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Institut Telecom – Telecom ParisTech – CNRS LTCI
46 rue Barrault, F-75634 Paris Cedex 13, FRANCE

phone: +33 (0)1 45 81 77 77, fax: +33 (0)1 45 89 79 06
email:{petrazzu, cagnazzo, pesquet}@telecom-paristech.fr

ABSTRACT
Distributed video coding (DVC) does not demand motion

estimation (ME) and compensation (MC) at the encoder, but
only at the decoder and so it is more suitable for applications
that require a simple encoder, like wireless sensor networks.
In DVC the video sequence is split into Key Frames (KFs)
and Wyner-Ziv Frames (WZFs): the first are intra-coded and
the latter are coded by a channel code and only the parity
bits are sent to the decoder. The KFs are available at the de-
coder, while we need to estimate the WZF and correct this
estimation with parity bits. One critical step is the estimation
of the WZF. The method of the state of the art, with which
we compare, is given by DISCOVER. It estimates the WZF
by linear interpolating the two adjacent KFs. We propose a
higher order motion interpolation for WZF estimation by us-
ing four KFs. Due to the high computational efforts, we pro-
pose also a fast algorithm that halves the complexity of the
previous method. We note that the results of the fast method
are comparable with the original one. An other proposal is
to increase the density of the motion vector field in order to
improve the estimation of the WZF.

Keywords: Distributed video coding, image interpo-
lation

1. INTRODUCTION

Let X andY be two correlated sources. If we encode them
jointly, we can decode them without loss of information if
RX+RY ≥H(X,Y),1 but if we encode separatelyX andY, we
expect that we can decode them without loss of information
if RX ≥ H(X) andRY ≥ H(Y), according to the first Shan-
non theorem. Indeed, according to the Slepian-Wolf Theo-
rem [5], a total rateRX +RY ≥ H(X,Y) is sufficient, even for
separated encoding of dependent sources, provided that we
decode them jointly.

A particular case of distributed source coding is the
source coding with side information: the variableX, gen-
erated by the source, is statistically dependent ofY. The
variableY is available at the decoder, but not at the encoder.
Y is called side information. Then, ifRY = H(Y), a rate
RX ≥ H(X∣Y) is sufficient for recoveringX without loss of
information, according to the Slepian-Wolf theorem.

While Slepian-Wolf theorem is about lossless coding, the
problem of lossy coding was solved by Wyner and Ziv [6].
They proved that there is no rate increase in the source coding
with side information with respect to the joint coding for a
given quality, and conversely, there is no quality loss for a
given rate, subjected to some mild constraints.

1Let H(X) be the entropy ofX andH(X,Y) the joint entropy ofX andY.

These results can be applied to video coding in order to
simplify the encoder structure. In Distributed Video Coding
(DVC) the video sequence is divided in Group of Pictures
(GOP). Each GOP consists of one Key Frame (KF) (usually
the first one), that is intra-coded (i.e. it is coded indepen-
dently of the other frames) and Wyner-Ziv Frames (WZFs)
that are coded by a systematic channel code. We send to the
decoder only the redundance bits (i.e. the parity bits). Even if
the KFs and the WZFs are correlated sources, we do not ex-
ploit this dependence at the encoder, but only at the decoder.
We produce an estimation of WZF by interpolating the ad-
jacent decoded KFs. This step is called Image Interpolation
and the WZF estimation is called Side Information (SI). The
SI can be considered a noisy version of the WZF. Then, we
correct the errors of the WZF estimation with the parity bits
sent by the channel encoder. The weak point of this scheme
is a feedback channel is needed to adjust the number of parity
bits made by the encoder.

On the other hand, the advantage of this structure is that
we move the complexity in terms of computation (the motion
estimation) and in terms of memory (the exigence to storage
the previous frames) from the encoder to the decoder. This
is desirable if we need a low-complexity encoder, as in wire-
less sensor network, but it is not well suited for broadcast
transmission.

The reference technique for WZF estimation is given by
DISCOVER, that performs a linear interpolation between the
two more adjacent KFs. In [4] we propose a higher order
motion interpolation (HOMI) method by using four KFs, in-
stead of two such as in DISCOVER. In this paper we improve
those results by increasing the density of the motion vector
field (MVF) for the motion estimation, and we propose also a
new method (Fast HOMI) in order to reduce the complexity
of our algorithm.

