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ABSTRACT

Motion estimation (ME) methods based on differential tech-
niques provide useful information for video analysis, and moreover
it is relatively easy to embed into them regularity constraints en-
forcing for example, contour preservation. On the other hand, these
techniques are rarely employed for video compression since, though
accurate, the dense motion vector field (MVF) they produce requires
too much coding resource and computational effort. However, this
kind of algorithm could be useful in the framework of distributed
video coding (DVC), where the motion vector are computed at the
decoder side, so that no bit-rate is needed to transmit them. More-
over usually the decoder has enough computational power to face
with the increased complexity of differential ME.

In this paper we introduce a new image interpolation algorithm
to be used in the context of DVC. This algorithm combines a pop-
ular DVC technique with differential ME. We adapt a pel-recursive
differential ME algorithm to the DVC context; moreover we insert
a regularity constraint which allows more consistent MVFs. The
experimental results are encouraging: the quality of interpolated im-
ages is improved of up to 1.1 dB w.r.t. to state-of-the-art techniques.
These results prove to be consistent when we use different GOP
sizes.

Index Terms— Distributed video coding, dense motion vector
field, image interpolation, differential motion estimation

1. INTRODUCTION

Motion estimation (ME) is a very useful tool both in video analysis
and compression, even though in the two contexts different charac-
teristics are required. In the first case one usually wants as much
accurate a motion vector field (MVF) as possible, ending up with
dense, high-precision vectors. For these applications, the optical
flow approach [1] has proved to be quite effective, and has generated
a large class of ME algorithm, namely gradient techniques, along
with the derived class of pel-recursive (PR) techniques. However,
the dense MVF produced by gradient and PR methods is unsuited
for the classical video coding paradigm, since it requires huge cod-
ing resources to be encoded. In this case one rather tries to optimize
a rate-distortion compromise: less accurate but much less costly (in
terms of bit-rate) MVFs, as the ones produced by block matching
(BM) algorithms are by far preferred for video compression. For this
reason, when the new paradigm of distributed video coding (DVC)
has emerged, it seemed natural to use BM motion estimation and
compensation, even though the peculiarity of DVC could call for al-
ternative approaches.

DVC deals with the compression of multiple outputs of corre-
lated sources which do not communicate with each other. The sen-
sors send their compressed outputs to a central point for joint decod-

ing. One of the most interesting characteristics of this new paradigm
is that separated encoding is theoretically just as efficient as joint en-
coding, both for lossless [2] and lossy coding [3]. Unfortunately the
arguments at the basis of the distributed coding theory are asymp-
totic and non-constructive, so many efforts have been devoted to the
search of techniques able to achieve these theoretical limits.

In this work we consider one of the most popular approaches for
DVC, Stanford [4], the main other being PRISM [5]. In the Stan-
ford paradigm, the input sequence is split into two subsets, the key
frames (KF) and the Wyner-Ziv frames (WZF). KFs and WZFs al-
ternate within each group of pictures (GOP) so that the two subsets
can be seen as two correlated sources. The number of WZFs can be
fixed or adaptively chosen in order to optimize performances [6, 7].
The KFs are coded with a still image technique (e.g. H.264 in IN-
TRA mode), and used at the decoder to generate an estimation of
the WZF, called side information (SI). This process is sometimes
called image interpolation, and is performed via motion estimation
and compensation: it is just here that we propose to use differential
ME methods. No matter how the SI has been obtained, the idea be-
hind DVC is to consider it as a noisy version of the original WZF:
this means that the encoder just needs to send the parity bits (com-
puted by efficient channel coding methods, as LDPC or turbo cod-
ing) of the WZF, or possibly, of its quantized transform coefficients,
and the decoder uses them to correct the SI. The decoder can set the
rate of parity bits via a feedback channel.

Since in DVC the ME is performed only at the decoder side, the
main disadvantages of differential methods (coding cost and com-
putational complexity) are circumvented, and on the contrary, SI in-
terpolation can benefit from the increased accuracy of a dense MVF
without having to pay the cost of an exceedingly high coding rate.

Differential ME for DVC has been introduced in [8], where a PR
algorithm, proposed by Cafforio and Rocca [9] was adapted to come
on the top of the popular DISCOVER [10] image interpolation tech-
nique, ending up with a non negligible performance improvement.
Encouraged by these results, we have developed a new motion in-
terpolation scheme that is presented in this paper. Here we use the
Cafforio-Rocca (CR) algorithm upstream in the processing chain.
Moreover we modify it in order to enforce a regularity constraint
(the Nagel-Eckelmann constraint [11]) on vectors. This allows for
more consistent motion vector fields. The experimental results are
encouraging: the quality of interpolated images (called side infor-
mation in the context of DVC) is improved of up to 1.1 dB w.r.t.
to state-of-the-art techniques. These results prove to be consistent
when we use different GOP sizes, and moreover we show that these
improvements in SI reflect into gains in the global coding scheme.

