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Abstract— We consider single-carrier and single-user transmis- only consider TS designs based on asymptotic performance
sions over a frequency-selective channel. We address thegllem  metrics.

of joint estimation of the channel and the carrier frequency In the above approaches, the channel was considered de-

offset using a known training sequence (TS). Since in gendra L : .
the TS that is optimum for CFO estimation is not optimum for terministic and thus any likely correlation between the CIR

channel estimation, here we design the TS to minimize the Mea COMponents was not taken into account when designing the
Square Error on the soft estimates of the data symbols obtaed TS. An approach which considers random CIR was proposed
using a Wiener equalizer after CFO compensation. Our design in [6], where a channel-independent design criterion was
results apply to the general scenarios of correlated and/oRicean obtained by statistically averaging the CRB of the CFO over

channel taps. Simulations measuring the bit error rate showan the CIR lizati H th Kin 16 | id
interesting gain when using the proposed training schemesiilieu e realizations. However, the work in [6] only consid-

of standard schemes. ered the case where the CIR components are independent
and identically distributed (i.i.d.) and their magnitudase
Rayleigh distributed. In such a case, the best TS for CFO
I. INTRODUCTION estimation was shown to be white [6]. In fact, in this case, th
optimal TS for the joint CFO/CIR estimation is still white.

ally affected by inter symbol interference due to the maltp Pndeed, if the CIR components are Li.d., thE." gveraged alann
channel and carrier frequency offset (CFO) caused by t gquency response is flat and thus the training power should

Doppler effect or/and a local oscillator drift. Before agiph ¢ equally split between all the frequencies. However, the

a CFO correction and an equalizer, the channel impulE@yleigh i..d. assumption in [6] may be restrictive in firee

response (CIR) and the CFO have to be estimated. In m Ss?if.ejg' t[9], ['TIO]' [1dl]’ [tth]-) ﬁ corr?Iattlotr_\ ?et\?lleefn théRC
practical systems, this estimation task is carried out bgsty coetlicients will render the channel statistically Ireqagn

mitting a known training sequence (TS) prior to transn@tin?l_zletcmée’ mt\_Nh'Thl case rt]here 'St n(; reason o Iezc(pde(g a IW.h'te
information-bearing data. It is therefore of interest tsida 0 be optimal. In such a contex (i.e., correlated Rayleig

the TS at the transmitter side so that accurate estimatdwmof ?omponents of the impulse response), a first characteizati

unknown parameters can be obtained at the receiver side.Of the .T.S minimizing the CRB 9f the CFO is av.au_lat_)le n
When the only unknown parameter is the CIR, it is WeII[_13]. Similarly, if the channel is Ricean, the determiragiart

known that the best TS (i.e. the TS that minimizes the CramOf the CIR shogld play a part in shaping the spect_ru_m_ of the
; . S. Of course, in the absence of CFO, the TS optimizing the

Rao bound (CRB)) is the pseudo-random white sequen . . o .
B associated with the CIR estimation is white regardless
[1], [2]. However, when both the CIR and CFO need to b€ -~ o :
of the statistics of the channel, when considering asynptot

estimated, the design of an optimal TS is still an open Issuﬁérformancé

in general. Suboptimum training designs were proposedsn t . . - L
Iite%ature using dri)fferent criterig n [:?] [4] thepaunph;oused No training design for the joint CFO and channel estimation
i T FQéOblem has been proposed for the case of correlated CIR taps

the worst-case asymptotic CRB, i.e., the large-sample C . : . .

associated with the worst channel realization and showaid tﬁmd/or_ Rlcgan CIR in the I!teratgrg. The_ goe}l of this paper
the white TS is then optimal. In [5], the TS was designe' to fill this gap. The design difficulty in this case stems
to render the exact (i.e. fini.te-sam’ple) CRB of the CFgom the fact that the optimal TS designs for CFO and CIR

independent of the channel zeros. The developed TS destlesﬁlmanons are different, unlike the Rayleigh i.i.d. cagere

was shown to outperform the white TS design when the Ienit gi\\/,}/glljt; thixﬁigﬁugggﬂ;ﬁz ;2;?0?'2?:52?23%2{2’ th
of the TS is small/moderate. For a large TS, the white seqe (? . P X . :
evelop a single TS selection strategy for the joint esiionat

is still optimal when considering the criterion in [5]. Heree ) ) o
P g [5] He problem. This leads to the need of selecting a criterion that
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In wireless communications, the transmitted signal is us



a frequency compensation and a Wiener linear equalizes. Thihere « is a constant depending on the system of interest.

MSE is obtained by statistically averaging the conditiofwed We also assume that the length of the channel filteand

the channel) MSE over the channel realizations. This enalhe length of the equalizer filtef., tend to infinity, at the

us to find an "optimal” TS which is relevant to both channedame rate. Note that we will first consider that the sizes ef th

and CFO estimations. sequencesNp and Nr) are large, andhen assume the filters
The paper is organized as follows: in Section Il, we inlengths (. and L,) are large, which means that

troduce the signal model, the channel statistics model, the LorL,

receiver model as well as the criterion that we wish to lim

0
N1 —o00 NT

optimize. In Section Ill, we express the proposed criterion )
in closed-form. Section IV is devoted to the optimizatio®" €quivalentlyL, L, < Np, Nr. In Proof of Lemma 2 re-
of the criterion derived in Section IIl. In Section V, wePortedin Appendix B, we actually need a little bit more riestr
propose numerical illustrations in order to observe thengdive assumption. We will in fact assume thdt or L,)/v/Nr
in performance provided by our approach. is bounded whev; becomes large. AIth_ough fc_)r the an_aly3|s
Notation: Overline=, superscriptd and™ denote complex W€ assume large values fI)ran_dLg, we will chS|der reallstlc
conjugate, transposition, and conjugate transpositiespec- values for these parameters in the simulation section.
tively. E[B||A] andE A [B] denotes the conditional expectation
of B with respect toA and the average expectation Bf B. Channel Model

over A, respectively.R[A] and S[A] denote the real and  The channel is assumed to be Rice distributed
imaginary parts ofA, respectively. Finally|lal| and T(A)

denote the L2-norm of vectar and the trace of matrix, h=./ K hy -+ /1 h )
respectively. For any vectop = [p(—Ly),---,p(L2)]T of K+1 K+1 "

length (L, + L2 + 1), we denote its Fourier transform bywhereh, is a deterministic vector normalized in such a way
P(v) =312 p(l)e2mn, that||hy||> = 1, andh,. is a complex circular Gaussian random

vector with zero mean and covariance mafiix= E[h,h!l],
normalized in such a way that TE) = 1. CoefficientK is

the so-called Ricean factor. In this paper, we assumeAihat
A. Sgnal Model 3, andh, are known at both the transmitter and the receiver

