ 1

0

Ĝ(ν + ∆f)H(ν)dν

plugging both previous equations into Eq. (42) and using the
fact that

MSE(t‖h, ĥ, f̂) =
1

ND

NT +ND−1
∑

n=NT

MSEn(t‖h, ĥ, f̂)

conclude the proof.

B. Proof of Lemma 2

We assume that the Wiener filter length, denoted byLg,
is large and of the same order as the filter lengthL. Since
L is assumed to be negligible with respect toNT , we get
Lg∆f ≪ 1 when NT is large. More precisely, we have that
Lg/

√
NT is bounded whenNT is large. By definition, we

obtain that

Ĝ(ν + ∆f) =

Lg
∑

−Lg

ĝ(l)e2iπ(ν+∆f)l

As Lg/
√

NT is bounded, we haveLg∆f ∝ Lg/N
3/2
T ∝

1/NT . Consequently, for everyl, we can write that

e2iπ∆fl = 1 + 2iπ∆fl + O(1/N2
T ).

whereO(1/N2
T ) is bounded in1/N2

T . This implies that

Ĝ(ν + ∆f) = G(ν) + ∆G(ν)

+ 2iπ∆f





Lg
∑

−Lg

lĝ(l)



+ Op(Lg/N
2
T )

where Op(1/N2
T ) is bounded in1/N2

T in probability. As
Lg/

√
NT is bounded, we finally get

Ĝ(ν + ∆f) = G(ν) + ∆G(ν) + op(1/NT ). (43)

Recall that

MSE(t‖h, ĥ, f̂) = A + B + C

whereA, B andC are the first, the second and the third row
of the RHS of the equation provided in lemma 1 respectively
and given by the following expressions

A = σ2
d + σ2

∫ 1

0

|(G + ∆G)(ν)|2dν

B = σ2
d

∫ 1

0

|H(ν)|2|(G + ∆G)(ν − ∆f)|2dν

C = −2σ2
dℜ
[

S(∆f)

∫ 1

0

(G + ∆G)(ν − ∆f)H(ν)dν

]

.

Using Eqs.(5) and (43) leads to

A = σ2
d + σ2

∫ 1

0

|G(ν)|2dν + σ2

∫ 1

0

|∆G(ν)|2dν

+ one order term+ op(1/NT )

B = σ2
d

∫ 1

0

|H(ν)|2|G(ν)|2dν + σ2
d

∫ 1

0

|H(ν)|2|∆G(ν)|2dν

+ one order term+ op(1/NT )

and

C = −2σ2
dℜ
[∫ 1

0

H(ν)G(ν)dν

]

+ 2σ2
dπ(2 + α)NTℑ

[

i

∫ 1

0

∆G(ν)∆fH(ν)dν

]

+ 4σ2
dπ2(1 + α + α2/3)N2

Tℜ
[∫ 1

0

G(ν)(∆f)2H(ν)dν

]

+ one order term+ op(1/NT )

where ”one order term” is a sum of one-order monomials
associated with variables∆f or ∆g. By averagingA, B, and
C over the channel estimation error and the carrier frequency
error, the ”one-order term” vanishes whenNT is large since
the ML estimators are asymptotically unbiased. The remaining
terms lead to the following expressions.

e0 = σ2
d +

∫ 1

0

(σ2
d|H(ν)|2 + σ2)|G(ν)|2dν

− 2σ2
dℜ
[∫ 1

0

H(ν)G(ν)dν

]

e1 =

∫ 1

0

(σ2
d|H(ν)|2 + σ2)γg,g(ν)dν

e2 = 2σ2
d(2 + α)πNTℑ

[∫ 1

0

H(ν)γg,f (ν)dν

]

e3 = 4σ2
dπ2(1 + α + α2/3)N2

T γf,fℜ
[∫ 1

0

G(ν)H(ν)dν

]

whereγg,g(ν), γg,f (ν) are defined similarly to Eq. (10) and
Eq. (12).

Our aim now is to express the error on the Wiener filter
as a function of the error on the channel filter. Under the
assumption of large Wiener filter length, it is well known that

G(ν) =
σ2

dH(ν)

σ2
d|H(ν)|2 + σ2

.
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Differentiating previous expression with respect toH(ν) leads
to

∆G(ν) =
−σ4

dH(ν)
2
∆H(ν) + σ2

dσ2∆H(ν)

(σ2
d|H(ν)|2 + σ2)2

.