The rest of the paper is organized as follows: the reference DVC
scheme, along with the proposed method is briefly introduced in Sec-
tion 2; then, in Section 3 we recall the original CR algorithm and we
describe the modifications needed to use it in the DVC scheme. Ex-
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perimental results are shown in Section 4, while Section 5 draws
conclusions and outlines the future work.

2. REFERENCE SCHEME

In this paper we consider the DISCOVER [10] scheme, which is
an established reference for DVC [12, 8], and we propose a varia-
tion of the motion interpolation part, based on a PR ME technique.
The DISCOVER scheme provides that KFs are coded using the Intra
mode of H.264 [13], with an assigned quantization step. The quan-
tized DCT coefficients of WZFs are turbo-encoded but only parity
bits are sent to the turbo decoder, where they are used to correct the
side information.

The SI (i.e. the estimation of the current WZF Ik) is generated
at the decoder side, using the image interpolation scheme depicted
in Fig. 1. The inputs are the adjacent KFs, let them be Ik−1 and
Ik+1 (but farther frames can be used for larger GOP sizes). The
KFs undergo spatial low-pass filtering, and then a forward BM ME
is performed between them. This mono-directional MVF is split
and used to estimate the backward MVF vB between Ik+1 and Ik,
and the forward MVF vF between Ik−1 and Ik. Finally a weighted
median filter is then applied on vB and vF in order to eliminate the
outliers and to get a smooth solution. The WZF estimation is the
average between Ik+1 compensated by vB and Ik−1 compensated
by vF . This technique can adapt to larger GOP sizes. For example,
for a GOP size equal to 4, we just use three times the same method:
first, we interpolate Ik from KFs Ik−2 and Ik+2; then we use it again
to interpolate Ik−1 from Ik−2 and Ik and Ik+1 from Ik and Ik+2.
The optimality of this approach has been shown in [14].

In our previous paper on differential ME in DVC [8], it was pro-
posed to use the Cafforio-Rocca algorithm [9] to improve MVFs vB

and vF . In this paper we propose to use the CR algorithm in ad-
vance, that is, we use it to improve the forward MVF produced by
the mono-directional ME. This requires to adapt the CR algorithm to
the DVC paradigm; moreover we show how it is possible to modify
it in order to integrate a stronger regularity constrain. The result-
ing image interpolation scheme is shown in Fig. 2. We note that,
given the regularization effect of the CR algorithm, the final median
filtering is no longer needed.

3. THE MODIFIED CAFFORIO-ROCCA ALGORITHM

In this section, we first recall the principles of the CR algorithm
(CRA), and then we give the details of the modifications needed
to profitably use it within the scheme of Fig. 2. When using the
CRA, the image pixels are scanned in a fixed order (e.g. in raster or-
der), and for each position a new motion vector (MV) is computed.
The algorithm is pel-recursive, in the sense that previously computed
MVs can be used for the initialization of the current one. The orig-
inal CRA consists in applying, for each pixel p of the image, three
steps, until the estimated MV v(p) is obtained.

Initialization. Some a priori information is used as initialization
value, v(1)(p). Often the vector computed for the previous
position is used for initialization.

Validation. The motion-compensated error A = |Ik+1(p)−Ik(p+

v(1))| is compared to the non-compensated error, incre-
mented by a positive quantity γ: B = |Ik+1(p)−Ik(p)|+γ.
If A ≤ B the initialization vector is validated and kept for
the next step: v(2) = v(1). Otherwise the null vector is
used: v(2) = 0. The validation steps allows and to prevent
algorithm divergence and to get rid of outliers, which can
occur for example when the initialization vector belongs to
a different object w.r.t. the current position. Of course, it
can happen that the non-compensated error is smaller than
the compensated error even if the current vector is not an
outlier: the threshold value γ allows to control the number of
validated vectors which are reset to zero.

Refinement. The last step consists in refining the validated vector
v(2) by adding to it a correction δv. This correction is ob-
tained by minimizing the energy of the prediction error, un-
der a constraint on the norm of the correction vector. The
Lagrangian cost function is then:

J(δv) = [Ik(p)− Ik−1(p + v(2) + δv)]2 + λ‖δv‖2 (1)

Using a first order expansion of Ik−1, it turns out that the
value of δv minimizing J is:

δv(p) =
−εϕ

λ + ‖ϕ‖2 (2)

where ε = Ik(p) − Ik−1(p + v(2)) is the prediction error
associated to the MV v(2), and ϕ = ∇Ik−1(p + v(2)) is the
spatial gradient of the motion-compensated reference image.

