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ABSTRACT One should note that ICA can only retrieve the original

In Blind Source Separation, or BSS, a set of source signals agources up to some ambiguities: there will be a permutation
recovered from a set of mixed observations without knowl-ambiguity,i.e., the algorithm will not be able to tell which
edge of the mixing parameters. Originated for real signalgieconstructed source is which, and scaling ambiguéy,the
BSS has recently been applied to finite fields, enabling morteconstructed sources will be identified up to a scalingfact
practical applications. However, classical entropy-ddseh- ICA has been recently extended to the case of finite
niques do not perform well in finite fields. Here, we proposefields [5], which presents several additional challengestdu

a non-linear encoding of the sources to increase the discrinihe nature of the operations defined over a finite field. In par-
inating power of the separation methods. Our results shoicular, a technique can be based on the fact that the entropy
that the encoding improves the success rate of the separ@tany linear combination of statistically independentdam

tion for sources with few samples in large finite fields, bothvariables over Gfy) is larger than the entropy of any of the
conditions met in practical networking applications. Oew r Components, as long as none of them is uniform. Separation
sults open new possibilities in the context of network cgdin is therefore possible by finding the inverse linear transfor
—wherein linear combinations of packets are sent in order tg1ation that minimizes the marginal entropy of the resulting
maximize throughput and increase loss immunity— by relieycombinations. Since the operations take place in a finite, fiel

ing the nodes from the need to send the combination coeff@n e€xhaustive approach is possikile,, to try any possible
cients, thus reducing the overhead cost. linear combinations of observations until we find the oné tha

. . has the lowest entropy [5]. While the method was introduced
ing I rg;xoizegjgs Bllrl1r(]jdepseonudrgﬁtScegri;)a;fgﬁtc:r?z:I;;lsccl)\ltt‘:ﬂ first as an interesting thgoretical resul_t, its potem be
WOIik Coding ' k seen for practical applications too. I_:o_r m_stance, it hanbe _

' suggested that BSS schemes over finite fields can be used in
1 Introduction the context (_)f eavesdropping over MIMO multi-user digital

. ] o ~ communications systems [6].
Blind Source Separatio(BSS) [1, 2] consists in recovering  Another very interesting potential application for an effi-
a set of source signal$ from a set of mixed signalX = cjent source separation algorithm over finite fields is in the
f(8), also referred to asbservationswithout knowing the  design of a transmission scheme similar to Network Cod-
sources themselves nor the mixing process parameters. Thigy (NC) [7]. In NC, instead of merely relaying packets, the
is a subject that has been intensively investigated in tsie 1ajntermediate nodes of a network send linear combinations of
three decades, due to its potential numerous applications the packets they have previously received, with random-coef
speech recognition, sensor/biomedical signal processtag  ficients taken from a finite field [8-11]. NC, used as an al-
The Independent Component Analy¢I€A) [3, 4] ap-  terpative to traditional routing, has proved beneficialdals

proach solves the BSS problem relying on the assumption thgne streaming applications, both in terms of maximization
the sources are statistically independent and non-Gaussigy the throughput and in terms of reduction of the effects of
Given a set of observations, ICA algorithms return a set ofygges [12-17]. However, in practical Network Coding ap-
estimated source signals that maximize a separation Critgzoaches, the random coefficients must be added to the packet
rion, referred to asontrast function Separation criteria can a5 headers [11], incurring an overhead that can be profbit
be based on information-theoretic principlesy, maximiz- it the maximum packet size is small. On the other hand, in a
ing the entropy or minimizing a Kullback-Leibler divergenc  gss hased approach, it could be possible to relieve the nodes
while other approaches build on higher order statistican  trom the need to include the coefficients in the packets, thus

case, the assumptions of independence and non-Gaussianiiycing significantly the amount of data that has to be trans
are explicitly used.



mitted to the receiver in order to decode the packets. Such akigorithm 1 Separation algorithm.

approach would instead rely on the capability of the reasive ™ 1:
to reconstruct the coefficient themselves. 2:

In this article we improve the results of the separation 3:
method by increasing the discriminating power of the algo- 4f
rithm without adding constraints on the distribution of the 2;
sources. The rationale is that many of the sources in today’s;f
applications do have a distribution close to the unifoeng, 9:

plication with higher GF orders and sources closer to umifor

compressed videos images or sound, so the above metho?ﬂ% repeat

fail in this case. We propose to pre-process the sources Witrl12:
a non-linear encoding which, as we will show, increases the:
separability of the ICA method towards a more practical ap-14:

Input: (N x T') mixed sample matrix.

