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ABSTRACT

In this paper, we study the problem of image denoising by using
an adaptive lifting scheme. Such a scheme can adapt itself well to
the analyzed signal, which allows to keep important information for
denoising applications. However, it resultsin a non-isometric transform
which can be an important limitation as most of the denoising
approaches rely on the estimation of the noise energy in the subbands.
A previous study has been done to evaluate the subband energies of an
uncorrelated signal, in the wavelet domain when using such an adaptive
scheme. Based on this previous work, we propose in this paper an
estimation of the noise energies in the subband and use it to perform
image denoising. Experimental results illustrate that this approach is
more effective, in image denoising, than the classical non adaptive
lifting schemes both considering objective and subjective image quality
measures.

is that these schemes allow to perfectly preserve the aligin
characteristics of the input signal, offering thus a sparse
representation, which makes the thresholding rules more
effective than in the case of the traditional non adaptive
LS. The most well-known thresholding methods include
Visushrink [1] and SureShrink [2]. In this paper, we focus

in particular, on the soft thresholding method and use the
universal threshold formula proposed by Donoholin [1] for
Visushrink, to derive a specific threshold for each subband
when using an ALS. This approach relies on the estimation
of the noise energy in each subband when an ALS is used,
which is not a trivial issue. Usevitch _[L3] has shown, for
generic linear wavelet filter banks, that for an uncorrelate
signal, the energy in the spatial domain is the weighted sum
of subband energies. This allows for example to estimate

the distortion introduced by a quantization noise, but can b
I. INTRODUCTION used to analyze other kinds of noise. This result has been
During its acquisition or transmission, an image is oftendeneralized to the non linear ALS in_[14]. J15]. [16] and
corrupted by noise. The aim of denoising techniques i$he corresponding weights have been computed and used to
to remove this noise while keeping as much as possimge_rform opt_lmal resources aIIo_catlon. The_contrlb_utlon of
the important features of the image. Recently, a particulafiS paper is to use these weights to derive estimates of
interest has been dedicated to wavelet thresholding [1jh€ noise energy in each subband and then apply the soft
[2], [Bl, [4]. The principal motivation is that the wavelet thresholding procedure. S _
transform is appropriate in energy compactation : the small This paper is organized as follows: we first give in Section
detail coefficients are more likely due to noise whereas thtll @ brief recall on the classical lifting scheme and its

large ones are due to important signal featufés [5]. Thesadaptive version. Then, we present the method for distertio
small coefficients can be then thresholded without affectin €Stimation in the transform domain in Sectjod I1l. In Sestio

the significant features of the image. [V] we explain how to exploit this previous work in the
The liting scheme (LS), introduced by Sweldengs [6] iscontext of image_ denoisin_g. The experimental results are

a new wavelet constructing way, leading to the so-calle@résented and discussed in Secidn V. Finally, Sedfidn VI

second generation wavelet. It is popular because it has the concludes the paper and outlines future work.

capability of adjusting th(_e wavelet tra_msfor_m to compI(_ex . ADAPTIVE LIETING SCHEME

geometries and offers a simple yet efficient implementation ) o

of classical, first generation wavelet transform. However!!-A. Classical lifting schemes

an important limitation of this LS is that it cannot cope A typical lifting stage is composed of three steps : Split,

well with the sudden changes in the input signal, thatPredict and Update as shown in Figuré 1. The input signal

hide important information in many applications, such ase is first split into its even and odd polyphase components,

denoising. It becomes desirable to have a lifting schente thaespectively called the approximation signgland the detail

is able to adapt itself to the data. The adaptive lifting sobe  signal z;. The odd samples of are then predicted from

(ALS) have been designed for this particular purpdse [7]the neighboring even ones. The predictor operatoiis

[8l, [9], [1Q], [11], [12]. The intuition behind using the a linear combination of them and it is in general chosen

ALS in the particular case of denoising via thresholding,such that it gives a good estimate ;f. The new obtained



the analysis:

yoo(k) = z(2k) + Y B(n)z(2k + 1 — 2n) (1)
nezZ
O yor(k) = 2(2k + 1) = > vay(M)yoo(k —n),  (2)
Fig. 1. Classical lifting scheme. Analysis. nez

while the synthesis is described by:

x(2k + 1) = yo1 (k) + Z Yary(n)yoo(k —n)  (3)

signal 2/, = =4 — P(z,) is then smaller tham,. Finally, =

the even samples of are transformed into a low-pass
filtered and subsampled versiarf, of the original signal (2k) = yoo(k) — Z Bn)a(2k +1 - 2n). )

x. This is performed by using an updating operalér nez

which is a linear combination of the elements df. The  As one can notice, this overall system is nonlinear since the
approximation signak/, = z, + U(z}) is then obtained. prediction operator depends on the decision map which in
The principal disadvantage of the LS described above, ts thdts turn depends on the input signal

the linear filtering structure is fixed and thus, cannot match
well the sharp transitions in the signal. The lifting scheme
with adaptive prediction (APLS) [10].[11]. [12] or adaptiv
update (AULS)([7], (18], [9] have been designed to overcome
this limitation by the use of a filter that is able to adaptlftse
to the input signal it is analyzing. In the following, we will
focus on the APLS and describe briefly its principle.

