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Figure 1: Data Dependent Path Excitation
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Context: Timing Speculation

Taken from: Razor,Dan Ernst et. al. MICRO 36 2003

tion of safety margins to the critical voltage. Also, the delay of an
inverter chain does not scale with voltage and temperature in the
same way as the delays of the critical paths of the actual design,
which can contain complex gates and pass-transistor logic, which
again necessitate extra voltage safety margins. In future technolo-
gies, the local component of environmental and process variation is
expected to become more prominent and, as noted in [6], the sensi-
tivity of circuit performance to these variations is higher at lower
operating voltages, thereby increasing the necessary margins and
reducing the scope for energy savings.

In this paper, we propose a new approach to DVS, referred to as
Razor, which is based on dynamic detection and correction of speed
path failures in digital designs. The key idea of Razor is to tune the
supply voltage by monitoring the error rate during operation. Since
this error detection provides in-situ monitoring of the actual circuit
delay, it accounts for both global and local delay variations and does
not suffer from voltage scaling disparities. It therefore eliminates the
need for voltage margins that are necessary for “always-correct” cir-
cuit operation in traditional designs. In addition, a key feature of
Razor is that operation at sub-critical supply voltages does not con-
stitute a catastrophic failure, but instead represents a trade-off
between the power penalty incurred from error correction against
additional power savings obtained from operating at a lower supply
voltage.

It was previously observed that circuit delay is strongly data
dependent, and only exhibits its worst-case delay for very specific
instruction and data sequences [24]. From this it can be conjectured
that for moderately sub-critical supply voltages only a few critical
instructions will fail, while a majority of instructions will continue to
operate correctly. Our hardware measurements and circuit simula-
tion studies support this conjecture and demonstrate that the circuit
operation degrades gracefully for sub-critical supply voltages, show-
ing a gradual increase in the error rate. The proposed Razor
approach automatically exploits this data-dependence of circuit
delay by tuning the supply voltage to obtain a small, but non-zero
error rate. It was found that if the error rate is maintained suff iciently
low, the power overhead from error correction is minimal, while
substantial power savings are obtained due to operating the circuit at
a lower supply voltage. Note that as the processor executes different
sets of instructions, the supply voltage automatically adjusts to the
delay characteristics of the executed instruction sequence, lowering
the supply voltage for instruction sequences with many non-critical
instructions, and raising the supply voltage for instruction sequences
that are more delay intensive.

We propose a combination of circuit and architectural tech-
niques for low cost in-situ error detection and correction of delay
failures. At the circuit level, each delay-critical flip-flop is aug-
mented with a so-called shadow latch which is controlled using a
delayed clock. The operating voltage is constrained such that the
worst-case delay is guaranteed to meet the shadow latch setup time,
even though the main flip-flop could fail. By comparing the values

latched by the flip-flop and the shadow latch, a delay error in the
main flip-flop is detected. The value in the shadow latch, which is
guaranteed to be correct, is then utilized to correct the delay failure.
We present several architectural solutions for error correction, rang-
ing from simple clock gating to more sophisticated mechanisms that
augment the existing mispeculation recovery infrastructure. 

The proposed Razor technique was implemented in a prototype
64-bit Alpha processor design. This prototype implementation was
used to obtain a realistic prediction of the power overhead for in-situ
error correction and detection. We also studied the error-rate trends
for datapath components using both circuit-level simulation as well
as sili con measurements of a full-custom multiplier block. Architec-
tural simulations were then performed to analyze the overall
throughput and power characteristics of Razor based DVS for differ-
ent benchmark test programs. We demonstrate that on average,
Razor reduced simulated power consumption by more than 40%,
compared to traditional design-time DVS and delay-chain based
approaches.

The remainder of this paper is organized as follows. In Section
2, we present the implementation of Razor, providing a detailed
description of both the proposed circuit and architectural techniques.
In Section 3, we discuss the simulation framework for Razor-based
DVS and present error rate studies and our simulation results. In
Section 4 we present a detailed survey of prior work in DVS. Finally,
in Section 5, we draw our conclusions.