We focus on single-carrier and single-user communicatiorfides- o _
We assume that the transmission consists of a training modd Nis channel model can be justified in the following two
during which a TSt = [t(0),t(1),...,t(Ny — 1)]T of Ways. Firstly, in most wireless applications, it is usuattm-
length N, which is known to the receiver, is transmittedSider that the channel can be decomposed into two parts: the
followed by a data mode during which a data sequendESt part refers to the Line of Sight (LOS), which correspsnd
d = [d(0),d(1),...,d(Np—1)]T of length N, is transmitted. © the first term of the righthand side of (2), and the secomtl pa
Notice that training and data samples may be complex-valuégassociated with the non-line of sight (NLOS) components
The discrete-time baseband received signdh), has the of the channel, which corresponds to the second term of the

Il. PROBLEM STATMENT

following form: righthand side of (2). The knowledge @&, X, and hy at
both sides is motivated by the fact that the coherence times
oL corresponding td<, 3, andh, are much larger than that of
y(n) = > " h(1)s(n — 1)+ w(n), (1) h, [9], [10], [11], [12]. Secondly, even when the Rice model
=0 does not hold true, it is often possible to decomphsas

where f denotes the (normalized) CFQL(0), ..., h(L—1)} depicted_ in Eq._(2). For instance, consider the case where

depending on the mode of transmission at time instarénd these estimates to the transmitter. The latter therefoseaha
w(n) denotes a circularly symmetric white Gaussian noigétial knowledge of the CIR, which can be described as in Eg.
with variances? = E[jw(n)[2]. Leth = [h(0)...h(L — 1)]T (2 -whe.re the random part represents the_uncertalntlesmlue t
be the unknown channel vector. For the sake of simplicitgstimation/feedback errors and time-variations of thenok&
d is assumed to be an i.i.d. sequence with variange= Notice that the estimation errors are Gaussian asymp_llgtiqg
E[|d(n)|%]. Note however that our results can be generalizé@- When the length of the TS is large enough, which justifie
to the case wherd is a colored sequence. the Rice model.

In order to obtain an expression for the proposed criterion
that is simple and tractable to optimize, we will consideC. Receiver model
the system performance in the "asymptotic” regime.,, we
assume thaboth N, the size of the TS, an&/p, the size
of the data sequence, tend to infinity, while the raig /N
converges to a constant, i.e.,

First, the receiver compensates for the CFO using the
estimated valugf of f. It then generates the signgl(n) =
e~%7fry(n). For eachn > Nr + L, we have that

L-1
Np ye(n) = e 22" N " h(1)d(n — Ny — 1) + w(n).  (3)
Nr—oo Np 1=0



whereAf = f — f. Note that CFO compensation does not [1l. CRITERION DERIVATIONS

change the statistics qf the_whlte noise. Thus, to _5|mpI|fy To derive the MSE in eq. (4), we firstly focus on MGEh)
notations, the same variable is used to denote the noiseebefo, ., . . faloe .
hich is the MSE given a realization of the channel and which

and after CFO compensation. The receiver then compensa}\ggtslsﬁeS
for the channel distortion using a standard Wiener filtethwit

coefficientsg = [g(—Ly), ..., 9(Lg)]. The linear equalizeg MSE(t) = En[MSE(t|[h)].

should be calculated using the estimated vaiuef h. The 1ha main steps of the derivations are as follows

output equalizer is defined b
puteq (n) y « In Subsection IlI-A, we provide a simple expression for

MSE(t||h) as a function of the estimation errors on
z(n)= Y §(k)ye(n —k). parameterd and f. Results are drawn in Lemma 2.
k=—Lg « In Subsection 11I-B, we relate the estimation errors to the

Finally, a detector is used on the equalizer output in order t  training strategy. Results are given in eq. (22).

recover the transmitted data symbols. « In Subsection IlI-C, we finally average M$&|h) over
When the receiver has statistical knowledge on the param- the channel using our statistical model in eq. (2). Results

eters to be estimated, one can use the bayesian approach toare given in egs. (27) and (32).

estimate the parameters of interest. Nevertheless, thi®aph

has the drawback of complicating the performance analys'As.

Furthermore, when the SNR is large and/or when the number N

of available training samplesyr, is large, which is the case Let Ah = h —h and Ag = g§ — g whereg denotes the

in the asymptotic regime, the best Bayesian estimator aWdener filter associated with. We recall thag is the Wiener

the best deterministic estimator (Maximum Likelihood - MLYilter based on the estimate filtér.

lead to the same performance since the a priori contributionAfter straightforward but tedious algebraic manipulation

is bounded whereas the likelihood grows with the number ofported in Appendix A, we obtain the following lemma.

available observations. Therefore, in this paper, we coinate Lemma 1: Let MSE(t|h, h, f) denote the MSE for a given

on the standard deterministic approach based on the Mtalization of the channel, a realization of the channéiede

estimatof. As a consequence, it is reasonable to consider theatd a realization of the CFO estimate. We get

the estimation errors on the CIR and CFO are well described FN

by the deterministic CRB in the asymptotic regime. MSE(t||h) = Ej, ;[MSE(t||/h,h, f)]

Ly

MSE(t||h) as a function of the estimation error

o where
D. The proposed criterion .
A natural approach would be to design a training strate@¥SE(t||h, h, f) = o2 + 02/ (G + AG)(v)[Pdv
which leads to the minimum bit error rate at the detector 0