Output: (N x T') separated source mati$
V0, W0
for all w of length N in GF (2¥+1) do
Z+w'X;
if z is a codewordhen
V<~ Vu{w};
end if
end for

w* < arg melr\i' {H (DECODE(WTX))};
w

if w* ¢ sPAN(V) then
W+ Wu{w*};

end if

V+V—{w*}

nerGror \ ! o1 16: until W) = N
The rest of this article is organized as follows: in Section 217:

‘W <« matrix built from the row vectors iwy;

Z +— WTX;

we give an overview on some relevant related work. In Sec48: Z B
S «+ DECODE(Z);

tion 3, we introduce our proposed approach for blind source9:
separation for sources in GP) and the rationale behind it.
Then in Section 4 we validate our approach with experimen-

tal results and a comparison with a state-of-the-art exhau Proposed approach

\t,C/: derr;t/rvocr:)c})/r;kéﬁjsseignssog::zjeosuetlri)r?crgllﬁgr2I\?v%rrllt<hn;inlglIseiflt?]eln this section, we describe our proposed method to separate
Appendix. w ntify th mented di rihin tiny, W ra number of linearly combinednixed independent sources
ppe , We quantify the augmented disc alng POWelyoined in a finite field. Generally speaking, the ability of an

g[,ir:gd to the algorithm by the non-linear coding we Ir‘tro'algorithm to identify a source given a set of mixed observa-

tion (demixing stems from the ability to identify a property
2 Related Work

that holds true for the original sources and does not for the
] mixtures. For instance, entropy based methods assume that
Several algorithms have been proposed to reduce the searg original sources have lower entropy than the mixtures.
space and the execution time of blind source separation algo  oyr main idea is to increase the discriminating power of
rithms, at the expenses of the accuracy [18, 19]. the algorithm by pre-processing the sources with an error-
One such technique has been proposed for finite fields Qfetecting code. The code should be such that the probability
prime order, but can be easily extended to the general cse [¥ a4 mixture belonging to the code is small. Also, the code
At each iteration, the algorithm finds a couple of observatio cannot be linear, otherwise mixtures would always belong to
vectorsx; andx; and a scalaf: in the finite field such that it: we therefore consider only non-linear codes.
H (x;+kx;)<H(x;) and replaced] (x;) with H(x;+kx;). A simple example of non-linear code is the odd-parity
When no possible substitution can be found, the algorithnpit-code. A parity bit-code is a systematic code consisting
terminates, and the final value of tie will be the recon- in adding aparity bit to the source symbol to ensure that
struction of the original sources. This algorithm is signifi the number of bits with the value one in the encoded sym-
cantly faster then an exhaustive search, but is prone td locgg| js always even (even-parity bit-code) or odd (odd-parit
minima. Other methods have been proposed, approxi-  pjt-code). Parity bit codes are the simplest form of error de
mating the entropy with-p log(p), wherep is the probability  tecting code, and have been in use, both in hardware and in
of the most probable element [18, 19]. software applications, since the 1950s. For our purposes, w
Since the scope of this paper is focused on success raige an odd-parity bit-code because it is obviously noraline
rather than complexity, we shall compare ourself to the Asyq the null-string is not a codeword (since it has zero bits wi
cending Minimization of Entropies for ICA method [S], y4jue one and zero is an even number). A detailed analysis

originally proposed for GR). This method extracts a single of the discriminating power of the odd-parity bit-codle,, its
source, then removes the contribution from this sourcedo thability to distinguish between sources and mixtures, iggiv

mixtures and repeats this proceggimes, after which ithas i, ihe Appendix.

found all N sources, restricting the search space to vectors | et us now consider a set 8f independent source signals

linearly independent from the ones recovered so far. Ouf, s, ... sy_;, each containing’ samples, defined in a fi-

technique will also follow the same approach, but the searchite field GF(2"). First of all, the sources are encoded with

space will be further restricted to vectors that yield adible  an odd-parity bit-code, such that each element in the emtode

sourcesi.e., codewords. source belongs to GR°*!), because of the added parity bit,
and has an odd number of bits equal to one in its binary rep-
resentation. Let us ca#l,, the encoded version of a source
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Fig. 1. Comparison between the reference and the proposed teehfuiqu Fig. 2. Comparison between the reference method and the propased te
finite field GR2). The failure ratej.e, the percentage of sources that the nique for finite field GK4). The failure rate is plotted against the number of
algorithm was not able to identify, is plotted against thenber of samples  samples in the mixture in log-scale.

in the mixture in log-scale.