The rest of the paper is organized as follows. In Section
2 we describe the DISCOVER motion interpolation method.
In Section 3 we illustrate the method proposed in [4] and
after we propose a variant to our method in order to reduce
the complexity. Experimental results are reported in Section
4, while conclusions and future work are in Section 5.

2. STATE OF THE ART: DISCOVER MOTION
INTERPOLATION ALGORITHM

One of the most popular methods for image interpolation is
the method proposed in the DISCOVER project [3]: it con-
sists in a linear interpolation between two adjacent KFs. For
example, if the GOP size is equal to 2, we use the KFsIk−1
andIk+1 for the estimation of the WZFIk. The DISCOVER
method consists of four steps:
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Figure 1: Bidirectional motion estimation in DISCOVER.
The distance betweenq andp is small, such that the motion
in p can be approximated with the motion inq.

1. Low Pass Filter. The two KFs,Ik−1 and Ik+1, are spa-
tially filtered in order to reduce noise.

2. Forward Motion Estimation. A block matching is per-
formed fromIk+1 to Ik−1. Letv be the motion vector field
(MVF) calculated at this step (green arrows in Fig. 1).

3. Bidirectional motion estimation. For each macroblock
(letp be its center) we search the vectorv that intercepts
the frameIk in the point closest top. Letq be this inter-
section. Then, the movement inp can be approximated
as the movement inq (black vector in Fig.1). Afterwards,
the vector is split intow (backward MVF) andu (forward
MVF) (light-blue vectors in Fig. 1)

4. Refinement and median filter.The vectorsw andu are
refined around their initial positions in order to minimize
the SAD (or SSD) between the MB pointed byw in Ik+1
and the one pointed byu in Ik−1. Afterwards, a median
filter is applied to the two MVFs in order to smooth them.

Finally, Ik+1 is motion-compensated withw and Ik−1
with u. The average of these two predictions is the estima-
tion of the WZF.

3. PROPOSED METHODS

In [4] we proposed a higher order motion interpolation
method in order to increase the results given by DISCOVER.
For the sake of clarity, we report here the basic ideas of this
algorithm and after we propose some variants to this algo-
rithm.

3.1 Higher order motion interpolation (HOMI)

While DISCOVER motion interpolation method performs a
linear interpolation between the two adjacent KFsIk−1 and
Ik+1 (by supposing the GOP size equal to 2), we proposed
in [4] a higher motion interpolation by using four KFs:Ik−3,
Ik−1, Ik+1 andIk+3. Our method consists into four steps:

1. Initialization. By using onlyIk+1 andIk−1 we compute
the backward and the forward MVF, respectivelyu and

w, as in DISCOVER algorithm (black dashed vectors in
Fig. 2(a)).

2. Motion estimation from Ik±1 to Ik±3. We perform a
block matching motion estimation fromIk±1 to Ik±3. Let
p be the center of the MB in the frameIk that we want to
estimate. LetBp

k be the MB in the frameIk, centered inp.
Then, we search for the vector ˜u such that the following
functional is minimized:

J(ũ) = ∑
q

∣∣∣Bp+u(p)
k−1 (q)−Bp+ũ

k−3 (q)
∣∣∣+λ∥ũ−3u∥, (1)

whereλ ≥ 0 is a regularization constant. The regulariza-
tion term is added for penalizing too large deviations of ˜u

from 3u, i.e. the solution that we would have supposing
a linear motion along the four frames.

3. Interpolation. Now, we can trace the trajectory of the
object along the various KFs by interpolating the posi-
tionsp+ ũ(p), p+u(p), p+w(p), andp+ w̃(p), re-
spectively at the instantsk− 3, k− 1, k+ 1 andk+ 3.
Then, by sampling it ink, we obtain the estimated posi-
tion of the object in the frameIk. Let p̂ be this position.
We can then estimate the motion vectors centered in ˆp

(red vectors in Fig. 2(a)).
4. Vector adjustment. We suppose that the distance be-

tweenp̂ andp is so small, such that the motion inp is
the same as in ˆp, that we can approximate the vectors in
p with the vectors estimated in ˆp (green dashed vectors
in Fig. 2(a)).