2   Razor Error Detection/Correction
Razor relies on a combination of architectural and circuit level

techniques for efficient error detection and correction of delay path
failures. The concept of Razor is illustrated in Figure 1(a) for a pipe-
line stage. Each fli p-flop in the design is augmented with a so-called
shadow latch which is controlled by a delayed clock. We illustrate
the operation of a Razor flip-flop in Figure 1(b). In clock cycle 1, the
combinational logic L1 meets the setup time by the rising edge of the
clock and both the main flip-flop and the shadow latch will latch the
correct data. In this case, the error signal at the output of the XOR
gate remains low and the operation of the pipeline is unaltered. 

In cycle 2 in Figure 1(b), we show an example of the operation
when the combinational logic exceeds the intended delay due to sub-
critical voltage scaling. In this case, the data is not latched by the
main flip-flop, but since the shadow-latch operates using a delayed
clock, it successfully latches the data some time in cycle 3. To guar-
antee that the shadow latch will  always latch the input data correctly,
the allowable operating voltage is constrained at design time such
that under worst-case conditions, the logic delay does not exceed the
setup time of the shadow latch. By comparing the valid data of the
shadow latch with the data in the main flip-flop, an error signal is
then generated in cycle 3 and in the subsequent cycle, cycle 4, the
valid data in the shadow latch is restored into the main fli p-flop and
becomes available to the next pipeline stage L2. Note that the local
error signals Error_l are OR’ed together to ensure that the data in all

Figure 1. Pipeline augmented with Razor latches and control lines.
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Context: Probabilistic Computing

I ”From Blind Certainty to Informed Uncertainty”, Kurt
Keutzer et. al. TAU 2002

I ”Error Resilient System Architecture (ERSA) For
Probabilistic Applications”, Jason Bau et. al. DATE 2010
Implements 3 of the Intel RMS Benchmark Suite in presence of
3 × 10−4 errors/cycle, with reasonable accuracy (90 %).
(LDPC, K-means clustering, Bayesian Inference)
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Scope

I In this work we limit our scope to timing errors.

I In this work we investigate the data-dependence of timing
errors.

I To do so, our preferred mathematical tool is Bayesian
Networks.

I Our method is geared towards FPGA Implementations.
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Bayesian Networks

I A generic framework, for representation of problems involving a
large number of random variables in a factorised manner.

I Can be used for symbolic calculation of probabilities instead of
exhaustive Monte-Carlo simulation.
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Bayesian Networks

I Structure: DAG

I Each node is a Random Variable.
I An Edge between two nodes signify causal influence.

I Local Probability Model:

I Associated with each node Xi , there is a Conditional Probability Distribution

P(Xi |PaGXi
)

where PaGXi
denotes the parents of Xi in the BN.

I Probability Queries.

I Collection of methods to infer the marginal(joint) probabilities of a set of
event(s).
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Bayesian Networks:Structure

I In our model, there is a node(RV) corresponding to each
signal(i.e each terminal of a net)

I Possible events on any node(RV) X :
I < 0→ 0 >(0) or X 0

I < 0→ 1 >(1) or X 1

I < 1→ 0 >(2) or X 2

I < 1→ 1 >(3) or X 3

I some example events:
X 1,2: either of transition 1 or transition 2 on X.
(X 1,Y 1,Z 2): transition 1 on X, transition 1 on Y and
transition 2 on Z.
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Bayesian Networks:Structure
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Bayesian Networks:Local Probability Model

Table 1: Derivation of Transition Tables from Truth Tables.

Binary Format Decimal Format

@
b

a 0 1

0 0 0

1 0 1

⊗ @
b

a 0 1

0 0 0

1 0 1

=

@
b

a 0 → 0 0 → 1 1 → 0 1 → 1

0 → 0 0 → 0 0 → 0 0 → 0 0 → 0

0 → 1 0 → 0 0 → 1 0 → 0 0 → 1

1 → 0 0 → 0 0 → 0 1 → 0 1 → 0

1 → 1 0 → 0 0 → 1 1 → 0 1 → 1

@
b

a b0 b1 b2 b3

a0 0 0 0 0

a1 0 1 0 1

a2 0 0 2 2

a3 0 1 2 3
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Bayesian Networks:Local Probability Model