-®- Reference
Sn, andZ the N-by-T matrix which hasz,, as itsn-th row,
forn € {0...N — 1}. These encoded sources are combined '
with an unknownN-by-/N mixing matrix A, also defined in
GF(2°+1): X=AZ.

In order for our separation problem to have a solution,
we assume that the matri is invertible,i.e,, ran A)=N.
Each rowx,, of X is a linear combination, or mixture, of the
encoded sources. In order to recover the original souroes, w
proceed according to Algorithm 1, as follows. For each vecto
w of length NV in GF(2°*1), we try todemixone encoded
sourcez=w ' X. _

If all T elements of; are codewords, we decode the Vec_Flg. 3. Comparison between the reference method and the propased te
tor i.e. we remove the parity bit from its elements. thus Ob_niqu.!e for afi>_<ed numbgr.of sources and samples. The faildecisalotted

T . ~ . ! against the size of the finite field.
taining's, and estimate the entrop§/(s). Notice that the
probability of a random mixture being a codeword decreasegugmented discriminating power can be observed in Figs. 1
with 7". After all the vectorsy have been tried, we select the and 2 where, for different sizes of the finite field and differe
N linearly independent vectors corresponding to the demixedumber of sources, we report tfalure rateof the technique
sources with the lowest entropy. The mafik composed as Vvs.the number of samples of the observations in log-scale.
the horizontal concatenation of these vectors is our esittma The failure rate is simply minus the success rate, where the
of the inverse matrix ofA. We limit ourselves to a family of success rate is the number of correctly identified sources di
linearly independent vectors under the assumption thatgbe vided by the total number of sources. Note that, as mentioned
W the inverse ofA, it has full rankN. The demixed sources before, a source is considered identified up to a permutation
corresponding to this matri¥ = W X will represent our and scaling ambiguity. It is worth noting that, thanks to the
estimation of the encoded sources. It will suffice to removeproperties of the bit-code, even though the scaling ambigu-
the parity bits in order to recover the original sources ug to ity is still present, it is in practice drastically reducesg¢ the

Failure Rate

£ w0
GF size

scaling and permutation ambiguity. Appendix for more details). We observe that our technique
) consistently outperforms the reference technique, thémks
4 Expenmental Results the possibility of eliminating candidate solutions witkven-

In the following, we present the results relative to the sepalfoPy on the grounds that they are not codewords. Since the
ration of N sources ofl’ elements for the proposed bit-code failure rate converges to zero with the number of samples, as
based technique, and compare them with the results achie\e €xpected, the gain decreases with the length of the saurce
able using an exhaustive entropy-based technique at the saffowever, the introduction of the non-linear code signiftban
rate. The reference technique simply consists in idemiifyi improves the performances for shorter sources, making the
the N linear combinations of observations such that the comSeparation viable for relatively shorter signals.

bination coefficients are linearly independent and theogiytr Ve also report, in Fig. 3, a comparison of the two tech-
is minimized [5, 19]. Our technique, on the other hand, is reNdues with fixed number of source¥ (= 2) and fixed num-
strained to the linear combinations of observations theitlyi Per of samples = 256) to observe how the performances
to admissible codewords. The improvement provided by th&f the two methods vary w.r.t. the size of the finite field. We



observe that both techniques perform better when they opedecompose the sample space in the following way:
ate within a larger finite field, but the gain of the reference

technique stays more or less constant arauid P{zelc} = P{as€lc|a=0}P {a=0}
. +P{aseZc|a=1} P {a=1} (1)
5 Conclusions and Future Work + P {aseTc|a#0,1} P {a£0,1} .

We operate this decomposition on the base of the proper-

In this work we proposed to use a non-linear channel encodz, o' ¢ 010 ments and1 wrt. multiplication: 0-s=0¢Z and

ing of source signals over a finite field in order to increase th 1.s=s€T,, with probability 1. In the remaining casesg.,

discriminating power of blind source separation methods fowhena;éo anda£1, it is easy to verify that the probability

linear mixtures in a finite field. In particular, we use an odd- ; . .
N . ) .~~~ of the monomial being a codeword % based on the fact
parity bit code, which has the advantage of being very SImpl(%\hat the product of a scalar other th@ror all the other el-

to implement. However, these results can be extended to a . .
; . ements of the finite amounts to a reordering of the elements.
more general case of a non-linear error detecting code.