Now we describe the CRA modifications needed in the context
of DVC image interpolation. The three steps are modified and more-
over we use a different scanning order, based on the blocks used in
the forward motion estimation: the blocks are scanned in a raster
scan order, and the same is done for the pels within each block.

Our version of the CRA takes as an input vFWD the MVF pro-
duced by the forward ME, see Fig. 2. These vectors are used in
the initialization step: if p is the first position (i.e. top and left-
most) in the block, the vector v(1)(p) is initialized with vFWD(p).
Otherwise, we use a weighted average of the left, up, and up-right
neighboring vectors, with different weights if the neighbors are in
the same block or not.

As far as the validation step is concerned, we not only compute
the motion-compensated error associated to v(1)(p) and the non-
compensated error, but also the motion compensated error associated
to vFWD(p), and we choose the vector with the least absolute error.
As in the original algorithm, the non-compensated error is increased
by a threshold γ in order to reduce the reset frequency.



The new validation step allows to reintroduce the vFWD(p) as
validated vector while scanning the current block. This is useful,
since, independently from the scanning order, it can happen that,
within the same block, we pass several time from one object to an-
other. At the first object boundary crossing, the MV is likely reset by
the validation pass, then the pel-recursive nature of the CRA allows
to reconstruct the MV of the new object by accumulating the cor-
rections from one pel to the other. However, if during the scanning
we come back to the first object, with the original CRA we can only
reset to zero the MV; with this modification, we can benefit of a fast
recover of the first object MV. Note that we proposed a bidirectional
version of this modified validation step in [8].

In the last step, we refine the validated MV v(2)(p) by adding a
correction δv. Like in the original algorithm, the correction should
minimize the prediction error, under the constraint of a regulariza-
tion condition. In the original algorithm it is possible to find a closed
form of the optimal solution when the regularization is simply a con-
straint on the correction norm. Here we want to use a stronger con-
straint. Namely, we consider the diffusion matrix D(∇I):

D(∇I) =
1

|∇I|2 + 2σ2

[(
∂I
∂y

− ∂I
∂x

) (
∂I
∂y

− ∂I
∂x

)T

+ σ2I2

]

When the regularization constraint takes into account the dif-
fusion matrix, one is able to inhibit blurring of MVF across object
boundaries [11, 15]. This kind of constraint is well known in the
literature about optical flow motion estimation and is called Nagel-
Enkelmann constraint [11]. We propose therefore the following cost
function:

J(δv) = [Ik+1(p)− Ik−1(p + v(2) + δv)]2 + λδvT Dδv (3)

where we used the shorthand notation D = D (∇Ik−1). We no-
tice that, in the homogeneous regions where σ2 À |∇Ik−1|2, the
cost function becomes equivalent to the one used in the original al-
gorithm, see Eq. (1).

Here we show that even with the new cost function, a closed
form of the optimal vector refinement exists, and we give it at the
end of this section. Like in the original algorithm, the first step is a
first order expansion of the cost function:

J ≈
[
Ik+1(p)− Ik−1(p + v(2))−∇Ik−1(p + v(2))T δv

]2

+

− λδvT Dδv =
(
ε + ϕT δv

)2

+ λδvT Dδv

where we defined the motion compensation error ε = Ik+1(p) −
Ik−1(p+v(2)(p)) and the compensated gradient ϕ = ∇Ik−1(p+

v(2)(p)). Then we look for the refinement δv∗ which minimizes the
function cost: we set to zero the partial derivatives of J .

0 =
∂J

∂δv
(δv∗) = 2(εϕT δv∗)ϕ + 2λDδv∗ (4)

= 2
(
ϕϕT + λD

)
δv∗ + 2εϕ.

Note that the derivative of δvT Dδv has been computed in Eq. (4)
using the symmetry of D . The last equation is equivalent to:

δv∗ = −
(
ϕϕT + λD

)−1

εϕ

Using the matrix inversion lemma, we find the optimal refinement:

δv∗ =
−εD−1ϕ

λ + ϕT D−1ϕ
(5)

λ 500 1000 2000 3000 5000
PSNR [dB] 30.31 30.46 30.57 30.52 30.50

Table 1. Impact of λ parameter on side information quality. Average
over test sequences, QP=31.
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Fig. 3. SI PSNR improvement [dB] between reference and proposed
method.

It is interesting to observe the similitude between the final formula
and the original one in Eq. (2). Actually, Eq. (5) reduces to Eq. (2)
in homogeneous regions or for very high values of the parameter σ.

