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ABSTRACT
In this paper, we study the problem of image denoising by using

an adaptive lifting scheme. Such a scheme can adapt itself well to

the analyzed signal, which allows to keep important information for

denoising applications. However, it results in a non-isometric transform

which can be an important limitation as most of the denoising

approaches rely on the estimation of the noise energy in the subbands.

A previous study has been done to evaluate the subband energies of an

uncorrelated signal, in the wavelet domain when using such an adaptive

scheme. Based on this previous work, we propose in this paper an

estimation of the noise energies in the subband and use it to perform

image denoising. Experimental results illustrate that this approach is

more effective, in image denoising, than the classical non adaptive

lifting schemes both considering objective and subjective image quality

measures.

I. INTRODUCTION

During its acquisition or transmission, an image is often
corrupted by noise. The aim of denoising techniques is
to remove this noise while keeping as much as possible
the important features of the image. Recently, a particular
interest has been dedicated to wavelet thresholding [1],
[2], [3], [4]. The principal motivation is that the wavelet
transform is appropriate in energy compactation : the small
detail coefficients are more likely due to noise whereas the
large ones are due to important signal features [5]. These
small coefficients can be then thresholded without affecting
the significant features of the image.

The lifting scheme (LS), introduced by Sweldenes [6] is
a new wavelet constructing way, leading to the so-called
second generation wavelet. It is popular because it has the
capability of adjusting the wavelet transform to complex
geometries and offers a simple yet efficient implementation
of classical, first generation wavelet transform. However,
an important limitation of this LS is that it cannot cope
well with the sudden changes in the input signal, that
hide important information in many applications, such as
denoising. It becomes desirable to have a lifting scheme that
is able to adapt itself to the data. The adaptive lifting schemes
(ALS) have been designed for this particular purpose [7],
[8], [9], [10], [11], [12]. The intuition behind using the
ALS in the particular case of denoising via thresholding,

is that these schemes allow to perfectly preserve the original
characteristics of the input signal, offering thus a sparse
representation, which makes the thresholding rules more
effective than in the case of the traditional non adaptive
LS. The most well-known thresholding methods include
VisuShrink [1] and SureShrink [2]. In this paper, we focus
in particular, on the soft thresholding method and use the
universal threshold formula proposed by Donoho in [1] for
VisuShrink, to derive a specific threshold for each subband
when using an ALS. This approach relies on the estimation
of the noise energy in each subband when an ALS is used,
which is not a trivial issue. Usevitch [13] has shown, for
generic linear wavelet filter banks, that for an uncorrelated
signal, the energy in the spatial domain is the weighted sum
of subband energies. This allows for example to estimate
the distortion introduced by a quantization noise, but can be
used to analyze other kinds of noise. This result has been
generalized to the non linear ALS in [14], [15], [16] and
the corresponding weights have been computed and used to
perform optimal resources allocation. The contribution of
this paper is to use these weights to derive estimates of
the noise energy in each subband and then apply the soft
thresholding procedure.

This paper is organized as follows: we first give in Section
II a brief recall on the classical lifting scheme and its
adaptive version. Then, we present the method for distortion
estimation in the transform domain in Section III. In Section
IV, we explain how to exploit this previous work in the
context of image denoising. The experimental results are
presented and discussed in Section V. Finally, Section VI
concludes the paper and outlines future work.

II. ADAPTIVE LIFTING SCHEME

II-A. Classical lifting schemes

A typical lifting stage is composed of three steps : Split,
Predict and Update as shown in Figure 1. The input signal
x is first split into its even and odd polyphase components,
respectively called the approximation signalxa and the detail
signal xd. The odd samples ofx are then predicted from
the neighboring even ones. The predictor operatorP is
a linear combination of them and it is in general chosen
such that it gives a good estimate ofxd. The new obtained
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Fig. 1: Classical lifting scheme. Analysis.

