
1

Converting Existing Software to
Hardware using SCC: A Case

Study of an Open Source
Connect-6 Solver

Sumanta Chaudhuri, Peter Y. K. Cheung
Imperial College, London

1

Imperial College
London

THES Ranking: 3rd in Europe and 8th in
World

Facts & Figures

● Founded 1907
● 13,964 full-time students
● Students from 126 countries
● 242 taught courses
● Research Grants & Contracts Income 300 M£

(2010)

Outline

●Goals of This Case-Study
●SynphonyCC

● A Brief Overview
● The Game of Connect-6

● The Game
● The Algorithm

● Design
● Manual Intervention
● Exposing Parallelism

● Verification
● Results

2

Goal of This Case-Study

●Evaluate the ease of use.
● Push Button ?
● Semi-Automatic ?
● Manual Digging ?

●Assess the quality of hardware
generated.
(Power & Performance, Slack Histogram,

Interconnect Density....) ?

2

Potential Applications

●Automatic Translation of Existing C
Libraries to Hardware IP
e.g.
• C64X-IMGLIB from TI,
• OpenCV

●Accelerated Time-to-Market

3

SynphonyCC

● A high level synthesis (HLS) tool
Based on PICO (Program In Chip Out)

Kathail, V.; Aditya, S.; Schreiber, R.; Ramakrishna Rau, B.; Cronquist, D.C.;
Sivaraman, M.; , "PICO: automatically designing custom computers,"
Computer , vol.35, no.9, pp. 39- 47,Sep 2002 doi: 10.1109/MC.2002.1033026

"Synphonycc,"
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyCompi
ler.aspx.

4

SynphonyCC
OverView

for (.......){ //LOOP NEST 0

......

pico_stream_output();

}

for (.......){ //LOOP NEST 1

......

pico_stream_intput();

}

while (.......){ //LOOP NEST 2

x= f(ARRAY[i][j]);

}

Figure 1. Untimed loopnests are scheduled and synthesized to cycle-accurate Figure 1. Untimed loopnests are scheduled and synthesized to cycle-accurate
hardware, ILP within loopnest is extracted automaticallyhardware, ILP within loopnest is extracted automatically

6

LoopNests
Parameters
●Clock Frequency T (Constraint from User)

●Initiation Interval (II) (Constraint from User)

●Iteration Count (N) (Specified in the C code)

●Feedback Depth (Specified in the C code)

● e.g x[i]=x[i-2]+y[i]; feedback depth=2

●Feedback Length (Characteristic of the Technology)

● Sum of Operation delay around the feedback path

●Unroll Factor (Specified with Pragma)

7

LoopNests
Parameters

●Total Execution Time=N*II
● Condition to avoid feedback failure

● (Total delay around feedback path) <= (Feedback depth) * II

Loop Body
4 Cycles

Feedback
Length 4

7

LoopNests
Parameters

●Total Execution Time=N*I
● Condition to avoid feedback failure

● (Total delay around feedback path) <= (Feedback depth) * II

Loop Body
4 Cycles

Feedback
Length 4

7

LoopNests
Parameters

●Total Execution Time=N*II
● Condition to avoid feedback failure

● (Total delay around feedback path) <= (Feedback depth) * II

Loop Body
4 Cycles

Feedback
Length 4

8

LoopNests

● An exploration of the loop parameters is
possible from both GUI and Tcl scripts.

●Bit-Accurate ness has to be specified by
user through Pragmas.

●Variable Trip count Loops:

● Need to specify Max, Min and average
no. of iterations.

● #pragma num_iterations(<min>,<avg>,<max>)

● Synthesized in independent stall domain

8

LoopNests

8

LoopNests

Hierarchical Synthesis
TCABs
●TCAB

● Tightly Coupled
Accelerator Blocks

●Can be imported into top
level design as a block

●Considerably reduces the
design time

● Facilitates Bottom-up
verification (incremental).

9

SynphonyCC
Build Steps

Figure 2. Build and Verification Steps. Taken from Figure 2. Build and Verification Steps. Taken from
 SCC User Guide (March 2012) p.84 SCC User Guide (March 2012) p.84

backend:
ise
quartus
synplify

sim:
modelsim
vcs

10

Connect-6
The Game

19

19

Played on a
19x19 GO Board

19

10

Connect-6
Example

Black begins with
only one move

10

Connect-6
Example

After that each
player makes 2
moves per turn

10

Connect-6
Example

10

Connect-6
Example

10

Connect-6
Example

10

Connect-6
Example

10

Connect-6
Example

Black poses a
Double threat !!

