Channel estimation and Superresolution in UWB system

Philippe Ciblat

École Nationale Supérieure des Télécommunications, Paris, France
Outline

1. UWB system
 - Impulse Radio
 - Multi-band
 - Channel Model

2. Channel estimation
 - Cramer-Rao Bound
 - Existing estimates
 - Comparison

3. Superresolution
Digital communications system satisfies the following spectral mask:

![Graph showing spectral mask with frequencies and P IRE values for Indoor and Outdoor conditions.](image)

- **Interest**
 - Spread spectrum technique
 - Localization
Techniques

Approaches

- Impulse Radio (IR)
- Multi-band (MB)

We hereafter focus on Impulse-Radio technique

- Pierce and Hopper 1952
- Winthington and Fullerton 1992
- Win and Scholtz 1993
Time-Hopping (TH) IR-UWB signal associated with user n

- $N_f T_f$
- $d_n(i-1)$
- $d_n(i)$
- $d_n(i+1)$
- N_f frames
- T_f
- Temps de garde
- N_c chips
- T_c
- $d_n(i) = 0$
- $d_n(i) = 1$
- $d_n(i-1)$
- $d_n(i+1)$
- $d_n(i) = 1$ PAM
- $d_n(i) = 1$ PPM
Data stream

\[s(t) = \sum_{i=0}^{M-1} d_i b(t - iN_f T_f) \]

where

- \(M \) is the number of transmit symbols
- \(d = [d_0, \cdots, d_{M-1}] \) belongs to PAM
- \(N_f \) is the number of frame per symbol
- \(T_f \) is the duration of each frame
The super frame composed by N_f frames is structured as follows

$$b(t) = \sum_{j=0}^{N_f-1} g(t - jT_f - \tilde{c}_j T_c)$$

where

- T_c is the chip duration
- N_c is the number of chips in one frame
- Time-hopping code in the j^{th} frame is given by $\tilde{c}_j \in \{0, \cdots, N_c - 1\}$
- $g(t)$ is the mono-cycle with the temporal support $[0, T_g)$
Developed code

For each frame j, let $c_j = [c_j(0), \cdots, c_j(N_c - 1)]$ defined as follows

$$c_j(i) = \begin{cases}
1 & \text{if } i = \tilde{c}_j \\
0 & \text{otherwise}
\end{cases}$$

Then $c = [c_0, \cdots, c_{N_f - 1}] = [c(0), \cdots, c(N_f N_c - 1)]$

$$s(t) = \sum_{i=0}^{M-1} d_i \sum_{j=0}^{N_f N_c - 1} c(j) g(t - j T_C - i N_f T_f)$$

- Status of the chip (occupied/free) outside $g(t)$
- Le Martret & Giannakis 2002
Channel model

- Multi-path random channel
- Molish 2003

Impulse response

\[h(t) = \sum_{k=1}^{N_p} A_k \delta(t - \tau_k) \]

where

- \(A_k \) is the attenuation associated with the \(k^{th} \)-path
- \(\tau_k \) is the delay associated with the \(k^{th} \)-path
We focus on one cluster model

Statistical model

\[p(\tau_k | \tau_{k-1}) = \lambda e^{-\lambda(\tau_k - \tau_{k-1})} \]

\[A_k = (p_k \cdot b_k) e^{-\tau_k / \gamma} \]

where

- \(a_k \) independent of \(\tau_n \)
- \(p_k \) binary variable
- \(b_k \) log-normal variable

\(\lambda \) and \(\gamma \) are both deterministic parameters
Deterministic parameters

- λ is the path density
- γ is the RMS delay spread (i.e., length of impulse response)

$$\lambda = 0.1\text{ns}^{-1} \text{ and } \gamma = 20\text{ns}$$

$$\lambda = 1\text{ns}^{-1} \text{ and } \gamma = 200\text{ns}$$
Rake receiver (for sake of simplicity)

Correlation with the template $b(t) = \sum_{j=0}^{N_tN_c-1} c_j g(t - jT_c)$ synchronized at each path