Afterward, we repeat this for each macroblock. The average
of the two compensations will be the WZF estimation.

We repeat this procedure for each macroblock. After-
ward, we motion-compensate the frameIk+1 by the backward
MVF and Ik−1 by the forward MVF. The average of the two
compensations will be the WZF estimation.

3.2 Fast HOMI

The complexity of the interpolation procedure described in
the previous section can be reduced, because at the instant
k, we have already estimated the forward motion vector field
v, from the frameIk−2 to the frameIk−3 and the backward
motion vector fieldz from Ik−2 to Ik−1. In this way, it is only
necessary the motion vector field fromIk+1 to Ik+3 while it
is not necessary to perform the motion estimation fromIk−1
to Ik−3: we can exploit the MVF computed at instantk−2.
This method is less robust than the first one, because instead
of the motion estimation fromIk−1 to Ik−3, we just exploit the
estimation of two MVFsv andz. This gives us a less accu-
rate motion estimation. On the other hand, thanks tov andz,
we can find another macroblock in the frameIk−2: then we
can interpolate the data by using five points (not regularly
spaced). The procedure consists therefore of the following
five steps (see Fig. 2(b)):
1. Initialization. - We estimateu from Ik to Ik−1 andw

from Ik to Ik+1 by DISCOVER method.
2. Motion estimation from Ik+1 to Ik+3. We perform a

block matching motion estimation fromIk+1 to Ik+3 and
we find the positionp+ w̃.

3. Motion estimation from Ik−1 to Ik−2 and from Ik−2 to
Ik−3. We search for the vectorz(q) that points inIk−1
to the position closest top+u(p). Then, we estimate
the intersection of the trajectory in the frameIk−2 as the
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Figure 2: (a) HOMI method for motion estimation. (b) Proposed interpolation method (Fast HOMI) for WZF estimation by
exploiting the previous estimated MVF.

point p+ t, with t = u(p)− z(q). For the estimation
of the intersection of the trajectory inIk−3, we use the
vectorv(q). The intersection point will bep+ ũ, with
ũ(p) = t+v(q).

4. Interpolation. Finally, we interpolate a vector function
with the five valuesp+ ũ,p+t,p+u(p),p+w(p) and
p+ w̃(p) respectively, at the instantsk−3, k−2, k−1,
k+1 andk+3, in order to find its value at the instantk,



GOP size 2 4 8
λ 50 20 0

Table 1: Values ofλ for different GOP sizes

which will be denoted bŷp.
5. Vector adjustment. It is done as in the previous section.

We observe that the complexity of Fast HOMI is about the
half of the original algorithm.

3.3 Increasing the density of the MVF

When we perform the block matching, we consider a block
Bp

k , centered inp and whose size isN×N. Then, we letp
vary in {(nM,mM)}(n,m)∈C, whereC ⊂ Z2 is such that we
compute a vector for eachM×M block in the image.

Although the conditionM =N is usually chosen, in order
to increase the SI quality we can use denser MVF by select-
ing a value forM smaller thanN. We observe that, while
we can increase the density by reducingM without particular
constraint (excepted for the computational complexity), we
cannot allow arbitrary variations ofN (the block size) since
if the blocks are too small, the matching may suffer from
noise. On the contrary, thanks to the block overlap, we can
densify the MVF without sacrificing robustness. So, we will
considerN = 8 in the following, but we will use denser MVF
with M < N.

We can therefore modify both the HOMI and the Fast
HOMI technique, ending up with 4 SI generation technique:
HOMI with N = M = 8 (that is, the one proposed in [4]),
referred to as HOMI8 from now on; HOMI withN = 8
and M = 4, which we will indicate as HOMI4; and the
fast version of these techniques, referred to as FastHOMI8
and FastHOMI4. The three new techniques (along with
HOMI8 for completeness), will be compared with the ref-
erence method, DISCOVER, which does not use the overlap.

4. EXPERIMENTAL RESULTS

In order to use the proposed SI generation techniques, we
need to tune the regularization parameterλ for different GOP
sizes. At this end we can use the results reported in [4] for
HOMI8, since we consider thatλ depends mainly on the
block sizeN. For the sake of completeness, we report the
optimal values ofλ as a function of the GOP size in Tab. 1.
We found that the optimal value ofλ decreases when the
KFs are farther apart. This is reasonable since in this case we
must allow larger vector deviations to take into account the
movement.