10

Connect-6
Example

10

Connect-6
Example

11

Connect-6
Algorithm
●Source code available in http://risujin.org/connectk/

●Move Selection Core
● Select possible moves with proper weights.

●Game-tree Search Minimax Algorithm with alpha-
Beta pruning

● Finds the best move by looking ahead

http://risujin.org/connectk/

11

Connect-6
Algorithm

Figure 3. An example Game-Tree for Black with Depth=4 and Branching Figure 3. An example Game-Tree for Black with Depth=4 and Branching
 Factor=2. Factor=2.

12

Connect-6
Some Facts

● A Variation of K-in-a-row Games
● e.g Tic-Tac-Toe, Go-Moku

● The first Move exception is added to increase
fairness.

● Game-Tree Complexity (assuming average game length of 30)

● Branching Factor 300C2 (Chess has a branching factor of 37)

● Game tree complexity (300C2)^30=10^140

● A part of the Computer Olympiad
● Tilburg'11: 6 Participants, Winner: Cloudict.connect6 from China

13

Connect-6
Move Selection Core

● L0-1 Scan the Board horizontally

Board Memory Moves Memory

13

Connect-6
Move Selection Core

● L0-1 Scan the Board horizontally
● L0-2 Scan the Board Vertically

Board Memory Moves Memory

13

Connect-6
Move Selection Core

● L0-1 Scan the Board horizontally
● L0-2 Scan the Board Vertically
● L0-3 Scan the Board SW-NE Diagonal

Board Memory Moves Memory

13

Connect-6
Move Selection Core

● L0-1 Scan the Board horizontally
● L0-2 Scan the Board Vertically
● L0-3 Scan the Board SW-NE Diagonal
● L0-4 Scan the Board SE-NW Diagonal

Board Memory Moves Memory

13

Connect-6
Move Selection Core

● L0-1 Scan the Board horizontally
● L0-2 Scan the Board Vertically
● L0-3 Scan the Board SW-NE Diagonal
● L0-4 Scan the Board SE-NW Diagonal

● L1 Fill and preprocess the Moves Memory

Board Memory Moves Memory

13

Connect-6
Move Selection Core

● L0-1 Scan the Board horizontally
● L0-2 Scan the Board Vertically
● L0-3 Scan the Board SW-NE Diagonal
● L0-4 Scan the Board SE-NW Diagonal

● L1 Fill and preprocess the Moves Memory

● L2 Sort the Moves Memory

Board Memory Moves Memory

14

Design
Manual Preprocessing

●Including the functions called from C
Libraries into the code.

●Changing Malloc() calls by statically
assigning the memory. (fixed length array)

●Code sinking: putting as much code as
possible inside for/while loops.

14

Design
Manual Preprocessing

/* Horizontal lines */
for (i = 0; i < board_size; i++)
 u_sum += threat_line(0, i, 1, 0,&b);

/* Vertical lines */
for (i = 0; i < board_size; i++)
 u_sum += threat_line(i, 0, 0, 1,&b);

-
-
-
/*SW diagonals */
for (i = 1; i < board_size-connect_k + 1; i++)
 u_sum += threat_line(board_size1,i, 1,1,&b);

for (i = loop_begin; i < loop_bound; i++){
 /*begin Canonical for loop*/
 switch(j){
 case 0:
 {
 arg1=0;arg2=i;arg3=1;arg4=0;break;
 }
 case 1:
 {
 arg1=i;arg2=0;arg3=0;arg4=1;break;
 }
 default:{
 Break;
 }
 }

 u_sum+=threat_line(arg1, arg2, arg3,arg4,&b);

}/*end Canonical for loop*/

15

Design
Runtime Management

MethodMethod RuntimeRuntime
Hierarchical Synthesis (TCAB Based)

Constraint : 50 MHz
37 m 33 sec

Flat Synthesis
Constraint: 1 MHz

127 m 44 sec

Flat Synthesis
Constraint: 50 MHz

Out of Memory

Table.1 Table.1 Runtimes for Flat and TCAB based synthesis Runtimes for Flat and TCAB based synthesis
on a Intel Core i5 PC (3.33 GHz, 4GB RAM)on a Intel Core i5 PC (3.33 GHz, 4GB RAM)

16

Design
Execution Profile

Figure 4. The sequential execution of un-optimized hardware, L2: Move Figure 4. The sequential execution of un-optimized hardware, L2: Move
scoring; L3: Preprocessing the Moves Array; L5: Sorting the Moves Arrayscoring; L3: Preprocessing the Moves Array; L5: Sorting the Moves Array

17

Design
Memory Porting

Figure 5. Board b has 2 read ports and 2 write ports, Can't Implement Figure 5. Board b has 2 read ports and 2 write ports, Can't Implement
in Cyclone II.in Cyclone II.