signal x′
d = xd − P (xa) is then smaller thanxd. Finally,

the even samples ofx are transformed into a low-pass
filtered and subsampled versionx′

a of the original signal
x. This is performed by using an updating operatorU

which is a linear combination of the elements ofx′
d. The

approximation signalx′
a = xa + U(x′

d) is then obtained.
The principal disadvantage of the LS described above, is that
the linear filtering structure is fixed and thus, cannot match
well the sharp transitions in the signal. The lifting schemes
with adaptive prediction (APLS) [10], [11], [12] or adaptive
update (AULS) [7], [8], [9] have been designed to overcome
this limitation by the use of a filter that is able to adapt itself
to the input signal it is analyzing. In the following, we will
focus on the APLS and describe briefly its principle.

II-B. Adaptive prediction lifting scheme

Let x be the input signal andyij a wavelet subband, where
i ∈ I identifies the decomposition level starting from0, and
j ∈ J identifies the channel. UsuallyJ = {0, 1}, with
0 used for the low-pass and1 for the high-pass channel,
but more channels can be used, for example in the case
of multi-dimensional transforms. The subbands produced
by one decomposition level are calledy00 and y01. In the

Split PCU

+

+

x d(k)

y00

y01

Fig. 2: Adaptive prediction lifting scheme

adapative prediction lifting schemes (APLS), the adaptivity
is built into the prediction step of the lifting scheme as
shown in Figure 2. They are based on the design of a
data-dependent prediction filter in order to minimize the
predicted detail signal. In this paper, we consider an adaptive
prediction lifting scheme proposed by Claypooleet al.[11],
which lowers the order of the prediction filter near jumps to
avoid prediction across discontinuities, and uses higher order
predictors where the signal is locally smooth. The choice of
the prediction operator to be used at the positionk, is made
according to the decision map value at the positionk, d(k).
The decision mapd(·) allows to descriminate the smooth
parts of the signal from its sharp parts. Once the decision
map is calculated, the following equations are obtained for

the analysis:

y00(k) = x(2k) +
∑

n∈Z

β(n)x(2k + 1 − 2n) (1)

y01(k) = x(2k + 1) −
∑

n∈Z

γd(k)(n)y00(k − n), (2)

while the synthesis is described by:

x(2k + 1) = y01(k) +
∑

n∈Z

γd(k)(n)y00(k − n) (3)

x(2k) = y00(k) −
∑

n∈Z

β(n)x(2k + 1 − 2n). (4)

As one can notice, this overall system is nonlinear since the
prediction operator depends on the decision map which in
its turn depends on the input signalx.

III. DISTORTION ESTIMATION IN THE
TRANSFORM DOMAIN

For generic linear wavelet filter banks, Usevitch showed
[13] that the energyσ2 (in the spatial domain) of an uncor-
related one dimensional signal, is related to the energiesσ2

ij

of the wavelet subbandsyij by the linear relation:

σ2 =
∑

ij

1

2i+1
wijσ

2
ij (5)

The weightwij is computed as norm of the reconstruction
polyphase matrix columns for the subbandyij .
This approach has been extended in [14], [15] to the case
of the inherentely non linear ALS, for which no polyphase
representation exists. The basic idea was to look at the
overall ALS as a linear time-varying system, which is
possible once the decision mapd(·) is given. In facts, the
authors have shown that the non linearity of the system
depends only on the decision map and not on the whole input
signal. Thus, the weights depend only on the values ofd(·),
and more precisely on the choices of the prediction filters.
We give here directly the expression of the weights computed
in the one dimensional case and for one decomposition level.
For the details of the weights computation and its extension
to the multi decomposition level and the multidimensional
case, the reader is referred to [14], [15]. Let us first start by
introducing the matrixG(h). It is the polyphase synthesis
matrix associated to the filter corresponding to the valueh of
the decision mapd(·). It can be considered as the polyphase
synthesis matrix used in the non adaptive scheme where the
h-th filter is always used. As shown in [13], given the matrix
G

(h) one can express the weightw(h) as:

w(h) =
2

N

∑

n,m

G
(h)(n,m)

2
. (6)

When considering the adaptive case, wherewij is the weight
for the subbandyij andNh is the number of times theh-th



filter is used in this subband, the authors have shown that:

wij =

D−1
∑

h=0

2Nh

N
w

(h)
ij =

D−1
∑

h=0

ρhw
(h)
ij , (7)

whereρh = 2Nh

N
is the relative frequency of filterh in the

decision map for the current subbandyij .