Now we can compare the different methods. We used the
test sequencesbook arrival, ballet, jungle andbreakdancer
at a resolution of 384×512 pixels. We encoded the KFs by
the INTRA mode of H.264, using four quantization step val-
ues, namely 31, 34, 37 and 40. At this stage, we use as eval-
uation metric the PSNR of the SI with respect to the original
WZF. More precisely for each of the four methods, we com-
pute the PSNR difference (averaged along each sequence)
with respect to DISCOVER. This quantity is called∆PSNR.

The results of this test are reported in Tab. 2 to 5. We
observe that in almost all cases, the quality of the side infor-
mation is improved w.r.t. DISCOVER. The only exception
is for GOP size equal to 8, when a good SI estimation is

QP book arrival ballet jungle breakdancer
GOP size = 2

31 0.256 0.263 0.126 0.048
34 0.202 0.214 0.105 0.048
37 0.157 0.149 0.082 0.041
40 0.106 0.112 0.055 0.033

GOP size = 4
31 0.431 0.255 0.354 0.123
34 0.403 0.220 0.336 0.116
37 0.347 0.175 0.306 0.108
40 0.282 0.135 0.262 0.093

GOP size = 8
31 0.226 0.042 0.027 0.039
34 0.216 0.039 0.011 0.031
37 0.201 0.028 0.001 0.025
40 0.173 0.021 0.000 0.022

Table 2:∆PSNR [dB] for HOMI 8

difficult, and all methods are almost equivalent (differences
usually under 0.1 dB).

Then, we observe that denser MVFs improve the SI qual-
ity for GOP size equal to 2, while they do not help in the
case of long-term estimation. We ascribe this behavior to
the difficulty of estimating images that are quite far from the
references.

Finally we observe that the fast versions of HOMI have
fairly good performances, since the quality of the SI is almost
unchanged in many cases, while the computational complex-
ity is halved.

The last experiment consisted in computing end-to-end
performances (i.e. rate reduction and PSNR improvement) of
the proposed techniques when inserted into a complete DVC
coder like the one in [1], by using the the Bjontegaard metric
[2]. The results are shown from Tab. 7 to Tab. 9, and they
are not surprising: the proposed method are in general better
than the reference DISCOVER, excepted for GOP size equal
to 8, where they are practically equivalent.

Moreover, even from the point of view of RD perfor-
mances, denser MVF are better than sparser ones, and the fast
version of HOMI are as effective as the original algorithms.
We remark that globally, the better techniques is HOMI4,
which allows rate reductions up to 8% w.r.t. the reference.

As a final observation, we note that increasing the quality
of the side information does not mean always an increasing
of the RD performances. For example, the HOMI8 method
has a better side information than DISCOVER for GOP size
equal to 8, but worser RD performances. This confirms the
intuition that the PSNR with respect to the original WZF is
not necessarily an accurate method for evaluating the SI qual-
ity, even though for the moment is the most common, since
in most cases the RD performances are well correlated to the
side information PSNR.

5. CONCLUSIONS AND FUTURE WORK

Based on the previous work in [4], where we propose a
higher order motion interpolation, we continue to explore
higher order motion interpolation techniques in order to in-
crease the SI quality. We try to increase the density of the
estimated MVF and at the same time to reduce the complex-
ity by reusing the already estimated MVF.

The technique using dense MVFs is successful both in
increasing the SI quality (up to 0.47 dB better than the ref-
erence method DISCOVER), and in improving the end-to-



QP book arrival ballet jungle breakdancer
GOP size = 2

31 0.464 0.379 0.194 0.052
34 0.384 0.268 0.186 0.035
37 0.334 0.142 0.129 0.072
40 0.236 0.122 0.093 0.048

GOP size = 4
31 0.472 0.204 0.319 0.134
34 0.467 0.171 0.306 0.122
37 0.422 0.149 0.265 0.106
40 0.322 0.132 0.229 0.074

GOP size = 8
31 -0.012 -0.049 0.008 -0.016
34 0.027 -0.026 -0.007 -0.002
37 0.012 -0.050 -0.012 0.018
40 0.039 -0.002 -0.044 -0.006