he probability ofa=0 (respectivelyn=1) being one out of

The discriminating power is augmented in the sense tha% number of elements in GEY) w n rewrite Eq. (1) as:
the entropy based method will be assisted by the error detec € numberoteleme Sl 5_2)’1 e canrewrite Eq. (1) as:

ing coding, restraining the estimation of the entropy tostre P {2€Zc} =055 +1-55-+5- 2572 =3, o
lutions that are admissible in the sense that the recorsttuc  1h€ properties of elements zero and one w.r.t. multiplica-
source is a codeword. This eliminates several solutiorts thallons become relevant if we consider, instead of the product
even if they present low entropy and could be mistakenhPf two scalars, the product of a scalar by a vectofl aéle-
identified as sources by the reference technique, cannot FRENtS;i-e., x=as with ac GF(2°) andseZ{. We define a
admitted as they are not part of the code. Our experimentabdevectoras being any vector of G@b)T such that each
results show that the proposed technique consistentlyeoutp one of its elements is a codeword. In this case we observe
forms the reference method, especially in the case of seurcéhatvic {1...T}, 1-s,¢Z¢ and0-s;€Z¢. In other words, if
with a small number of available samples, which is more crita=0 or a=1, the eventss,€Z for all t are notindependent,
ical for the entropy-based methods, making the blind sourcehereas given any other, these events are independent with
separation more suitable for practical applications, wtike probability%.
number of samples is typically limited by the size of a packet ~ We can therefore operate the same partition as in Eq. (1),
These results suggest that a viable future work is to evaltand write the probability ok€ZX as a function of the finite
ate the performance of the algorithm when the entropy-basdikld size2’, or equivalently ob, and the vector lengti’:
method is augmented with a more efficient error detecting m(b,T)ép {ngg} :2*b+2*T(1721*b)_ (2)
code,i.e, a code able to provide better discrimination with  The functionn; (b, T') is defined as the probability of a
lower overhead. This could allow the implementation of asingle (vector) monomiaks of being a codevector. Let us
transmission system similar to Network Coding, but with anow evaluate the probabilitys(b, 7") of a mixture of two
substantially reduced overhead since the combinatiorficoef sources of being a codevector. Note that all sources are by
cient used in the mixing functions do not need to be transmithypothesis codevectors. Let=ca;s;+assz. If we operate

ted. a decomposition analogous to that of Eq. (2) we obtain:

i ma(b, T) = P {x2€TL
6 Appendix _ 2{2(1_b)€1} LT (1 - 220-9) (3)
In this Appendix we shall evaluate the probability of a ramdo For the case of a linear combination &f sources,let us

linear combination ofV sources encoded with an odd-parity consider a vectaxn= Zﬁ;l aysy; the expression in Eq. (3)
bit code of being a codeword itself. This probability is udef can be generalized fd¥ sources as follows:
to assess the augmented discriminating power provideddby th 7 (b, T) 2p {XN gzg
encoding w.r.t. the separation of the sources. —oN(1=b)—1 o-T (1f2N(1fb)) .
Let C be the application associating a codeword to eaCbrhis probability converges toy (b)=2¥1-"=1 for T—sc0,

b—1\- (. b—1 b s g
element of GF{Q ) c: GF(2 . )_ZGF(Q ) Th's SIM- " therefore we observe that the probability of a random combi-
ply amounts to add a odd-parity bit to the binary repre-

. ) _ nation of N encoded sources in GB*~') decreases with the
sentation of the element. LefoC GF(2°) be the im- size of the finite field
age of C. One important property of’ is that, by con- This probability can be interpreted as follows: if the algo-
struction, 0¢Zc and1€Zc, ¥beN. Also, it is easy 10 Se€ (ihm were based exclusively on the bit codle, if it were

that || Z¢|| :w:?*l, i.e, half of the elements of to identify as sources any codewords it finds, for sufficientl
GF(2b) are codewords. We can therefore infer that, if along sources it would have a rate of false-positive equal of
valuea is drown from a uniform distribution over GR), 7~ (b). Of course our method does not rely solely on the dis-
P{acZo} :%_ criminating power of the code, but the coding is used to dras-
Let us consider a monomiak=as, with ac GF(2°) and tically reduce the search space of the entropy-based method

s€Zc. In order to evaluate the probabiliy {zr€Z-}, we  reducing the running time and improving the success rate.
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