Path estimation is necessary
Fisher Information Matrix

\[
J_{A_l, A_k} = \frac{2}{N_0} f_1^{(k,l)}, \quad J_{A_l, \tau_k} = -\frac{2A_k}{N_0} f_2^{(l,k)}, \quad J_{\tau_l, \tau_k} = \frac{2A_k A_l}{N_0} f_3^{(k,l)}
\]

where

\[
f_1^{(k,l)} = \mathbb{E}_d \left[\int s(t - \tau_k) s(t - \tau_l) dt \right]
\]

\[
f_2^{(k,l)} = \mathbb{E}_d \left[\int s(t - \tau_k) s'(t - \tau_l) dt \right]
\]

\[
f_3^{(k,l)} = \mathbb{E}_d \left[\int s'(t - \tau_k) s'(t - \tau_l) dt \right]
\]

with

- \(s'(t) = ds(t)/dt \) and \(\mathbb{E}_d[\phi(d)] = \phi(d) \) if \(d \) is a known sequence

\(\Rightarrow \) CRB for DA scheme and MCRB for NDA scheme
State-of-the-Art

1. Laurenti (September 2004) : one path
2. Huang (June 2004) : non-overlapping context (i.e., signal echoes are orthogonal)
 \[f^{(k,l)}_m = 0 \quad \text{if} \quad k \neq l \]
3. Zhang (June 2004) : overlapping taken into account (but no closed-form expression for FIM)

Questions

- Non-overlapping assumption does not hold in realistic situation?
- Closed-form expressions for \(f^{(k,l)}_m \) even when \(k \neq l \)
Non-overlapping case

Straightforward derivations yield

\[
\text{CRB}_{\text{DA}}(A_l) = \text{MCRB}_{\text{NDA}}(A_l) = \frac{N_0}{MN_f} \frac{E_3}{2(E_1E_3 - E_2^2)}
\]

\[
\text{CRB}_{\text{DA}}(\tau_l) = \text{MCRB}_{\text{NDA}}(\tau_l) = \frac{N_0}{MN_f} \frac{E_1}{2A_l^2(E_1E_3 - E_2^2)}
\]

with \(E_1 = \int g(t)^2 dt \), \(E_2 = \int g(t)g'(t)dt \), and \(E_3 = \int g'(t)^2 dt \)

Remarks

\(\Rightarrow \) In DA scheme, performance does not depend on the training sequence

\(\Rightarrow \) Same expression in the context of single-path (when \(N_p = 1 \))
Overlapping case

Let
\[\Delta \tau_{k,l} = \tau_k - \tau_l = Q_{k,l} N_f T_f + q_{k,l} T_c + \varepsilon_{k,l} \]
with the integer parts \(Q_{k,l} \) and \(q_{k,l} \), and the remainder \(\varepsilon_{k,l} \)

Main result

\[
\begin{align*}
 f_m^{(k,l)} &= M(C(q)A_m(\varepsilon) + C(q + 1)A_m(\varepsilon - T_c) \\
 &+ D(q)B_m(\varepsilon) + D(q + 1)B_m(\varepsilon - T_c))
\end{align*}
\]

with
\[
C(q) = \sum_{j=0}^{N_f N_c - q - 1} c(j)c(j + q), \quad D(q) = \sum_{j=0}^{q - 1} c(j)c(j - q)
\]

\[
A_m(\varepsilon) = \frac{1}{M} \sum_{i=0}^{M-1} \mathbb{E}_d [d_{-Q-1+i} d_i] r_m(\varepsilon), \quad B_m(\varepsilon) = \frac{1}{M} \sum_{i=0}^{M-1} \mathbb{E}_d [d_{-Q+i} d_i] r_m(\varepsilon)
\]

\[
r_1(t) = g(t) \ast g(-t), \quad r_2(t) = g'(t) \ast g(-t), \quad r_3(t) = g'(t) \ast g'(-t)
\]
• Code collisions plays an important role.

• The more $f_m^{k,l}$ (for $k \neq l$) is high, the more the CRB is high.

• If $\varepsilon \in [T_g, T_c - T_g]$, there is no overlapping.

• The more the path is dense, the more the CRB taking into account the overlapping is larger than the (simplified) CRB.