. . . pp: 1
output. Unfortu_nately, such a criterion is very difficult to n 03/ IHW) (G + AG) (v — Af)Pdv
express as a simple function of the training strategy. Here, 0

we propose to minimize the MSE at the equalizer output. In ) 1
the sequel, we define = 204R [S(Af)/o (G+AG)(v — Af)H(v)dv
MSE, (t) = E [|z(n) — d(n — Nr)|* [It] . with
NT pr
It is worth noting thatz(n) is a non stationary sequence S(v) = 1 Jrz: 16_2i7rl/n
due to the presence of facter 72/, Therefore, the above Np &~ '

expression of the MSE depends on indexlt is obviously |y order to obtain a simple link between M@&gh) and
impractical to minimize the MSE for all possible values ofhe estimation errors, we consider the "asymptotic” regime
n. Here, we propose to minimize the average MSE, i.e. MSfescribed in Subsection I1-A. We recall (cf. [1], [2]) thétet

averaged over all data symbols: MSE on channel estimation is of ordéf N while the MSE
] NrtNp-1 on CFO estimation is of order/N2. Consequently, function
MSE(t) = — Z MSE, (t). (4) 8(f) can be decomposed as follows
ND n=Nr
S(Af) = 1—in(2+ a)NrAf

The above criterion depends on the ESyia the estimation ) ) ) )
errors on parametera and f. The objective of the next - 2r°(1+a+a”/3)Np(Af)” + 0p(1/Nr)(5)

subsection is to express MB in closed-form. whereo,(1/Nr) refer to terms that are negligible compared

Our TS design strategy basically consists of searching ft%rl/NT in probability. Based on the above decomposition, we

the TS that minimizes the MSE on the data symbols at tr(‘)%tain the following lemma whose proof is given in Appendix

output of the Wiener filter. Our TS will be ‘optimal’ when theB

receiver is as described above. Lemma 2: Assuming the asymptotic regime, we have that

2Notice that ML estimator can be easily carried out by mearsakelation
and periodogram [1], [2] MSE(t||h) = eg + e1 + e2 + e3 + 0,(1/Nrp)



where estimated, the second term in the RHS of Eq. (14) vanishes.

1 One can remark that the estimation error only depends on the
o = o5+ / (2| H ()| + 02)|G(v)|*dv second order statistics of the TS and not on each realizafion
the TS. If we assume that the sequeficg:); k =0, +1,---}
— 202 {/ H(v ] (6) Is absolutely summable, then we can define the following
spectrum associated with the TS
(o |H ( )I4 +040%) :
e — Vb (V )dl/ S _ k —2imkv
L= [ ul) = vk
! 0'60'2H(V) An,n (V) .
- 2 d : d 7) Itis easy to check that
! U (RP+ 2P " ’ 1
1 2 27— % k) = S (y)ezi”k“du
- 92 2 2 NS H 040 Vh,f (V) T( / tt
r = i rans| [ H) R °
2 This implies that
o (V) Yhs (V)
- MGEGP ® 1
h"R;h :/ Sy (V)| H (u) |*du
e3 = do2n’( 1+a+a2/3 )N2 0
Thanks to Eq. (11), we have
X yp R {/ G(v ] 9) o (1
h Ann(v) = dp(v)E[ARART]d L (1)
wit
, whered (v) = [1,--- , e~ 27(E=1¥] Using Eq. (15) leads to
a(v) = E[AH@)] (10) w (HW)Y
~ - g 14
nn(v) = E[AH(@v)? (11) Inn(v) = =53 T (17)
(W) = E[AH@)AS] (12) 7 Jo Su)lH (u)*du
v = E[(Af). (13) Similar algebraic manipulations can be done to obtain
Notice that the terng, represents the error at the output of 302 H(v)
the Wiener filter wherh and f are perfectly known. Erroe; Y, £ (V) —z‘2 NZ 1 5 (18)
andes are the extra term associated with the mis-estimation TNT [y Su(v)|H(u)?du
of h and of f respectively. Finallys is an extra error caused o 302 1 (19)
by the mis-estimation of both and f. = 2m2N2 fol Syt (V)| H (w)[2du

: - Deriving a closed-form expression fop, ,(v) is a com-

B. MZE(t||h) as a function of the TS statistics plicated task since we have to handle m(at)fb{l. More
In the sequel, we expresg, »(v), Yn.n(v), vns(¥) and precisely,y, ,(v) depends ol (v)R; 'd(v)!. In order to

~¢.7(v) as functions of the TS statistics. Indeed, since we fOC@&preSS’yh,h(y) as a simple function ofi(v), we notice that

on the asymptotic regime, the design of the TS is equivaleghen the channel lengtl is large enoughR; becomes a

to the design of its statistics, as it is justified by the CRBirge Toeplitz matrix, which implies that its inver& ! can

expressions below. Therefore, we treat the TS as a realizathe well approximated by the circulant matrix (cf. [7], [14])

of a zero-mean stationary random sequence, whose swtistighose first row is

namely its covariance matrix, will be designed to minimize 1

the total averaged MSE defined above. [ / eQi”’wdu} (20)
When Nr is large, it is known that the asymptotic co- Su(v k=0, ,L—

variance of the ML channel coefficients and CFO estimatgs,sed on this approximation, we obtain

coincides with the CRB, which is reported below (cf. [3])

2 L 3 |H(v)|?
o (_; 3 hhf V) =2 42
E[AhAL"] = Ny (Rt L §m> (14) (V) Nr \ Su(v) 2 [ Sy (v)|H (u)2du
E[AhART] — 30> hh" (15) When bothN; andL are large, putting Egs. (17), (18), (19),
B 2Nt hHRh and (20) into Egs. (6), (7), (8), and (9) leads to the follogvin
E[ARA) 302 h expression for MSE|/h)
= Tl ILERL
2r N7 hHR;h MSE(t||h) = MSEmown(h) + MSEunknowr(t]h)  (21)
E(AF2] — 302 1 16
[(Af)7] Wm (16) where MSEkqown(h) represents the MSE that one would have

observed if parameter estimation was perfect, and is giyen b
whereR, is the L-dimensional covariance matrix defined by P P giye
2 2

the entries{r(k — ) }x,1=0,... L—1 With 7(k — 1) = E[t(n + MSEcqun(h) — 1 o530 d
k)t(n +1)]. When the CFO is known and does not need to be nNmE T o G2 HWw)? + o2 v




and where the ‘excess MSE’, M@knowr(t|/h), due to the  We now would like to derive a closed-form expression for
mis-estimation of CIR and CFO, has the following form  the expectations inJ,(Sy) and J(Sy). Let us start with
Jn(St). Thanks to Eq. (2), it is easy to check thd{v), for