IV. APPLICATION TO IMAGE DENOISING

In the APLS approach, the prediction operator adapts
itself to the input signal so that the characteristics of the
original signal are very well preserved. This property has
been successfully exploited to perform optimal resources
allocation, by the mean of the estimation of the distortion,
introduced by quantization, in the transform domain.
In this section, we propose to exploit the APLS properties
as well as the weights for the purpose of image denoising.
Let the signal be{x(k, l), k, l = 1, . . . , N} whereN is an
integer power of2. It has been corrupted by an additive
noise. The observed signal is then:

z(k, l) = x(k, l) + ε(k, l), k, l = 1, . . . , N (8)

where ε(k, l) are independent and identically distributed
(iid) as normal N(0, σ2) and independent ofx(k, l).
The goal is to denoisez(k, l) and to obtain an estimate
x̂(k, l) of x(k, l). Let us denote byI the coarsest scale
in the decomposition. As in section II, we keep the same
notationyij for the noisy subbands, wherei ∈ I, j ∈ J ,
I = {0, . . . , I − 1} and J = {0, . . . , 3} since the two
dimensional case is considered here. In the case of an
orthogonal wavelet transform, the obtained noise wavelet
coefficients in each subbandyij are iid N(0, σ2). In our
case, this result does not hold anymore since the considered
APLS is neither isometric nor linear. The standard deviation
σij of the noise in the subbandyij is not equal to the noise
standard deviationσ in the spatial domain.

In what follows, we propose to use the wavelet threshold-
ing procedure to remove the noise. It consists in thresholding
only the wavelet coefficients of the details subbands while
keeping the low resolution coefficients unchanged. We focus
here on the soft thresholding method [4] because it gives the
best performances when it is coupled with an undecimated
discrete wavelet transform [17]. For a one-dimensional signal
of length M , Donoho and Johnstone [1] proposed the
universal threshold,TU = σ

√
2 log M which results in an

optimal estimate in the minimax sense. In the case of our
APLS, the soft thresholding is applied in each detail subband
yij , with a specific threshold:Tij = σij

√

2 log(N2
i ) where

N2
i = N2

4i+1 is the number of coefficients in the subbandyij

andσij is the noise standard deviation in the details subband
yij . The problem is then to get a good estimationσ̂ij of σij

in each subband. The equation (5) is only valid whenσij

is the energy of an uncorrelated signal, which might not

be the case when using the APLS on a noisy signal. Let
us however consider this equation for the two-dimensional
case, where we define the noise energy in the spatial domain
by σ2. One obtains:σ2 =

∑

ij
1

4i+1 wijσij
2. As explained

in [13], the use of a non orthogonal transform, results in a
weighting of the energy in each subband. The weights can
be seen as a measure of the closeness of the biorthogonal
filters to the class of orthogonal filters. The introduction
of these weights allows thus, to approach the behavior
of the orthogonal transform in the sense that the equality
between the energies in the subbands, which is verified by
an orthogonal transform, is changed into an equality between
the weighted energies when a non orthogonal transform is
used. This can be expressed by:

wijσ
2
ij ≈ wi′j′σ2

i′j′ , wherei, i′ ∈ I andj, j′ ∈ J (9)

At the first resolution level, the noise energy in the subband
of diagonal detailsy03 may be estimated by the formula [1],
[3]:

(

m
0.6745

)2
, wherem is the median absolute deviation

of the wavelet diagonal details at the finest decomposition
level. From equation (9), an estimation ofσij can be:

σ̂ij =

√

(

w03

wij

)

σ̂03, where σ̂03 =
m

0.6745
(10)

One should point that equation (9) from which equation (10)
is derived relies on the assumption of the equality between
the weighted subband energies. In the following section,
we will use the expressions obtained in (10) to achieve
soft thresholding and thus evaluate the correctness of this
assumption.