4. EXPERIMENTAL RESULTS

In the experimental test we have used a set of 4 test sequences, char-
acterized by different motion content: city, eric, foreman, and mo-
bile. First, we have performed some experiments in order to tune the
parameters λ, γ, and σ of the proposed algorithm. We look for the
parameter values maximizing the PSNR between the reconstructed
and the original WZF. For the sake of brevity, here we show some
results only for λ, see Tab. 1. We report the average PSNR of recon-
structed WZF for different values of the parameter, averaged over
the test sequences, and with KFs encoded at QP=31. Similar results
were obtained for other quantization steps. We conclude that the best
value for the parameter λ is 2000, and in the following we consider
only this value. Likewise, we have experimentally determined that
the best values for the other parameters are γ = 20 and σ = 50.
These values will be used in the following.

In order to evaluate the effectiveness of the proposed technique,
we first compared the SI produced by our algorithm with the one
produced by DISCOVER using out set of four input sequences. The
parameter considered for the comparison was the PSNR between the
original WZF and its estimation produced by each of the techniques.

The results of the first tests are summarized in Fig. 3. We note
that for each sequence and for each KF’s quantization step, our algo-
rithm produces a SI more similar to the original WZF (in the sense of
the PSNR). However the gain can be quite different according to the
sequence. We obtain higher gain when there is high, regular motion
like in mobile and city (up to more than 1.1 dB). When the motion
is less regular we have a bit smaller but still significant gain (up to
about 0.5 dB for foreman). Finally, some gains are still obtained for
the “head and shoulder” sequence eric, around 0.2 dB. We observe
as well that the gain is generally smaller for severely quantized KFs:
this is reasonable since low quality KFs provide a less reliable gra-
dient information, which is at the basis of the proposed method.



QP values
GOP size 31 34 37 40
2 0.68 0.58 0.52 0.31
4 0.38 0.33 0.28 0.22
8 0.23 0.23 0.22 0.18

Table 2. SI PSNR improvement [dB] of proposed method over ref-
erence for different GOP sizes, average over the test set.

QP 31 34 37 40
∆ PSNR 0.43 0.35 0.33 0.18

Table 3. SI PSNR improvement [dB] of proposed method over [8],
average over the test set.

These first experiments were conducted for a GOP size of 2, i.e.
KFs are adjacent to WZFs. We repeated the same experiment for
larger GOPs, and we found that the proposed technique is still better
than the reference, even though the gap becomes smaller. The results
of these tests are reported in Tab. 2. Even in the less favorable case
the proposed method is almost 0.2dB better than the reference.

We performed a last set of experiments on the SI information
quality, comparing the technique proposed in [8] and the new one.
The results for GOP size equal to 2 are shown in Tab. 3. Similar re-
sults are obtained for other GOP sizes. The new method consistently
outperforms the previous one, suggesting that the earlier the CRA is
introduced into the processing chain, the better the results are.

The results presented so far confirm that the proposed technique
produces better image interpolation than the references. However,
the target of the method is to improve the global performance of
the DVC scheme, so we computed the global RD performance of
the scheme described in Section 2 for the sequences of the test set.
The results were compared with those of the reference DISCOVER
coder using the Bjontegard metric [16] (recommended by the VCEG
for comparing video coding methods) at four operational points cor-
responding to QP ∈ {31, 34, 37, 40}. We observed an average rate
reduction of 5.9% and an average PSNR improvement of 0.32 dB
for the sequences of the test set. These results validate the proposed
method, and, along with those shown in [8], confirm the intuition that
differential ME methods can be profitably employed in the frame-
work of DVC.

5. CONCLUSION AND FUTURE WORK

The idea of using differential methods for ME in the context of DVC
has recently been introduced [8], showing promising results. In this
paper we continue our study about the adaption of gradient-based
ME methods into a popular DVC coding scheme as DISCOVER.
The proposed ME technique allows for regular MVFs and the results
in image interpolation are encouraging: w.r.t. the state of the art, we
have observed gains up to 1.1dB for a complex motion sequence as
mobile. However the proposed technique has better results than the
reference for all the test sequences. The technique proposed here
improves the results of [8] as well.

These results allow us concluding that differential ME tech-
niques find a natural application in DVC, where the problem of an
overwhelming coding cost for a dense MVF is completely circum-
vented by the fact that the motion vectors have not to be encoded,
since they are computed at the decoder side. Future work will fo-
cus on further application of differential ME techniques and dense
MVFs for DVC. In particular, on one hand we want to complete the

analysis of the application of the CRA to the DVC paradigm, on
the other we are also looking for other differential technique which
could profitably be used in this context.
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