1
MSEjnknowr(t||h) = U]%;Q ( ; Cgi’:(':)l) dv an;(;u, ig Gaussian distributed with meafK /(K + 1)Hy(v)
and variance
1
7 Jo cz(u||h)5tt(u)du> 2 i) = EL IR/ ), 29
0

Besides,H (v) minus its mean is circularly symmetric. There-
fore the probability density function ofH (v)|? takes the
following form

with 8 = 27/2 + 9a + 2a* and
og Hw)|* +o*

a(v|h) = Lo (23)
(Ung(VQ)P +0?2)3 (@) K+1 7(K+1)m+K\Hg(u)\2
H(v Pz (E) = ———e¢ E[[Hr (1)]?]
W) = —a Ul (22) ) E[H, 0)P]
o srtaErerdu Hy(v)]?
‘ « 1o [ Jag P g
In EqQ. (22), notice that the MSE depends on the color of the 0 E[|H,(v)|?] v20

TS. Now we would like to find the color that minimizes the _ _. . o
MSE but independently of the channel realizattorTherefore Wherelo(.) is the modified Bessel function of first kind and
the last step of our criterion derivations consists of ayieig Where1l,>, is equal tol whenz is positive and equal t0

the MSE in eq. (21) oveh. otherwise. Consequently, we get
Lo2(K +1) _XiHgm2
C. Averaging MSE(t|[h) over h = Faep©
Under the assumption thaf; and L are large, the averaged * giz? 4ot __uins
. . X a4~ " o E[H )]
MSE can, using the above equations, be expressed as o (0222 +02)3
0.20.2 H 2
MSE(t) = MSEmown + —=—J (S 25 [Ha(v)|
(t) nown T (Ste) (25) x Iy < 2KE[|HT(1/)|2]x dz (30)

where MSEnown = En[MSEmown(h)] is a constant represent- o )
ing the average MSE in the absence of mis-estimation of thgnough this integral cannot be expressed in closed-fam,

channel and CFO, and where the ‘excess MSE' is proportiofiimerical computation can be easily carried out. Onde)
to J(Sy), which is given by is evaluated, another numerical integration is carried tout

evaluateJy, (S¢).
J(Stt) = Jn(Set) + J¢(Set) (26)  For J;(Sy), one can remark that the expression (24) can be
greatly simplified when the high SNR regime is considered,
where
. as follows
Jn(S) al) dv, (27) high SNR 1
o Su(v) J¢(Su ~ Ep|—
1 Jo IHW)|2Su(v)dv
Jr(S = E , . , . .
(5e) " fol c2(v||h) Sy (v)dv (28) Next, we will derive a closed-form expression for the high-

SNR approximation ofJ;(Sy), given the above equation.

with ¢1(v) = En[cy(v]h)]. L Since Egs. (16) and (19) represent the same term, we deduce
The functionS;; — J(Sy) is the proposed criterion thatthat

we would like to minimize in order to select a relevant power 1

spectrumSy, (). Notice that.J(S,) is a linear combination Jf(Stt) = En [m] (31)
of two terms. The first termJ, (S ), is associated with the !

channel estimation error. Nonetheless, this term is nectly The next theorem is proved in Appendix C.

related to the CRB for the CIR. Indeed, the asymptotic CRB Theorem 1: Let J;(S;:) given by Eq. (31). IfL is large,
for the CIR (when CFO is known) is equal to the integrave have that

of the inverse of the power spectrum of the TS (cf. Egs. A

(14) and (20)). It is the function; (v) that prevents us from J5(Su) = (K + l)m (32)
having a direct relationship between the CRB for the CIR !
and the impact of channel estimation error on the MSE. TKdere
second term,If(Stt), is a_ssociated with the CFO estimation b= Tr(R(E + Khdhg))
error. Once againj;(Sy) is not proportional to the averaged °

CRB associated with CFO estimation due to the presence ty = Tr(RZRy(X + 2Khghy)).

of co(v|/h). Nevertheless, at high SNR, one can remark that

c2(v|/h) tends to| H (v)|? which implies that/;(S;;) becomes  Using the above expressions fdy,(S;:) and J;(Sy), we
proportional to the CRB for the CFO described in Eq. (19).next address the issue of training optimization.



IV. CRITERION OPTIMIZATION Theorem 2: When L is large, minimizingJ(S;;) is equiv-

As mentioned in the previous section, our training desigdent to minimizingJ,(X) defined as follows
is based on the minimization of(S;:), which is a weighted L L
sum of J; (S¢) and J¢(S). This optimization problem is, in Jy(A) = Z St +8 D11 Nan
general, intractable in closed-form, due to the highly madr — (ZzL:1 Aag)? Zk 1—1 AeAbRICL
relationship betweed (S;;) and the power spectrum of the TS. (35)
Nevertheless, we show in this section that this optimizatiorhe above function is convex with respectXaf A; > 0 for
problem is convex, which implies that any gradient-typell i € {1,---,L}.
descent algorithm will provide the global optimum solution Since the);’s are positive by definition,/,(\) is convex.
Further, in the case of high Rice factdt (— co), we are able Hence, our optimization problem is convex since the fumctio
to obtain closed-form solutions using the Lagrange mudtipl to be minimized is convex and the constraints
based method.

L
R) =) M=LP and X\ >0, VI (36)
A. General case

First, we will simplify J;(S) given in Eq. (32). We recall gre also convex. To obtain numerical values for the optimal

that J¢(Sy) can be written as follows A, We can use a standard convex optimization toolbox.
Tr(R:A
J(Su) = (K +1) X 2( A)
(Tr(R¢A))? — Tr(R:BR;C) B. Large K case
with When K, the Rice factor, is large, we can replabév) in
= 3+ Khyh! (26) with the transfer functiodi,(v). This approximation is

> supported by the fact that for any continuous mappinof
. the channel coefficients, E [F(h)] converges tdf(h,) as the
X +2Khghy Ricean factork tends to infinity.

This expression is an extension of that reported in [6] for The simplified TS design criterion is then defined by
the iid Rayleigh channel case (obtained wh&n= 0 and L ()
(Ste) /
0

Q) T
Il

1
= (1/D)1dy). R . - . (37)
To solve our optimization problem, i.e. minimization of
J(Su) in EQ. (26), we again assume that the channel Ienq,vlherec
1

) . . ) is obtained by removing the mathematical expec-
L is large. We recall that this assumption has already bet%{%lon and by replacingf () with Hy(v) in c1(v), and where

made in the previous section to obtain closed-form expessi . :
of J(Si). Hence, thel x L Toeplitz matrixR; can be almost ( ) is obtained by replacing! (v) with Hy(v) in Eq. (24).
diagonalized in the Fourier basis for large Consequently Of course, the above criterias(Sy) is likely to be a valid

' approximation ofJ(S;:) provided that the Ricean factdk
we get . L ,

is large enough. The training strategy proposed is thesefor

appropriate whenk is large. However, we will show in the
whereF is an L x L Fourier matrix andA;; is a diagonal simulation part that, even for moderate and realistic \alofe
matrix whose/*" diagonal element is\, = Sy (¢/L). As K, the proposed training strategy based on the minimization

R, = FA,FH

a consequence/J,(S;) is completely captured by = of J4(S:) outperforms classical training strategies.
[A1,...,Ar] and can be rewritten as Once again, we replace the integrals with their Riemann
I sums. Then
oA
Tr(A) = (K +1)—7 2ic 1 (33) N
(i1 Man)? = 2050 =1 AeAibricik _ 1 Z an ; (38)
N n=1 )\" N 27]:]:1 571)\11

where ay;, by, and ¢, are the components of the" row
and[** column of matricesA = FEAF, B = FIBF, and
C = FHCF, respectively.

As to J,(Su), using the fact that for largé, the integral
in Eg. (27) can be approximated by a Riemman sum with
grid equal tol/L, we obtain

with a,, = c¢{(n/N), B, = c3(n/N), and N being an integer.
In the following theorem, we show that the minimization of
Jg(A) w.r.t. A under the following constraint

1 1 N
Tr(R,) = L/O Su(v)dv = L+ ; Ao =LP  (39)

L
Z x (34)
1=1 reduces to a convex optimization problem. Unlike the gdnera
with s; = ¢1(1/L)/L. case, we are here able to develop the Lagrange optimization
In the next theorem, we state that the criterion (26) is cenv&ethod and thus obtain a closed-form expression for the
with respect toA when .J,, an J; satisfy Egs. (34) and (33) optimal A. This result, which is summarized in Theorem 3,
respectively. The proof is reported in Appendix D. is proven in Appendix E.



Theorem 3: The criterionJ; defined by Eq. (38) is convex lead to the same TS design. Minimizing the CRB with respect
and minimum under the power constraint (39) for to the TS has been partially treated in the literature. [#dce
the TS which minimizes the worst CRB (i.e., the maximum

Am = P~ Nam/(u—ﬁm) (40) of the CRB over all normalized channel realizations), [5]
N 2one1 Von/ (1= Bn) selects the TS that renders the finite-sample CRB for the
where is such that CFO channel-independent, and [6] characterizes the TShwhic
N minimizes the average CRB when the channel coefficients are
1 \/7_ _ assumed i.i.d. and Rayleigh (i.€¢, = 0 andX is proportional
N Z Bu/on/(u = Ba) = V/B. to the identity matrix). Here, by adapting Theorems 2 or 3,

As N can be ?aTI%en arbitrarily large, we finally have that we design the TS which minimizes the average CRB when the
N O channel is Rice whatever the Ricean factorand the color of

- 1 P % (41) the random part. In the general case, criteribygh) can be

Jo Vel (w) /(1 — 3 (w))du simplified by removing the first term in the RHS of Eq. (35).

. 1 Obviously, the optimization problem remains convex and a
wherey. is such thatfo ca(u)v/ef(u)/ (= §(u))du = . standard optimization tool can be applied to find the optimum
TS spectrum. In the case where the channel has a high Ricean
C. Comments factor, K, J;(\) can be simplified by ignoring the first term in

We recall that our approach holds when the TS éize the the RHS of Eqg. (38). In this cas@, has one non-zero element
data sizeNp, and channel lengtli, are large. In practice, a (i.e. a TS with one nonzero FFT bin only), which is associated
TS with power spectrum provided by means of Theorems 2 with the maximumg,,.

3 can be very simply generated as the output of a digital filter

with relevant coefficients excitgd py a pre-generated pseud V. SIMULATIONS

random sequence. Further, this filtering does not have to be ]

performed frequently since the channel statistics, unfile ~ Unless otherwise stated, we st = 50, L = 5 and
channel state information, are likely to change very slowly = 10- The CFO is fixed tof = 0.1. All simulated points
with time. Therefore, the additional computational comjije &ré averaged over000 Monte-Carlo runs. In each run, the
of the proposed training design is low. channel was independently _generated according to model (2)

It is worth pointing out that our derivations enable us t§/€ @ssume that the correlation between two channeliténs
analyze the scenario where the channel has to be estim#8 (1) of the CIR is given byp!*~l where p belongs to
but no CFO is present. In this case, critefigA) and J;(\) [0,1). _ o
can be simplified by removing the second term in the RHS In Figure 1, we plot the spectrum of one realizationhof
of Eg. (35) and of Eq. (38) respectively. The optimizatioﬁmd the normalized spectrum of the associated optimal TS
problem is still convex in this case. By adapting the deiorsg  When K = 3, p = 0 and SNR20dB. We observe that the TS
in Appendix E, the power allocation at FFT bin denoted SPECtrum gives animportant role to the best frequenqeh;eoft
by A, is found to be,/s,, in the general case and tga,, in deterministic part pf the channel to ensure a good estimatio
the high Ricean factor case. Consequently the best TS mayt@ CFO but also is spread over a large enough band to ensure
colored (if the sequenceor « is not constant). We recall that@n accurate estimation of the random part of the channel.
the TS that minimizes the CRB of the channel (when no CFO