[Il. DISTORTION ESTIMATION IN THE
TRANSFORM DOMAIN

For generic linear wavelet filter banks, Usevitch showed
[13] that the energy? (in the spatial domain) of an uncor-
related one dimensional signal, is related to the ene@jes

I1-B. Adaptive prediction lifting scheme of the wavelet subbandg; by the linear relation:
1
Let = be the input signal ang; a wavelet subband, where t=>" ﬁwijo'?j (5)
i € 7 identifies the decomposition level starting frémand ij

j € J identifies the channel. Usually = {0,1}, with  The weightw;; is computed as norm of the reconstruction

0 used for the low-pass andl for the high-pass channel, polyphase matrix columns for the subbamng.

but more channels can be used, for example in the casghis approach has been extended(in| [14]] [15] to the case

of multi-dimensional transforms. The subbands prOduce@f the inherente|y non linear ALS, for which no po|yphase

by one decomposition level are callgdy and yo:. In the  representation exists. The basic idea was to look at the
overall ALS as a linear time-varying system, which is

5 Yoo possible once the decision malf-) is given. In facts, the
| X v v authors have shown that the non linearity of the system
“>| Spit U c [AkL P depends only on the decision map and not on the whole input
| 1 1 X o signal. Thus, the weights depend only on the valued(of

and more precisely on the choices of the prediction filters.
We give here directly the expression of the weights computed
in the one dimensional case and for one decomposition level.
adapative prediction lifting schemes (APLS), the adaptivi For the details of the weights computation and its extension
is built into the prediction step of the lifting scheme asto the multi decomposition level and the multidimensional
shown in Figure [R. They are based on the design of &ase, the reader is referred to[14]./[15]. Let us first start b
data-dependent prediction filter in order to minimize theintroducing the matrixG("). It is the polyphase synthesis
predicted detail signal. In this paper, we consider an agapt matrix associated to the filter corresponding to the valoé
prediction lifting scheme proposed by Claypoeteal .[11],  the decision mag(-). It can be considered as the polyphase
which lowers the order of the prediction filter near jumps tosynthesis matrix used in the non adaptive scheme where the
avoid prediction across discontinuities, and uses higtdero  h-th filter is always used. As shown in [13], given the matrix
predictors where the signal is locally smooth. The choice of3(") one can express the weight") as:

Fig. 2: Adaptive prediction lifting scheme

the prediction operator to be used at the positiois made n 2 ) 9
according to the decision map value at the posifiprl(k). wt = > GW(nm,m)". (6)
The decision mapl(-) allows to descriminate the smooth ™

parts of the signal from its sharp parts. Once the decisioVhen considering the adaptive case, wheygis the weight
map is calculated, the following equations are obtained fofor the subband;;; and N}, is the number of times thg-th



filter is used in this subband, the authors have shown thatbe the case when using the APLS on a noisy signal. Let
us however consider this equation for the two-dimensional

D—-1 D—-1
- 2Ny (h) _ (h) 7 case, where we define the noise energy in the spatial domain
Wi N Wy, PrW;;", ( ) . 1 K
P o ' by 0%, One obtainso® = 3°, mZrwijoi;”. As explained
) , ! : in [13], the use of a non orthogonal transform, results in a
where py, = Q%h is the relative frequency of filtek in the [3] g

weighting of the energy in each subband. The weights can
be seen as a measure of the closeness of the biorthogonal
filters to the class of orthogonal filters. The introduction
of these weights allows thus, to approach the behavior
In the APLS approach, the prediction operator adaptef the orthogonal transform in the sense that the equality
itself to the input signal so that the characteristics of théetween the energies in the subbands, which is verified by
original signal are very well preserved. This property hasan orthogonal transform, is changed into an equality betwee
been successfully exploited to perform optimal resourcethe weighted energies when a non orthogonal transform is
allocation, by the mean of the estimation of the distortionused. This can be expressed by:
introduced by quantization, in the transform domain.
In this section, we propose to exploit the APLS properties
as well as the weights for the purpose of image denoisingAt the first resolution level, the noise energy in the subband
Let the signal be{x(k,l),k,l =1,...,N} where N is an  of diagonal detailg)y; may be estimated by the formula [1],
integer power of2. It has been corrupted by an additive [3]: (%) , wherem is the median absolute deviation
noise. The observed signal is then: of the wavelet diagonal details at the finest decomposition

2k, 1) = 2k, 1) +(k,1), kyl=1,...,N ®) level. From equatior({9), an estimation ®f; can be:

decision map for the current subbang.

IV. APPLICATION TO IMAGE DENOISING

wijoy; ~ w0y, Wherei i’ € Tandj,j’ € J  (9)

where ¢(k,l) are independent and identically distributed P wo3
(iid) as normal N(0,0%) and independent ofr(k,[). Y

The goal is to denoise(k,l) and to obtain an estimate : : .