• Deleuze & Ciblat & Le Martret (July 2004)
Average CRB (I)

\[E_x[\text{CRB}(x)] = E_x[J(x)^{-1}] \geq (E_x[J(x)])^{-1} \]

Simplified expressions for \(A, B, C, D \) by averaging over
- symbol sequence
- time-hopping code

\[\text{In DA scheme, average CRB over all possible training sequences} \]
\[\text{In NDA scheme, MCRB is considered} \]
Average CRB (II)

- \(\{d(i)\}_i \) i.i.d. symbols belonging to 2-PAM

Result

\[
\mathbb{E}_d[A_m(\varepsilon)] = \delta_{Q,-1} r_m(\varepsilon), \quad \mathbb{E}_d[B_m(\varepsilon)] = \delta_{Q,0} r_m(\varepsilon)
\]

- \(c_j \) is the realization of i.i.d. random vector whose each component admits the following distribution

\[
p(c) = \left((N_c - 1)\delta(c) + \delta(c - 1) \right) / N_c.
\]

Result

\[
\begin{align*}
\mathbb{E}_c[C(q)] &= \frac{N_f N_c - q}{N_c^2} & \text{if } q \neq 0 \\
\mathbb{E}_c[C(0)] &= N_f & \text{if } q = 0
\end{align*}
\]

\[
\begin{align*}
\mathbb{E}_c[D(q)] &= \frac{q}{N_c^2} & \text{if } q \neq N_f N_c \\
\mathbb{E}_c[D(N_f N_c)] &= N_f & \text{if } q = N_f N_c
\end{align*}
\]
Maximum Likelihood

- Lottici & Andrea & Mengali 2002
- No overlapping context
- Simulations done in a non-overlapping context
- ML carried out in DA and NDA schemes
 - DA scheme: derivations based on likelihood (for PAM or PPM)
 - NDA scheme: derivations based on true likelihood at low SNR (for PPM)

Algorithm

\[J_{DA}(\tau) = \frac{1}{M E_b} \sum_{i=0}^{M-1} z_i(\tau) \]

with \[z_i(\tau, d_i) = d_i(r(t) \ast b(-t) | t = i N_f T_f + \tau) \]

- Localizations of peaks provide \(\hat{\tau} \)
- Magnitudes of peaks provide \(\hat{A} \)
Undersampling based method (I)

- Maravic & Vetterli 2003
- DA scheme
- Undersampling at period $T_s \gg T_p$ preceded by Anti-Aliasing Filter

Let $\tilde{r}(t)$ the noiseless receiver signal at the output of AAF

$$\tilde{R}(m) = \text{F.T.}(t \mapsto \tilde{r}(t))|_{f=m_0} = \sum_{k=1}^{N_p} A_k \tilde{S}(m) e^{-2i\pi \tau_k m_0}$$

then

$$\tilde{R}_s(m) = \frac{\tilde{R}(m)}{\tilde{S}(m)} = \sum_{k=1}^{N_p} A_k z_k^m$$

with $z_k = e^{-2i\pi \tau_k f_0}$
Undersampling based method (II)

\[R = \begin{bmatrix}
\tilde{R}_s(0) & \tilde{R}_s(1) & \cdots & \tilde{R}_s(N_p - 1) \\
\tilde{R}_s(1) & \tilde{R}_s(2) & \cdots & \tilde{R}_s(N_p) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{R}_s(N_p - 1) & \tilde{R}_s(N_p) & \cdots & \tilde{R}_s(2N_p - 2)
\end{bmatrix} \]

\[\Leftrightarrow [R]_{\ell,\ell'} = \sum_{k=1}^{N_p} A_k z_k^{\ell+\ell'} \]

Then

\[R = V \Lambda V^H \quad \text{with} \quad V = \begin{bmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1^{N_p - 1} & \cdots & 1^{N_p - 1}
\end{bmatrix} \]
Undersampling based method (III)

Shift invariance

\[\overline{V} = V_{\text{diag}}([z_1, \ldots, z_{N_p}]) \]

where \(\overline{V} \) and \(V \) denote the omission of the first and last row of \(V \) respectively.