Stt (I/) = P

is present) is white regardless of the channel statistibés T a5 e Rice part spectra for K=3, ha=0, SNFindBv NI=50, L5, and alpha=10
means that the minimization of the channel CRB and of the | KA

symbol MSE may lead to two different kinds of TS designs. #1127 = Ricepart spectrum LY

This leads to the following question: which criterion is the 35)

most relevant? When a Wiener-type equalizer is carried out, af

the MSE of the output of the Wiener filter represents better

the true performance of the overall system than the CRB of

the channel since the CRB of the channel does not take into

account the receiver structure. Nevertheless, by sinoumsti 15¢

we observed that the improvement due to the color of the TS Wl

is negligible when no CFO is present. Therefore, in this case

the white TS remains a good candidate for channel estimation
We can also address the CFO estimation problem in O Tos 03 w02 01 o 01 oz o3 oa os

frequency-selective channel when the channel is not a param Normalized Frequency

eter of interest as it was the case in [4], [6]. This probleny ma

occur when synchronisation is carried out more frequentfye . Spectrum shape for one realizationtof and the optimal TS (for

than channel estimation. As mentioned in Section IlI-C, & =3andp=0)

high SNR, the MSE degradation due to CFO estimation is

proportional to the CRB for the CFO. Unlike for channel In Figure 2, we plot the theoretical and empirical data MSE.

estimation, for CFO estimation, the CRB and MSE criteriihe MSE when the parameters (i.e. CFO and CIR) are known

25

2L

0.5




is also depicted for comparison purposes. We have considere =~ M3F versus Kw.rtthe training sequence for NI=50, alpha=10, SNR=2008, and tho=0
R; = PId;, K = 10 and p = 0. When the parameters are _o_\jvehrif;c%mw'edge

estimated, we display the theoretical MSE depicted in Eg) (2 —EB— Optimal TS (large K)
and the one drawn in Eq. (27) and Eq. (32). We thus observe
that all our approximations are accurate since the empirica
MSE is close to the approximated theoretical MSE.

MSE versus SNR for Nt=50, alpha=10, K=10, and rho=0
T T T

T T
Perfect knowledge (theoretical)
O  Perfect knowledge (empirical)

—&— White TS (theoretical)
= ® = White TS (approximate)
O  White TS (empirical)

Fig. 4. MSE versusk (for SNR=20dB andy = 0)

107}

and a Wiener equalizer based on the estimated values of
the parameters are employed. The training is either white or

10° :
° ° oo 7 25 * colored as suggested by Theorem 3. We remark that the gain in
performance is significant, which advocates TS optimizratio
Fig. 2. Approximation MSE versus SNR at the transmitter.

B%R versus SNR w.r.t the training sequence for Nt=50, alpha=10, K=10, and rho=0
10 T

In Figure 3, we display the theoretical data MSE versus
SNR (with K = 10 and p = 0) when the parameters are
perfectly known and when the parameters are estimated with 10
either a white TS or the colored TS suggested by Theorem 3
for large K. We observe that the colored TS exhibits a gain 1020
in terms of MSE but this gain seems to be small.

T
—©— Perfect knowledge
—@— White TS

=—8— Optimal TS (large K)

BER

10 E
M%E versus SNR w.r.t the training sequence for Nt=50, alpha=10, K=10, and rho=0
T T T T

T
Perfect knowledge
—@— White TS 107k

=—8— Optimal TS (large K)

100

SNR

Fig. 5. BER versus SNR (foi{ # 0 andp = 0)

In Figure 6, we display the MSE versuys(for K = 0)
when optimal training or white training are employed and
‘ ‘ ‘ ‘ ‘ when the parameters are assumed perfectly known. The gain
0 5 10 s 20 25 30 in MSE obtained by selecting the best TS is very small. One

can remark that the gap between the case of known parameters

and that of unknown parameters is small as well. Actually the
correlation between the channel taps needs to be strong in
order to observe a difference between the optimal TS and the

In Figure 4, we plot the theoretical data MSE versigwith  white TS. Nevertheless, as we will see in the next figures,
SNR=20dB andp = 0). We observe that the optimizationa little difference in the MSE may lead fortunately to an
carried out under the assumption of large provides non- important gain in BER, which is the ultimate criterion.
negligible gain as soon ds > 3. In many practical situations, In Figure 7, we plot the MSE versus SNR in a correlated
it is reasonable to assume the Ricean factor to be larger thiayleigh channel environment. Once again, the gain is small
3 (cf. [9], [20], [11], [12].) Therefore, Theorem 3 can be ofyhatever the SNR.
great interest in realistic scenarios. In Figure 8, we plot the BER versus SNR in a correlated

In Figure 5, we plot the Bit Error Rate (BER) versus SNRayleigh channel environment. Unlike the MSE criterion, we
(with K = 10 and p = 0) when a frequency compensatiorobserve a non-negligible gain between the white TS and the

Fig. 3. MSE versus SNR (foK # 0 andp = 0)



MSE versus rho w.r.t the training sequence for Nt=50, alpha=10, SNR=20dB, and K=0
10° T T
Perfect knowledge (theoretlcal)

—@— White TS (theoretical)
=—f&— Optimal TS (theoretical)

107 i i i i

rho

Fig. 6. MSE versup (for SNR=20dB andK = 0)

MSE versus SNR w.r.t the lralnlng sequence for Nt=50, alpha=10, K=0, and rho=0.95
10" T T T

—©— Perfect knowledge
—@— White TS

=—8— Optimal TS

Fig. 7.

MSE versus SNR (foK = 0 and p = 0.95)

BER versus SNR w.r.t the tralnlng sequence for Nt=50, alpha=10, K=0, and rho=0.95
10° T T T

—©— Perfect knowledge

—@— White TS
=—8— Optimal TS

10°

10"

SNR

Fig. 8. BER versus SNR (fok = 0 andp = 0.95)

~ BER versus \hat{rho} for Nt=50 and alpha=10
10 T T
—O— Perfect knowledge

—@— White TS
=8 Optimal TS

\hat{rho}

Fig. 9. BER versug (for K = 0 and p = 0.95)

optimal TS. Consequently, in a correlated Rayleigh enviroRe significant in many scenarios. In recent systems, multi-
ment, it is worth performing an optimization of the TS at théarrier modulations are being considered instead of single

transmitter.

carrier modulations. Our work may be extended to such a

In Figure 9, we plot the BER versus where p is an Scenario. We guess that the MSE to be minimized will offer a
estimation of the true correlation factor which is fixed t§imilar expression (if the number of subcarriers is assutoed
p = 0.95 as before. The SNR i280dB. The other parametersPe large) but the part associated with a mis-estimation ef th
are as in Figure 8. We remark that the design of the TS GO should have a stronger contribution because of the high
not so sensitive to the perfect knowledge of the corrretatigensitivity to the CFO in multicarrier systems.

factor.