V. EXPERIMENTAL RESULTS

V-A. Noise standard deviation Estimation

In this subsection, our aim is to evaluate the correctness
of our noise standard deviation estimation approach in each
subband. We introduce a white gaussian noise with a stan-
dard deviation ofσ in the original image that is further
transformed using an APLS, as the one describe in the
Subsecion II-B, with five decomposition levels. We use then
the equation (10) to calculate the estimationsσ̂ij of the noise
standard deviation in each subbandyij . The per cent relative
errors of this estimation for the first six subbands are reported
in table I. For the first level of decomposition, we notice that
the estimation is accurate, however the estimation errors be-
come more important in the second level of decomposition.
The reason is that the signal whose energy is estimated in
each subband is not uncorrelated as it is supposed to be in
[13] and as it is imposed in [15]. However, these estimations
are good enough in the particular context of denoising by
soft thresholding as will be shown in the next subsection.

V-B. Denoising by soft thresholding

In this subsection, we use the soft thresholding method
on the noisy image, transformed with our considered APLS.



Barbara Lena
σ 30 50 80 30 50 80

Subbandy03 0.86 0.51 0.12 0.51 0.20 0.03
Subbandy02 0.71 0.48 0.30 0.54 0.22 0.16
Subbandy01 0.98 0.55 0.32 0.58 0.32 0.17
Subbandy13 8.16 8.71 8.77 8.84 9.02 9.17
Subbandy12 7.25 7.57 7.52 7.61 7.82 7.77
Subbandy11 5.09 5.56 5.71 5.64 5.68 5.84

Table I: Relative error of the standard deviation estimation
in some of the detail subbands for the images Barbara and
Lena, corrupted with a spatial noise of standard deviation
30, 50 and80.

A specific threshold is used for each detail subband as
described in Section IV. We compare our denoising approach
with the conventional soft thresholding approach realizedon
the same noisy image transformed with the classical non
adaptive 9/7 wavelet transform. We considered four different
images : Barbara, Lena, House and Peppers. The PSNR
and SSIM curves as a function of the introduced noise, are
reported in Figures 3 and 4. There is an improvement in
PSNR and SSIM with our approach when compared to the
9/7 filter. When considering the image house, the obtained
gain is up to1 dB in PSNR and0.03 in SSIM.

10 20 30 40 50 60 70 80 90 100
19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

 

 
Daubechies 9/7
APLS

Noise deviation

P
S

N
R

(d
B

)

10 20 30 40 50 60 70 80 90 100
21

22

23

24

25

26

27

28

29

 

 
Daubechis 9/7
APLS

Noise deviation

P
S

N
R

(d
B

)

10 20 30 40 50 60 70 80 90 100
22

23

24

25

26

27

28

29

30

31

32

 

 
Daubechies 9/7
APLS

Noise deviation

P
S

N
R

(d
B

)

10 20 30 40 50 60 70 80 90 100
20

21

22

23

24

25

26

27

28

 

 
Daubechies  9/7
APLS

Noise deviation

P
S

N
R

(d
B

)

Fig. 3: PSNR as a function of the spatial noise introduced
in the images: Barbara (top left), Lena (top right), House
(bottom left) and Peppers (bottom right).

VI. CONCLUSION

In this paper, we have presented an approach for image
denoising via soft thresholding, by using an adaptive lifting
scheme. This approach, based on the estimation of the energy
in the transform subbands, gives better performances than the
classical non adaptive wavelet transform. Future work willbe
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Fig. 4: SSIM as a function of the spatial noise introduced
in the images: Barbara (top left), Lena (top right), House
(bottom left) and Peppers (bottom right).

dedicated to other thresholding methods, such asSureShrink,
which is a hybrid of the universal and the SURE threshold.
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