17

Design
Memory Porting

Figure 6. The board memory is split into b and bwrite to reduce porting.Figure 6. The board memory is split into b and bwrite to reduce porting.

18

Exposing Parallelism

Taken from SCC User Guide (Dec. 2011) p.267Taken from SCC User Guide (Dec. 2011) p.267

19

Exposing Parallelism
Adding Streams

Figure 7. A stream (FIFO) is added between loopnests L3 and L5 so that Figure 7. A stream (FIFO) is added between loopnests L3 and L5 so that
the can operate in Parallel.the can operate in Parallel.

20

Exposing Parallelism
Adding Streams

Figure 8. Inter-Loop Parallelism: L3 and L4 working in parallel. L3: Figure 8. Inter-Loop Parallelism: L3 and L4 working in parallel. L3:
Preprocessing the moves stream; L4 :sorting the moves stream (insertion Preprocessing the moves stream; L4 :sorting the moves stream (insertion
sort)sort)

21

Exposing Parallelism
Task Overlap

Figure 9. Inter-Task Parallelism: Move Selection on Boards 3:0 and 3:1 Figure 9. Inter-Task Parallelism: Move Selection on Boards 3:0 and 3:1
can be overlapped because they are stocked in two different arrays.can be overlapped because they are stocked in two different arrays.

22

Exposing Parallelism
Task Overlap

Figure 10. Inter-Task Parallelism: While L3 L4 hardware block operates on Figure 10. Inter-Task Parallelism: While L3 L4 hardware block operates on
board 1:0, L1 hardware block starts operating on 1:1.board 1:0, L1 hardware block starts operating on 1:1.

23

Verification

●Simulation Based

●Bottom up Synthesis with Non-Regression

●SystemC and Verilog testbenches are
automatically generated from C. :-)

23

Verification

●Code Coverage for C simulation 99 % with
a testbench where the AI makes 73 Moves

●Possibility to determine Code-Coverage for
RTL as well

●Final design is verified via FPGA Emulation
with 10000 random games for
● The AI makes no invalid moves
● The behaviour is exactly same as that of the software

given the same random seed.

24

Results

Implementation Avg. Cycles Avg. Time to
Make one Move

Intel i5 (3.33 Ghz,
4GB RAM)

0.56 ms

FPGA (Cyclone
II, 38 MHz)

47984 1.26 ms

FPGA (Cyclone II
38 MHz)
optimized

28982 0.76 ms

24

Implementation BRAM DSP FF LUT

Game Tree
(depth=1,branch=1)

24 14 9508 22530

Game Tree
(depth=5,branch=2)

193 73 16536 42919

Results

25

Results
Slack Histogram (Overall)

Figure 10. Slack Histogram for the complete design. Generated from Figure 10. Slack Histogram for the complete design. Generated from
Quartus tool (Altera) before P&R.Quartus tool (Altera) before P&R.

Slack

N
o

. o
f

P
a

th
s

26

Results
Slack Histogram (TCAB)

Figure 11. Slack Histogram for the TCAB Threat_window. Generated Figure 11. Slack Histogram for the TCAB Threat_window. Generated
 from Quartus tool (Altera), before P&R. from Quartus tool (Altera), before P&R.

Slack

N
o

. o
f

P
at

hs

26

Conclusion

● ease of use
● Push Button
● Semi-Automatic
● Manual Digging

● Highly integrated environment (C,
C++, systemC)

●Good management of simulation
based verification flow

27

Conclusion

Limitations:
● Runtime
● Extremely Memory Hungry

Good Performance can be achieved by simply
specifying pragmas, if the code is explicitly
parallel.

A good strategy will be to synthesize the whole
design, then recode the critical parts in systemc.

27

Comments

Possible Improvements:

●Addition of multiple clock domain TCABs can
be useful.

● Integration of VHDL/Verilog IPs as TCABs.

● Industry standard BUS specific wrappers can
be useful. (The wrapper and interfacing signals are predefined,

need some tweaking to integrate into standard BUS architectures.)

●More integrated formal verification can be
useful. (the user need to add the assertions in to the existing C code to

formally capture the behaviour of C code.)

56

DEMODEMO

SPARTAN Vs. CYCLONESPARTAN Vs. CYCLONE

28

Comments

●The processor speed is profiled with gprof, the
actual walltime can be different dependent on
the processor load.

●The Frequency of operation for FPGA is the
worst-case frequency over a wide range,
estimated by Quartus Tool.

●The software implementation uses a Depth-First
Search with Alpha-Beta pruning, In hardware we
used a statically scheduled breadth-first search

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