VI. CONCLUSION

In this paper, we develop a new method to design optlmumWe have that MSE(t||h,h, ) =

APPENDIX

A. Proof of Lemma 1

Elz(n) — d(n -

training sequences which efficiently account for the errof¥r)[?[[t,h, b, f] which can be eaS|Iy decomposed as follows
due to channel and carrier frequency offset estimations Thi

method is based on the minimization of the mean square1SE, (t||h, h, f)
error on data estimation at the output of the Wiener-type

equalizer averaged over the channel statistics. The aatain

criterion is simplified by invoking an asymptotic regime.€rh

we prove that the criterion is convex which enables us to

find numerically the optimal training sequence. Closedrfor

solutions are obtained in the case of channels with highaRicewhere r,_, (1) =

= Ud + Z ll rycyc (ll
LW'=—=Ly
L9
— 2R | ) d(Wray.(n,—1)
I=—Lg

Elye(n + m)yc(n)] and rqy, (n,7)

_l)

(42)

factors. Simulations show that the gain in bit error rate cdly.(n + 7)d(n — Nr)]. Thanks to Eq. (3), one can prove
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that Recall that
L MSE(t|h,h, f) = A+ B+ C

Tycyc (T) = 03 Z h(k + T)Wk)eziﬂ—AfT + 025(7—)
=0 where A, B andC are the first, the second and the third row
, [ 2 2in(vtAf) ) of the RHS of the equation provided in lemma 1 respectively
= O’d/o |H (v)[?* 28Dy + 026(7) and given by the following expressions
1
We also remark that A = U§+02/ (G + AG)(v)|2dv
0

iy, (1,7) = o3h(r) BRI,

1
= o [ |[HW)P(G+AG)(v—Af)Ad
The second term of the RHS of Eq. (42) can then be simplifie§ Ud/o [H@)IPI(G + ) HFdv

as follows 1
L, C —2033‘% [S(Af)/o (G+ AG)(v — Af)H(u)du] .

[ 1 A~
Z DIy (1" = 1) 203/0 |H(v)P|G(v + Af)[Pdv Using Egs.(5) and (43) leads to

LU'=—L,

1 1
A = 03—!—02/ |G(V)|2du+02/ |AG(v)|*dv
0 0

1
+02/ |G(v)[2dv
0 + one order term- o,(1/Nr)

By similar algebraic manipulations, we obtain

1 1
Ly Ly 2 2 2 2 2 2
R . R i A g BZO'/HI/ G(v dV+U/HV AG(v)|*dv
I=—1L, I=—L, + one order term- o,(1/Nr)
1
:agezi”A-f"/ G(v+ Af)H(v)dv and )
0
_ 2
plugging both previous equations into Eq. (42) and using tie — —20a% {/0 H(V)G(V)dy]
fact that 1
| NrtNp-1 + 2027(2 4+ a)NrS [z/ AG(V)AfH(u)du]
MSE(tl|h, b, f) = 57— Y.  MSEu(t[hh, /) Ry
D =Nz + 4o (1 + a+ a?/3)NZR [/ G(U)(Af)QH(I/)dI/]
0

conclude the proof. + one order term- o,(1/Nr)

where "one order term” is a sum of one-order monomials
associated with variable& f or Ag. By averaging4, B, and

] : - C over the channel estimation error and the carrier frequency
is large and of the same order as the filter len§thSince error, the "one-order term” vanishes whé#y is large since

L'is assumed to be negligible with respectAa-, we get he ML estimators are asymptotically unbiased. The remagini
LyAf < 1 when Ny is large. More precisely, we have thata ms lead to the following expressions.
Ly/+/Nr is bounded whenVr is large. By definition, we

B. Proof of Lemma 2
We assume that the Wiener filter length, denotediby

v 1
obtain that o = g§+/ (G2 H(W)|? + 02)|G() 2dv
L, 0
A _ S (12 (VHAP) !
Gw+Af) =3 4 ~ ag2p [ / H(V)G(u)du}
L, 0

As L,/v/Nr is bounded, we have.,Af o Lg/Ni/Q X e
1/Nr. Consequently, for every; we can write that

eHmASL = 1 4 2irAfl + O(1/N2). €2

/0 (@2HW)P + 0%)7y, ()

20%(2 + a)T Ny [ /O 1 H(u)yg,f(u)du}

whereO(1/N2) is bounded inl /NZ. This implies that e = 4097(1+at a/3)Niys R [/1 G(V)H(V)duj|
Glv+Af) = G)+AG®W) 0
L, where~y, 4(v), 74,5 (v) are defined similarly to Eq. (10) and
+ 2inAf (Zzgm) +0,(L,/N2)  EQ.(12). _ o
= Our aim now is to express the error on the Wiener filter
as a function of the error on the channel filter. Under the
where 0,,(1/N7) is bounded in1/N7 in probability. As assumption of large Wiener filter length, it is well knowntha
Ly/+/Nr is bounded, we finally get o
A Gv) = __oafly) .
Gv+Af)=G(v)+ AG(v) + 0y(1/Nr). (43) o2|H(v)]2 + o2
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Differentiating previous expression with respect¢v) leads After straightforward but tedious algebraic manipulaspwe

to obtain
9 -
AG() = —ill W) AW + ogo" Al () b~ i (L [Fa()P) .
2 2)2 : = —
CalH@)F +0%) S V(L 2fza(k)?)
Then we have that , L \ e -
= 1+ T
) (0'§|H(V)|4+O'§U4)'}/hyh(u) @) b2 1; K ( |Za(k)[7) (47)
V9.9 (2[HW)]? + 02)4 . . . :
d ) Thirdly, it remains to evaluate the expectationlgt when
2R (0502 H (V) An,n(v) ¢ is assumed to be Gamma distributed. One can easily check
that
(o3 H()]> + 0?)* 1 > n
2 2 4 2 Bl :/ fpc(t)dt: -1
V) = 050°Yh, (V) — o HW) v, r(v) (45) 3 0 D2
Yo.f (02|H(v)|? 4+ 02)? Finally, we need to evaluatg; and p. with respect the

channel statistic$ K, h,, ) and the training correlation ma-

which leads to the expressions given in the lemma. trix R,. Towards this objective, recall that