Then we have that

γg,g(ν) =
(σ8

d|H(ν)|4 + σ4
dσ4)γh,h(ν)

(σ2
d|H(ν)|2 + σ2)4

(44)

−
2ℜ
[

σ6
dσ2H(ν)

2
γ̃h,h(ν)

]

(σ2
d|H(ν)|2 + σ2)4

γg,f (ν) =
σ2

dσ2γh,f(ν) − σ4
dH(ν)

2
γh,f (ν)

(σ2
d|H(ν)|2 + σ2)2

(45)

which leads to the expressions given in the lemma.

C. Proof of Theorem 1

First of all, we writehHRth as a linear combination of
non-central chi-square distributions. Let

xd = R
1/2
t

√

K

K + 1
hd and xr = R

1/2
t

√

1

K + 1
hr

Let Rx = E[xrx
H
r ] be the autocorrelation matrix ofxr. The

matrix can be diagonalized as follows

Rx = UΛUH

where U is a unitary matrix made of the eigenvectors of
Rx and whereΛ = diag(λ1, · · · , λL) with λk being thekth

eigenvalue ofRx. Let x̃d and x̃r be the following vectors

x̃d = Λ−1/2UHxd and x̃r = Λ−1/2UHxr.

x̃d is a deterministic vector whereasx̃r is a circularly Gaussian
distributed vector with zero-mean and unit-variance. Thenwe
get

ξ = hHRth =

L
∑

k=1

λk|x̃d(k) + x̃r(k)|2

wherex̃d(k) and x̃r(k) are thekth component of̃xd and x̃r

respectively.
Secondly, it is well known ([8] and references therein) that

a weighted sum of non-central chi-square distribution of two
degrees of freedom can be well approximated by a central
Gamma distribution. LetpG(t) be a Gamma distribution with
standard parameters(p1, p2). Then we get

pG(t) =
pp2

1

Γ(p2)
tp2−1e−p1t1t≥0

Notice that the mean and the variance of a Gamma distribution
are given byp2/p1 and p2/p2

1 respectively. WhenL is large
enough, the distribution of the random variableξ is close to
the Gamma distribution of parameters(p1, p2) given by

p2/p1 = E[ξ]

p2/p2
1 = E[(ξ − E[ξ])2]

After straightforward but tedious algebraic manipulations, we
obtain

p1 =

∑L
k=1 λk(1 + |x̃d(k)|2)

∑L
k=1 λ2

k(1 + 2|x̃d(k)|2)
(46)

p2 = ℓ1

L
∑

k=1

λk(1 + |x̃d(k)|2) (47)

Thirdly, it remains to evaluate the expectation of1/ξ when
ξ is assumed to be Gamma distributed. One can easily check
that

E

[

1

ξ

]

=

∫ ∞

0

1

t
pG(t)dt =

p1

p2 − 1

Finally, we need to evaluatep1 and p2 with respect the
channel statistics(K,hd,Σ) and the training correlation ma-
trix Rt. Towards this objective, recall that

x̃d = Λ−1/2UHR
1/2
t

√

K

K + 1
hd

which implies that

L
∑

k=1

λk|x̃d(k)|2 =
K

K + 1
hH

d Rthd

and
L
∑

k=1

λ2
k|x̃d(k)|2 =

K

(K + 1)2
hH

d RtΣRthd.

As Λ represents the diagonal matrix whose elements are the
eigenvalues ofRx, we have

L
∑

k=1

λk = Tr(Rx) =
1

K + 1
Tr(RtΣ)

and
L
∑

k=1

λ2
k = Tr(R2

x) =
1

(K + 1)2
Tr(RtΣRtΣ)

which concludes the proof by settingℓ1 = (K + 1)p2/p1 and
ℓ2 = (K + 1)2p2/p2

1.

D. Proof of Theorem 2

Since sl is positive or null, the functionλl 7→ sl/λl is
convex whenλl is positive. As a sum of convex functions
is convex, we have thatλ 7→ Jh(λ) is convex if all the
components ofλ are positive.