Table 3:∆PSNR [dB] for HOMI 4

QP book arrival ballet jungle breakdancer
GOP size = 2

31 0.199 0.239 0.102 0.018
34 0.139 0.199 0.086 0.015
37 0.116 0.150 0.063 0.010
40 0.080 0.114 0.045 0.009

GOP size = 4
31 0.316 0.340 0.361 0.081
34 0.320 0.315 0.343 0.066
37 0.263 0.255 0.313 0.069
40 0.201 0.202 0.268 0.051

GOP size = 8
31 -0.040 0.005 0.135 -0.011
34 -0.035 -0.008 0.120 0.004
37 -0.044 -0.020 0.112 -0.016
40 -0.036 -0.015 0.094 -0.011

Table 4:∆PSNR [dB] for Fast HOMI 8

end RD performances, with a rate reduction attaining 8.2%
in the best case. Moreover we show that fast version of the
HOMI algorithms have almost the same performance as the
original one, but with an halved complexity. These good re-
sults encourage us to keep looking for efficient SI methods.
A technique we intend to investigate will exploit the previ-
ous WZF which has been fully reconstructed (i.e. by using
the parity bits to correct it) to produce more accurate motion
vector fields.
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QP book arrival ballet jungle breakdancer
GOP size = 2

31 0.408 0.384 0.174 0.063
34 0.348 0.278 0.172 0.043
37 0.306 0.149 0.121 0.058
40 0.214 0.150 0.091 0.034

GOP size = 4
31 0.330 0.328 0.330 0.085
34 0.316 0.267 0.315 0.082
37 0.286 0.239 0.289 0.052
40 0.193 0.211 0.242 0.038

GOP size = 8
31 -0.279 -0.060 0.120 -0.041
34 -0.229 -0.046 0.108 -0.026
37 -0.261 -0.073 0.106 -0.027
40 -0.227 -0.107 0.047 -0.058

Table 5:∆PSNR [dB] for Fast HOMI 4

book arrival ballet jungle breakdancer
GOP size = 2

∆R (%) -1.309 -4.815 -1.649 -2.645
∆PSNR [dB] 0.035 0.575 0.204 0.114

GOP size = 4
∆R (%) -4.328 -3.527 -5.856 -3.595
∆PSNR [dB] 0.279 0.239 0.331 0.169

GOP size = 8
∆R (%) 1.521 -0.392 -1.056 -0.123
∆PSNR [dB] -0.086 -0.053 0.060 0.029

Table 6: Rate-distortion performance for HOMI 8

book arrival ballet jungle breakdancer
GOP size = 2

∆R (%) -5.655 -6.080 -4.144 -4.259
∆PSNR [dB] 0.191 0.624 0.497 0.198

GOP size = 4
∆R (%) -6.211 -4.481 -8.220 -5.240
∆PSNR [dB] 0.361 0.334 0.430 0.345

GOP size = 8
∆R (%) 1.958 -0.928 -2.372 -3.001
∆PSNR [dB] -0.129 0.108 0.139 0.144

Table 7: Rate-distortion performance for HOMI 4

book arrival ballet jungle breakdancer
GOP size = 2

∆R (%) -0.957 -4.268 -1.283 -2.100
∆PSNR [dB] -0.052 0.436 0.308 0.170

GOP size = 4
∆R (%) -3.814 -4.890 -6.598 -2.870
∆PSNR [dB] 0.294 0.398 0.335 0.192

GOP size = 8
∆R (%) 1.922 -0.857 -1.996 -1.622
∆PSNR [dB] -0.072 0.023 0.107 0.072

Table 8: Rate-distortion performance for Fast HOMI 8

book arrival ballet jungle breakdancer
GOP size = 2

∆R (%) -4.497 -5.438 -3.74 -3.315
∆PSNR [dB] 0.122 0.703 0.564 0.237

GOP size = 4
∆R (%) -4.475 -4.591 -7.830 -5.862
∆PSNR [dB] 0.270 0.423 0.383 0.316

GOP size = 8
∆R (%) 3.425 0.157 -2.454 -2.191
∆PSNR [dB] -0.228 -0.099 0.127 0.105

Table 9: Rate-distortion performance for Fast HOMI 4