. J One should point that equatidd (9) from which equatlog (10)

ig“;](kt;;]le) g;csg(mk’ chéitIi_srg u:sdiﬁnsoéiti IrhsveciaersestL:C:;?n is derived relies on the assumption of the equality between

notation v foFr) the nois subbands w7he|z'ee . P c 7 She weighted subband energies. In the following section,
Yis y ' » J '’ we will use the expressions obtained [n](10) to achieve

Z. N {Q""’I B 1}. and ‘7. = {0,...,3} since the two soft thresholding and thus evaluate the correctness of this
dimensional case is considered here. In the case of an

orthogonal wavelet transform, the obtained noise wavele?ssumptlon'

coefficients in each subbang; areiid N(0,02). In our V. EXPERIMENTAL RESULTS
case, this result does not hold anymore since the considergda. Noise standard deviation Estimation
APLS is neither isometric nor linear. The standard deviatio
o;; of the noise in the subbang; is not equal to the noise
standard deviatiow in the spatial domain.

m
5 h 503 = ——— 1
)0’03, where g3 0.6745 ( O)

Wi j

In this subsection, our aim is to evaluate the correctness
of our noise standard deviation estimation approach in each
subband. We introduce a white gaussian noise with a stan-
dard deviation ofs in the original image that is further
In what follows, we propose to use the wavelet threShc’ldfransformed using an APLS, as the one describe in the
ing procedure to remove the noise. It consists in threshgldi Subseciof IR, with five decomposition levels. We use then
only the wavelet coefficients of the details subbands Whilqhe equation{10) to calculate the estimationsof the noise
keeping the low resolution coefficients unchanged. We foc”§tandard deviation in each subbapgl The per cent relative
here on the soft thresholding method [4] because it gives thg < ot this estimation for the first six subbands are riegor
bgst performances when it is coupled W'th_ an undecm?ateﬁg table[l. For the first level of decomposition, we noticettha
discrete wavelet transform [17]. For a one-dimensionaiaig the estimation is accurate, however the estimation errers b

of _Iengtr|1 Jy ﬁolr;ohoiand thr}\jtonﬁ_ [hl] prolpos_ed thecome more important in the second level of decomposition.
universal threshold7y = o+/2log M which results in-an o 1ea50n s that the signal whose energy is estimated in

optimal estimate in the minimax Sense. In the case of OUSach subband is not uncorrelated as it is supposed to be in
APLS,’ the soft thresholdmg is applied in each d(2etall Suuban[13] and as it is imposed in [15]. However, these estimations
yiﬂ’z’ W|t]r\1[2a ;pecnﬁc thresholdr’; = TijV Q_IOg(Ni ) where 5o good enough in the particular context of denoising by
Nj = i7r is the number of coefficients in the subbagid ot thresholding as will be shown in the next subsection.

(2

ando;; is the noise standard deviation in the details subband o .

yi;. The problem is then to get a good estimatign of o;; ~ V-B. Denoising by soft thresholding

in each subband. The equatidd (5) is only valid when In this subsection, we use the soft thresholding method
is the energy of an uncorrelated signal, which might nobn the noisy image, transformed with our considered APLS.
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Subbandyo; 0.86 0.51 0.12 0.51 0.20 O.(
Subbandyy, 0.71 0.48 0.30 054 0.22 0.z
Subbandyg,; 0.98 0.55 0.32 0.58 0.32 0.
Subbandy; 3 8.16 8.71 8.77 8.84 9.02 9.
Subbandy;» 7.25 7.57 7.52 761 7.82 7.
Subbandy;, 509 556 5.71 5.64 5.68 5. °%

Table |: Relative error of the standard deviation estimati
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in some of the detail subbands for the images Barbara -
Lena, corrupted with a spatial noise of standard deviat
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A specific threshold is used for each detail subband
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described in Sectidn V. We compare our denoising appro
with the conventional soft thresholding approach realiaed
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Noise deviation
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Noise deviation

the same noisy image transformed with the classical nogig 4: SSIM as a function of the spatial noise introduced
adaptive 9/7 wavelet transform. We considered four differe in the images: Barbara (top left), Lena (top right), House

images
and SSIM curves as a function of the introduced noise, are
reported in Figure§]3 and 4. There is an improvement in

: Barbara, Lena, House and Peppers. The PSNBottom left) and Peppers (bottom right).

PSNR and SSIM with our approach when compared to th@edicated to other thresholding methods, sucBuseshrink,
9/7 filter. When considering the image house, the obtaineghich is a hybrid of the universal and the SURE threshold.

gain is up tol dB in PSNR and).03 in SSIM.
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[10]
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4 50 60 70 40 50 60 70
Noise deviation Noise deviation

[12]

Fig. 3: PSNR as a function of the spatial noise introduced13
in the images: Barbara (top left), Lena (top right), House™
(bottom left) and Peppers (bottom right). (14

[15]
VI. CONCLUSION [16]
In this paper, we have presented an approach for image
denoising via soft thresholding, by using an adaptivengti [17]
scheme. This approach, based on the estimation of the energy
in the transform subbands, gives better performances kigan t
classical non adaptive wavelet transform. Future work bél|
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