L _ A-l/277HRp1/2 K
C. Proof of Theorem 1 x4 = A~?U"R, K+ 1hd
First of all, we writeh"R;h as a linear combination of which implies that
non-central chi-square distributions. Let I %
e K e [T D ArlEa(k)? = Zm iRy
=R h d x, =R,’*\/——h, p
Xd + K1 4 and x + K1 1
and .
Let R, = E[x,x!1] be the autocorrelation matrix of.. The 2~ s K H
matrix can be diagonalized as follows 1; ArlZa(k)l” = (K +1)2 By Re2Rha.
R, = UAUH As A represents the diagonal matrix whose elements are the

eigenvalues oR,, we have
where U is a unitary matrix made of the eigenvectors of

/ i 4 L
R”” and whereA = d|fjlg()\1, s ,AL) with A !oemg thek™ Z A = Tr(Ry) = 1 Tr(R,X)
eigenvalue ofR,. Let X, andx, be the following vectors P K+1

%, = A Y?U%%,; and %, = A"1/2UHx,. and

L
1
2 2\
X4 is a deterministic vector where#s is a circularly Gaussian 1; A = Tr(R;) = K+1 Tr(R, 2R,

( )?
distributed vector with zero-mean and unit-variance. Thven ] ]
get which concludes the proof by settiffg = (K + 1)p2/p; and

L ly = (K + 1)*p2/pi.
¢=h"Rh = \|za(k) + 2,(k)|”
k—1 D. Proof of Theorem 2

whereiq(k) and z, (k) are thek™ component ofk; andx, Since s; is positive or null, the functiom, — si/N IS
convex when); is positive. As a sum of convex functions

respectively. _ h thak 7O i it all th
Secondly, it is well known ([8] and references therein) thay CONVEX, We have nan n(A) is convex if all the
components of\ are positive.

a weighted sum of non-central chi-square distribution af tw |Instead of proving directly the convexity ot (A), we wil

degrees of freedom can be well approximated by a c:entraove the convexity 0b() — —(K +1)/J5(A), because it is

Gamma distribution. Leps(t) be a Gamma distribution with brov ASTs | itive b tructi hat th i
standard parametetsr, p,). Then we get easier. ¢ Is positive by construction whatever the matrix

R, and as the inverse function is also convex, the convexity of
¢ implies the convexity of/;. Therefore we now concentrate
on A — ¢(A) which can be written as follows

Py 1 t
t) = tpz— e—Pl 1
pG( ) F(pz) t>0
L

Notice that the mean and the variance of a Gamma distribution B(A) = Dk i=1 A AbRiCI
are given byp,/p; and py/p? respectively. Wherl is large -
enough, the distribution of the random varial§lés close to

the Gamma distribution of parametdis, p2) given by

Aag

Sy M ]
We now calculate the Hessian matrix @fwhich is defined
as follows
p2/p1 = E[{] G = ?p(M,-- ,AL)
2
P2/p1

L

E[(¢ — E[¢))?) | oo, ]m
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One can find that Thus we have

L

L
a¢ - 2t$nm/\m + Zk:l,k;ﬁm Ak (bkmcmk + bmkckm) c> Z TrbriCiLT
ONm Zle \ay k=1
B Zi,lzl AeAibricu . ) \/ZfJﬂ Akbrici i \/Zilzl TrbriCikT) ‘Zle allwz‘
(S haw)? " - S
(ZL /\bc)\)(ZL a:c)2
Then we have that L \eki=t TRTRTRA = T
S2
2 2
ajnig)\n = % |:bnmcmn + bmncnm:| \/Zi,ZZI AkbricikAr ’ZZLZI a”'rl’
1 S
- ) 2bmmcmmann)\m + 2bnncnnamm)\n
S2 0
L
+  amm Z e (DknCnk + bnkCrn) which concludes the proof.
s
L
E. Proof of Theorem 3
+ Apn Z Ak (bkmcmk + bmkcmk)]
=1 The functionJ;(A) is convex since i) the inverse function
o I is convex, ii) the composition of a convex function and an
L = |:2ammann Z /\k/\zbszk] _afflne function is convex, and iii) the sum of convex functon
S ot is convex.
’ We define the Lagrange function as follows
with S = Zlel Aag. 1
To prove convexity, we need to prove that the Hessian L) = NZ /\— 275
matrix H is positive. Therefore we focus on the following n=1 N 2n—1OnAn
term i
S -
c= §X Hx =
Thanks to the KKT condition, we have that
wherex = [z1,---,21]" is a real-valued vector of length. oL 1 a, B 1
After straightforward but tedious derivations, we obtain o N B TN N2 + v (=0)
" (T
L
Z Trbriciex; thus N ﬁ
k=1 p = /\—Qm + ﬁN24N - 2
(25,1:1 A (bricus + blkal)fL'l) (Zle auxl) " (Zn:l ﬁn)‘n)
. S . 9 Let o = (ij:l BnAn)? and uz = pipz. We obtain
. (Zkﬂlzl /\kbklclk)\l) (21:1 allwl)
O
S2 )\m — -
VI s — N266,,
Let T =

B ® C" where ® stands for the term-by-term As LN
Hadamard product. SindB and C are hermitian positiveT N —mn=1

A\, = P and by settingu = u3/(BN?), we have

is hermitian positive as well [16]. As a consequence, we can F
H—Bm

apply the following Schwartz inequality as follows

DDNEPY P
IATTx[? < (ATTA)(x"Tx) N =t

As /us is also equal toZﬁ[:1 BnAn, it is easy to prove that

which is equivalent to

k=1

L L L
g Axbriciry| < g Arbriciz E Trbricika
k=1

iy

Zﬁn

k=1 which concludes the proof.
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