@
ba b0 b1 b2 b3

a0 0 0 0 0
a1 0 1 0 1
a2 0 0 2 2
a3 0 1 2 3

CPD size = 4 × 4Ninputs

P(F 0|A,B) =

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 , P(F 1|A,B) =

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 0

 ,

P(F 2|A,B) =

0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 0

 , P(F 3|A,B) =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
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Bayesian Networks:Local Probability Model
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Bayesian Networks:Probability Queries

Using MATLAB BNT Toolbox
the BN can be queried for

I Joint Distribution:
e.g P(A01, A11, F01, F11, H01, H11, OUT01, OUT1)

I Marginal Distribution:
e.g P(OUT10,3)

I Exact Algorithms
I Variable Elimination
I Junction Tree
I Quickscore
I Pearl (for Polytree)

I Approximation Algorithms
I Belief Propagation
I Gibbs Sampling
I Likelihood Weighting
I Pearl (DAG)
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Bayesian Networks:Local Probability Model
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A → S B → SS2

B → S A → SS2

A→ S

P(τarr (S) = τarr (A) + δAND |A,B, τarr (A), τarr (B))

@
ba b0 b1 b2 b3

a0 0 0 0 0
a1 0 P(τarr (B) < τarr (A)) 0 1
a2 0 P(τarr (B) < τarr (A)) P(τarr (B) ≥ τarr (A)) 1
a3 0 0 0 0
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Algorithms: BN Construction
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Figure 5: The same BN of figure 23 augmented with τarr nodes. The event space Ω
for each RV τarr is shown in red.
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Algorithms: BN Inference
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Summary of Assumptions

I We assume that only one event occurs on any input to a gate
in the netlist, within a single clock period. For outputs, if there
are more than one events, we consider the latest event only.

I We made an assumption that for any signal A,
P(τarr (Ai )) = mean(τarr (A)) that is we ignore the individual
arrival times of each event, replace it by the average.

I In actual operation there is an Aliasing Behaviour, that is the
errors from one clock period are spilled into the next one. We
don’t take into account this effect.
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Simulation Results
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Figure 6: Comparison of MC simulations, and BN inference for example circuit
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FPGA Implementation: Cyclone III
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FPGA Implementation: Cyclone III

Figure 7: Circuit diagram of the Uniform
Random Vector Generator (URVG).

Figure 8: Circuit diagram of the At-Speed
Samples Collector (ASSC).

17/25



4X4 Multiplier

Figure 9: The adder based 4x4 multiplier circuit tested on the Cyclone III.
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FPGA Implementation: Flow

{.VHO .SDO}

MATLAB/OCTAVE Scripts

QUARTUS

BAYES NET TOOLBOX

{.BNIF}

{.VHO .SDO}

MODELSIM with SAE-J2748

(Monte-Carlo)
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Results and Comparison: 15 bit RCA 8 MSBs
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(a) 8 MSBs (CYCLONE III FPGA).
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Results and Comparison: 15 bit RCA MSB
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(c) MSB(14):comparison with BN and Monte-Carlo simulation.
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Results and Comparison: 15 bit RCA MSB(Zoomed)
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Results and Comparison: 4x4 Array Multiplier 6 MSBs

Delay Assumption 1: Carry always arrives late !
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(e) 6 MSBs (CYCLONE III FPGA).
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(f) 6 MSBs (Bn Inference).
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Results and Comparison: 4x4 Array Multiplier 6 MSBs

Delay Assumption 2: P(τarr (Cin) ≥ τarr (A)) = P(τarr (A) ≥ τarr (Cin)) = 0.5.
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(g) 6 MSBs (CYCLONE III FPGA).
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Results and Comparison: 4x4 Array Multiplier MSB
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(i) Failure rates for the MSB(7) and comparison with BN and Monte-Carlo sim-
ulation.210MHz is the predicted fmax from STA.
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Conclusions & Future Work

I We modeled combinatorial datapaths with Bayesian Network,
in order to infer failure probabilities given a certain clock
frequency.

I Comparison of error profiles of different implementations is
possible with this method.

I Useful for design/prediction of achievable throughput (timing
speculation), and achievable accuracy (Probabilistic
Computing).
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Conclusions & Future Work

TODO (Chronological):

I Define a metric for goodness-of-fit.

I Analysis of Run-Time.

I Development of a generalised tool: BEST (BN based Error Speculation for
Timing.)

I Including functional errors into the model.
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Bon Apetit !!
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