Instead of proving directly the convexity ofJf (λ), we will
prove the convexity ofφ(λ) = −(K +1)/Jf(λ), because it is
easier. AsJf is positive by construction whatever the matrix
Rt and as the inverse function is also convex, the convexity of
φ implies the convexity ofJf . Therefore we now concentrate
on λ 7→ φ(λ) which can be written as follows

φ(λ) =

∑L
k,l=1 λkλlbklclk
∑L

l=1 λlall

−
L
∑

l=1

λlall

We now calculate the Hessian matrix ofφ, which is defined
as follows

H =

[

∂2φ(λ1, · · · , λL)

∂λm∂λn

]

m,n=1,··· ,L
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One can find that

∂φ

∂λm
=

2t2mmλm +
∑L

k=1,k 6=m λk(bkmcmk + bmkckm)
∑L

l=1 λlall

− amm

∑L
k,l=1 λkλlbklclk

(
∑L

l=1 λlall)2
− amm

Then we have that

∂2φ

∂λm∂λn
=

1

S

[

bnmcmn + bmncnm

]

− 1

S2

[

2bmmcmmannλm + 2bnncnnammλn

+ amm

L
∑

k=1
k 6=n

λk(bkncnk + bnkckn)

+ ann

L
∑

k=1
k 6=m

λk(bkmcmk + bmkcmk)

]

+
1

S3

[

2ammann

L
∑

k,l=1

λkλlbklclk

]

with S =
∑L

l=1 λlall.
To prove convexity, we need to prove that the Hessian

matrix H is positive. Therefore we focus on the following
term

c =
S

2
xT

Hx

wherex = [x1, · · · , xL]T is a real-valued vector of lengthL.
After straightforward but tedious derivations, we obtain

c =

L
∑

k,l=1

xkbklclkxl

−

(

∑L
k,l=1 λk(bklclk + blkckl)xl

)(

∑L
l=1 allxl

)

S

+

(

∑L
k,l=1 λkbklclkλl

)(

∑L
l=1 allxl

)2

S2

Let T = B ⊙ CT where ⊙ stands for the term-by-term
Hadamard product. SinceB andC are hermitian positive,T
is hermitian positive as well [16]. As a consequence, we can
apply the following Schwartz inequality as follows

|λTTx|2 ≤ (λTTλ)(xTTx)

which is equivalent to

∣

∣

∣

∣

∣

∣

L
∑

k,l=1

λkbklclkxl

∣

∣

∣

∣

∣

∣

≤

√

√

√

√

L
∑

k,l=1

λkbklclkλl

√

√

√

√

L
∑

k,l=1

xkbklclkxl

Thus we have

c≥
L
∑

k,l=1

xkbklclkxl

−2

√

∑L
k,l=1 λkbklclkλl

√

∑L
k,l=1 xkbklclkxl

∣

∣

∣

∑L
l=1 allxl

∣

∣

∣

S

+

(

∑L
k,l=1 λkbklclkλl

)(

∑L
l=1 allxl

)2

S2

=







√

√

√

√

L
∑

k,l=1

xkbklclkxl −

√

∑L
k,l=1 λkbklclkλl

∣

∣

∣

∑L
l=1 allxl

∣

∣

∣

S







2

≥0

which concludes the proof.

E. Proof of Theorem 3

The functionJd(λ) is convex since i) the inverse function
is convex, ii) the composition of a convex function and an
affine function is convex, and iii) the sum of convex functions
is convex.

We define the Lagrange function as follows

L(λ, µ1) =
1

N

N
∑

n=1

αn

λn
+ β

1
1
N

∑N
n−1 βnλn

+ µ1

(

1

N

N
∑

n=1

λn − P

)

Thanks to the KKT condition, we have that

∂L

∂λm
= − 1

N

αm

λ2
m

− βN
βm

(

∑N
n=1 βnλn

)2 +
1

N
µ1 (= 0)

thus

µ1 =
αm

λ2
m

+ βN2 βm
(

∑N
n=1 βnλn

)2

Let µ2 = (
∑N

n=1 βnλn)2 andµ3 = µ1µ2. We obtain

λm =
√

µ2

√

αm

µ3 − N2ββm

As 1
N

∑N
n=1 λn = P and by settingµ = µ3/(βN2), we have

that

λm = P

√

αm

µ−βm

1
N

∑N
n=1

√

αn

µ−βn

As
√

µ2 is also equal to
∑N

n=1 βnλn, it is easy to prove that

1

N

N
∑

n=1

βn

√

αn

µ − βn
=
√

β

which concludes the proof.
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