Then it exists a vector \(x_k \) such that

\[\overline{V}x_k = z_k Vx_k \]

\(z_k \) is a generalized eigenvalue of \((\overline{V}, V)\)

Algorithm

For any \(k \), \(z_k \) is the root of the polynomial

\[P(s) = \det(\overline{V} - sV) \]

This obviously provides \(\hat{\tau} \) and \(\hat{A} \)
First-order cyclostationarity based method (I)

- Luo & Giannakis 2004
- Asymmetric PAM \((d_i \in \{-1, \theta\})\)
- ISI-less context (delay spread < guard-time)

\[
 r(t) = \sum_{i=0}^{M-1} d_i b_r(t - \tau_1 - iN_f T_f) \quad \text{with} \quad b_r(t) = \sum_{k=1}^{N_p} A_k b(t - \Delta \tau_{k,1})
\]

If ISI-less, \(\{b_r(t - \tau_1 - iN_f T_f)\}_i\) is a orthogonal set and thus \(b_r(t)\) is a square-root Nyquist filter.

Problem

- **Optimal receiver is the matched filter** \(b_r(-t)\) **shifted by** \(\tau_1\)
- **Knowledge of** \(b_r(t)\) **and** \(\tau_1\) **is needed**
First-order cyclostationarity based method (II)

The cyclostationary mean contains information about \(b_r(t) \) and \(\tau_1 \)

Algorithm

If \(\tau_1 \) is associated with the strongest path, then

\[
\hat{\tau}_1 = \arg \max_{\tau \in [0, N_f T_f)} \left| \int_0^{2 N_f T_f} \E[r(t)] b(t - \tau) dt \right|
\]

and

\[
\hat{b}_r(t) = \frac{2}{\theta - 1} \E[r(t + \hat{\tau}_1)], \quad \text{for} \quad t \in [0, N_f T_f)
\]
Non-overlapping case

Set-up

- \(T_p = 1\text{ns}, \quad T_c = 2T_p, \quad N_c = 10, \) and \(N_f = 10, \quad T_s = 200\text{ns}, \quad M = 100 \)
- \(\tau = [5T_p, 10T_p, 15T_p] \) and \(\mathbf{A} = [0.73, 0.67, 0.35] \)

Such assumptions ensure the absence of overlapping

![Graph showing the relationship between \(\text{MSE/T}_p^2 \) and \(\text{Eb/N}_0 \)]

- Vetterli \(B = Bs/2 \)
- Vetterli \(B = Bs \)
- Giannakis
- ML NDA
- ML DA
- CRB
Overlapping case

Set-up

- $\tau = \{kT_p/2\}_{k=1, \ldots, 20}$
- A obeys a normalized exponential decreasing profile

Such assumptions ensure the presence of overlapping

\leadsto ML non optimal in overlapping case
Comparison

Question

Is there overlapping or not in realistic channel?

Two statistical models:
Molish ($\lambda = 0.2\text{ns}^{-1}, \gamma = 20\text{ns}$) and Lee ($\lambda = 2\text{ns}^{-1}, \gamma = 5\text{ns}$)

\[\text{Fig: MCRB : Delay vs SNR (M=100)}\]

\[\text{MSE vs SNR (M=100)}\]

\rightarrow If path density is high, the non-overlapping model does not hold
Definition

- The superresolution is the smallest gap between two delays that we are able to distinguish from.
- The Cramer-Rao Bound $\text{CRB}(\tau)$ is the smallest mean square error that we may reach when the value of the sought delay is τ.

Superresolution definition

The superresolution $\tau_{\text{res.}}$ satisfies the following equation:

$$\tau_{\text{res.}} = \sqrt{\text{CRB}(\tau_{\text{res.}})}$$

- When τ decreases, the overlapping increases.
- To evaluate accurately the superresolution, we need the closed-form expression of $\text{CRB}($ in overlapping case.
Superresolution versus SNR

Set-up

\(\tau = [0, \tau], \ A = [1, 0.5], \) and \(M = 100 \)

\(\Rightarrow \) Non-overlapping is too optimistic and does not make sense
Superresolution versus T_p

Set-up

$E_b/N_0 = 10\text{dB}$ and $M = 100$

\rightarrow Resolution proportional to T_p
CRB derivations:

Estimator design:
