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Abstract—Multiview video coding is an emerging application In order to better deal with inter-view redundancy, the
where, in addition to classical temporal prediction, an efftient joint video team (JVT) is developing a multiview extension

disparity prediction should be performed in order to achiewve the of H.264/AVC standard, known as multiview video coding
best compression performance. A popular coder is the multiew i '

video coding (MVC) extension of H.264/AVC, which uses a (MVC) extension [3]. The aim of this extension is to provide

block-based disparity estimation (just like temporal predction Ne€w techniques improving coding efficiency taking advaetag
in H.264/AVC). In this paper, we propose to improve the MVC of both temporal and inter-view redundancies, thus leatiing
extension by using a dense estimation method that generates additional coding gain compared to the H.264/AVC simulcast
smooth disparity map with ideally infinite precision. The oktained solution.

disparity is then segmented and efficiently encoded by using . . . -
rate-distortion optimization technique. Experimental results show On the other hand, adding the inter-view prediction to

that significant gains can be obtained compared to the block- the temporal one requires more computational and memory
based disparity estimation technique used in the MVC exterisn.  resource. Nevertheless, it has been shown [4] that mostof th

coding gain of MVC comes from the inter-view prediction
|, INTRODUCTION of the temporalin_tra_ pi(_:ture, while fo_r_theinter_pi_ctures
- : L . . the temporal prediction is the most efficient prediction mod
A multiview video system consists in generating mUIt'pl%\s a consequence, limiting the inter-view prediction to the
fitra pictures is commonly reputed as a reasonable complex-
ity/efficiency trade-off.
The inter-view correlation between adjacent cameras is
moved via the so-called disparity estimation (DE) and-com

via a set of multiple cameras. A set of slightly differentwge
can be used to reproduce the scene in three dimensions.
The improvement of 3D technologies raised interest in 3;%

television (3DTV) [1] and in free viewpoint video (FVV) [2]. ensation. Two main approaches, block-based and dense, hav

Wh"f 32;\/ toffers_depth p_e:cedpél_?n 01; plrogramF(i/n\tA(?;?lrEeen used to estimate the disparity vectors (DV). A survey of
ments without wearing special additional giasses, © the different techniques proposed in the literature carobad

the user to freely change his viewpoint position and V|e\mpo|.n [5]. The MVC extension employs a variable block-based

direction around a 3D reconstructed scene. Other targdtsfie)j. : L : .y "
) - . .. _disparity estimation, assuming that within each partitbthe
are expected, like Digital Cinema, IMAX theaters, medi¢ine party 9 P

dentist traffi trol. milit technoloai i current macroblock the disparity vector is constant. Hawvev
gznmssryétglr_ raffic_control, military teChnologies, opuler ;g assumption does not always hold, especially arounthdep

discontinuities and in textureless regions. Dense pissked

h In tlhe m;aqntlme, tze d|g|tat1|I v ti(;hnology and 3Dld§;|‘?¥§pproaches attempt to overcome this drawback by assigning
ave largely improved recently, making even more rele one disparity vector to each pixel. Of course this means that

problem of multiview applications. Capturing, processargl the disparity map would require a very high bit-rate to be

coding. multiv_iewlvideo are now very active research toPiCt?:'ncoded: for this reason, dense DVs have rarely been conside
In particular, in sight of the huge amount of data concerne%r compression. The basic idea of this paper is to reduce the

compression assumes a paramount |m_porta.nce.. dpoding cost of the dense DV map by operating a RD-driven
A straight method to compress multiview video is to encode : .
segmentation on it.

each view independently using the state-of-the-art H 26/ In particular, we propose to improve the disparity predct
encoder P]. This approach is denoted, in the literature, as '

. . . nit in the MVC extension by using the dense DE (DDE)
simulcast coding. However, since all the cameras captae . : . X
. . . . n method described in [6] (because it achieves good results
same scene through different viewpoints, there is an witaw-

e . ) compared with the state-of-art methods, such as graph cuts
statistical expected dependencies between adjacent aamer d belief ion based hods) foll d by th
which is not exploited in the simulcast case and belie propagation based metho Sf) ollowed by t € seg-
' mentation step. Based on a set theoretic framework, this DDE
. _ . approach incorporates various convex constraints casnesp
MMSP’09, October 5-7, 2009, Rio de Janeiro, Brazil. ing to a priori information such as the range of DVs or the

978-1-4244-4464-9/0$25.00 (©2009 IEEE. total variation regularization constraint which assuremaoth



disparity field while preserving discontinuities.

reference frames
(previously coded)

current frame

reference frames
(previously coded)

current frame

Assuming that the magnitude difference of both fields is
relatively small, the warped reference frame is approxeuat
aroundd by a Taylor expansion:

block-based dense I(n_l’t)(f +d,y) ~
—»| disparity |e— > disparity |« (n—1,t) 7 (n—1,t) 7 7
estimation estimation 4 (@+dy)+ VI (z+d,y)(d—d) (2)
| - where vI{" " (z + d,y) is the horizontal gradient of the
! Zi warped reference frame. Note that in (2), we have not made
Ly S explicit thatd andd are functions ofs = (z,y) for notation
/::g A concision. Using the linearization (2), the criteriohin (1)
Qg RD can be approximated by the quadratic convex functiohal
I 5 segmentation d-
| & |_3 .
l i3 J(d) =Y _[r(s) = L(s) d(s)]? ®)
: Q: é s€D
' \2 where
block-based | block-based 4 n—1,t -
L L L(s) =VL"" (@ +d(s),y)

disparity

(-
compensation

residual frame

disparity

L s(-
compensation

residual frame

r(s) =10v0(s) ~ 100 (x + d(s), y) + d(s) L(s)

The minimization of this quadratic functional is an ill-fpak
problem as the components &f may locally vanish. Thus,
to convert this problem to a well-posed one, we incorporate
additional constraints reflecting the prior knowledge dtiba
disparity field. In this work, we address the problem through

The proposed scheme is summarized in Fig. 1 we replageset theoretic framework [6]. Firstly, each constraintap-r

the block-based disparity estimation (BDE) stage by a denrseesented by a closed convex s&f, with m € {1 M
d!spar!ty estimation .(DDE) one, and then, we a}pply a ratﬁi a Hilbert spaceH. The intersectionS of all thve M set's
distortion segmentation to the generated disparity mags T 'm constitutes the family of possible solutions. Therefone, t

Its lferfprtmed by Oﬁt'{ﬁ'zmg a Lagran%'i?] COStdf.lmCt'ontth'C onstrained problem amounts to find the solutiorSimvhich
akes into account the accuracy an e coding cost of i . < the functionall:

disparity map. "

The remainder of this paper is organized as follows. Sec- _. . 5 .
tion Il provides details about the DDE method. In Section I Findd € 5= ﬂ Sm such that/(d) = prry J(d).
we address the problem of the RD-optimized segmentation m=l
and encoding of the disparity field. Finally, in Section Iv,The constraint sets are modeled as level sets:
we give experimental results confirming the effectivenefss o .
the proposed method, while Section V draws conclusions angm el M}, Sm={d €H | fm(d) < om} ()
outlines future work. where f,, : H — R is a continuous convex function for all
m € {1,..., M} and (d,,)1<m<nsr are real-valued parameters
such thats = N\Y_, S, # 0.
A. Problem statement Hence, it is required to define the convex sgisto proceed

Let 7" and I(»~1*) pe two frames taken respectivelyto the DDE algorithm within the set theoretic framework. At
by the n-th and (n — 1)-th cameras at time. We assume this level, it is important to emphasize the great flexibilit
that cameras are rectified, so that the disparity vectors dhgorporating any set of arbitrary convex constraints. lmatwv
restricted to the horizontal component, that will be dedotdollows, we will focus onM = 2 constraints. The first one
by d. DDE methods attempt to determine, for each pixel igonsists of restricting the variation of the disparitywithin
the current frame (™), the best corresponding pixel in thed specified rangédmin, dmax]. It can be expressed by the
reference framé("~1%), Generally, the estimation is obtainedollowing constraint setS;:
by minimizing a given_cost funcFionaI, formulated in ternfs o Sy = {d € H | duin < d < doax}
the sum of squared differences:

Fig. 1. Disparity prediction: (left) block-based estinostj (right) enhanced
by a dense estimation.

(4)

Il. DENSEDISPARITY ESTIMATION

(6)

Most importantly, a constraint can be incorporated in order
to strengthen the smoothness of the disparity field in the
homogeneous areas while preserving edges. Indeed, neighbo
whereD is the picture support ard is the range of candidateing pixels belonging to the same object should have similar
disparity values. Generally, an initial estimate of d is disparities. This can be achieved by considering the total
available, for example using a dense correlation-baseladet variation tv(d) which can be defined as the sum orof

T (z,y) — Iz +d,y))* (1)
(z,y)€D

d = arg min
deQ



the norm of the spatial gradient df[7]. The total variation
of the discrete disparity imagé= [d*/] is given by:

W—-2H-2

tv(d) = Y > T — dWR [t — @I

i=0 ;=0

W2
+ Z \/|di+1,H—1 — dihH-1|
i=0

H-2
+ Z \/|dW71,j+1 —dW-1.|
j=0

whereW x H is the support of the disparity image. Hence,
a total variation based regularization constraint amouots
impose an upper bound on thetv of the image, leading
to the following constraint set:

Sy ={deH|tv(d) <7} (7)

It is worth pointing out that the positive constantcan
be estimated for example through a learning procedure

(@) Initial disparity mapd (b) 7 = 0.15 - tv(d)

© 7 =0.10 - tv(d) (d) 7 = 0.05 - tv(d)

'H. 2. Example of dense disparity maps at different valuethe upper
oundr parameter (from “Book arrival” sequence, frame 36).

image databases [8]. However, in our case we choose the value
maximizing the quality of the disparity compensated pietur TABLE |
as ShOWn in next Section_ EXAMPLE OF THE INFLUENCE OF THE PARAMETERr ON THE BITRATE

ROF THE DENSE DISPARITY COMPENSATED PICTUREFROM

Finally, the disparity estimation problem is formulated b)?NDTHE PSN “BOOK ARRIVAL” SEQUENCE FRAME 36).

minimizing the quadratic objective function in Eq. 3 under

the mentioned constraint sets. To solve this problem, wd use bitrate (H.264/AVC intra, QP=0] PSNR
the efficient constrained quadratic minimization techeiqu | 7 = 50000 0.6416 bpp 37.13 dB
developed in [9], which is adapted to problems with quadrati | 7 = 40000 0.5222 bpp 37.23 dB
convex objective functions. For the sake of brevity, we will |-~ = 30000 0.4036 bpp 37.24 oB

) : _ : ; T = 20000 0.3051 bpp 36.48 dB
not describe the algorithm here: for more details, the reiade | ——5500 0.2878 bpp 3344 0B
referred to [9], [6]. In order for this algorithm to converdgke
objective functionJ must be strictly convex. We introduce an TABLE Il
additional term in order to assure this condition: EXAMPLE OF THE INFLUENCE OF THE PARAMETERY ON THE BITRATE

B AND THE PSNROF THE DENSE DISPARITY COMPENSATED PICTURE:ROM
J(d) = Z[T(S) — L(s) d(s)]z Lo Z[d(s) — d(s)]2 (8) “BOOK ARRIVAL” SEQUENCE FRAME 36).
s€D seD
_ bitrate (H.264/AVC intra, QP=0] PSNR

whered is an initial estimate and is a positive real number: a=01 0.4667 bpp 35.79 dB
when it is large, we favor the regularization term and tend to | o =6 0.4036 bpp 37.24 dB
have a final solution close to the initialization; on the cany, a=10 0.3943 bpp 37.20 dB
whena is small, the data attachment term becomes dominant,| & = 50 0.3905 bpp 36.50 dB
and the solution can diverge from the initialization. a = 100 0.3837 bpp 35.78 dB

B. Influence of the parameters

In practice, the optimal value of the parametesi.., dmax], the disparity compensated picture, evaluated as PSNR batwe
7 and a« may not be known exactly and it is, thereforethe original view and the disparity-compensated estimatio
important to evaluate their impact in terms of coding ratd arFirst, an arbitrary fixed value of is used to determine the
PSNR of the compensated picture. The choice of the rang@rameterr. Then, the optimal value of is determined. The
[dinin, dmax] Can be accurately found by matching certaialue of both parameters is selected according on the Highes
points of interest selected manually in the two stereo faméSNR value of the disparity compensated picture. Note that,
The upper bound-, used to enforce the smoothness of thig Table | and Table Il, the bitrate of the dense disparity map
estimated disparity map, may be estimated from a scale vafigs been computed using the dense disparity map as a picture
of the total variation of the initial disparity ma@ as shown Wwith H.264/AVC inintra mode at a QP value of 0.
in Fig. 2. A low scale value results in smoothing more the
disparity map, and so, reducing the number of bit required fo
the transmission. The purpose of the segmentation is to obtain, from the

Table | and Table Il show the impact of the parameteasid dense map produced by the algorithm described in the prgviou
« on the coding rate of the disparity map and on the quality séction, another map, which will be compatible with the rep-

IIl. RATE-DISTORTION-BASED SEGMENTATION



resentation of motion vectors in H.264/AVC. This means thaelected quite often, resulting in a remarkable rate réoluct
we have to segment the disparity map using the macroblo@ee next section).

(MB), block and subblock shapes defined in the standard.
IV. EXPERIMENTAL RESULTS

A. Block-based representation In this section, we provide some simulation results to

As defined in the norm of H.264/AVC, the vector field cagvaluate the rate-distortion performance of the proposed-s
be described using a Sing|e vector per macr0b|ock><a]6 ture. The eXperimentS were run on three rectified multiview
pixels). However the MB can be partitioned in 8, 8x16 Video sequences : “Book arrival”, “Door flowers” and “Out-
or 8x8 blocks, which can have a different vector each. Finallgloor” [10]. For all the video sequences, we use four viewh wit
block can be split into 84, 4x8 and 4x4 subblocks, which & spatial resolution reduced to 51284. We use the software

in turns can have a single vector. JMVM 8.0 [11].

B. Partition-based segmentation

As mentioned earlier, the dense disparity estimation ntetho
generates a map with real valued disparity vectors. A first ap
proximation consists in truncating the precision with artgra
pixel accuracy as in H.264/AVC standard. The disparity i th 5
current MB is then represented by 256 quarter-pel vectorg
Then, for any partition we have to choose a single vecto
from those of the dense representation. For example we have
to choose one vector for the %86 partition, 2 for each of

the 16x8 and 8«16 partitions and so on. In particular for any I' g N L : rr -
partition we consider the set of dense vectors that fallgiwit 1 r| :
n

(a) Original reference frame (b) Original current frame

it. Among them, we select 6 candidates: the average vecta

the median (in the sense of the norm) vector, and the fou )

vector whose norm is closest to the median one. 1 * L B \ L . . -I
L}

C. Rate-distortion optimization |. 5

Let the guantlzatlon parametQP_ be gl\./en' .The distortion ) Block-based H.264/AVC DV at (d) DDE+segmented DV at QP22
measure is the sum of squared intensity differences (SS[po2

and R the number of bits to be transmitted for the predictive
disparity vector error. For the'" partition B} of the k"
macroblock By, the best approximated disparity vectbris . - i
computed by minimizing the following: N J i
|
i m
F ||

d = arg minJ4(B?|QP) 9) n
deQ

with Ja(BP|QP) = SSD(B?,d|QP) + A - R(B?,d|QP) i

The main relevance of the segmentation of the dense dispa)- Block-based H.264/AVC DV at (f) DDE+segmented DV at QP42
ity map which finally ends in a block-based representatida is QP42
make good uf_se of the SmOOthn_eSS of the dense disparity ”\%’ 3. Example of block-based disparity vectors (from “Roarrival’
Indeed, despite the segmentation process reduces théyquadiquence, frame 36).
of the solution provided by the dense disparity estimation
algorithm, the resulting map, followed by a RD segmentation As seen in Section 1I-B, the parametdi&,in, dmax|, 7
still can be consider as a good quality/bitrate trade-gffee and o have to be chosen, and we have determined them
sentation over a direct block-based estimation. Furtheemoheuristically. However they can be adjusted for each dbffier
unlike H.264/AVC in which the disparity estimation is calisasequence, by specifying their value in the Sequence Pagamet
and local, our proposed disparity estimation has a globaét (SPS). The increase in bitrate related to this sidenmder
approach which favors the regularization of the dispargidfi tion is very small, such that we neglect this contributiorewh
As a consequence, more MB will be coded in the SKIReporting experimental data about the coding rate.
mode, which is particularly efficient when the vector field is Within the H.264/AVC framework, the rate-distortion es-
regular, since it consists in sending no side information némation of the disparity vector generates different diiga
residual: the vector is computed as the median of neighbdiis/ds at different QP values (Fig. 3). Disparity fields are
and the block is copied from the compensated position of thsually smooth at low bit-rate which favors the selection of
original frame. The proposed method takes advantage frahe SKIP mode. At high bit-rate, the distortion is privilege
the augmented effectiveness of the SKIP mode which will kzyainst the cost of the predictive disparity error whichues



(a) H.264/AVC SKIP map at QP22b) DDE+segmented SKIP map at
QP22

PSNR-Y (dB)

(c) H.264/AVC SKIP map at QP42(d) DDE+segmented SKIP map at
QP42

Fig. 4. Example of SKIP map correspondig to the disparitytaescfield
in Fig. 3. In black there are the SKIP macroblocks and in wkiite inter-
macroblocks.

o

the number of SKIP macroblocks. We present a comparison £
in Fig. 4 at two QP points: 22 and 42. We can see in black g
the SKIP macroblocks. Our method has the benefit to generate ®
a smooth block-based representation of the disparity v&cto
field at high bit-rate, which reduces the predictive didyesi-

ror, and subsequently uses more SKIP macroblocks. Especial
at high bit-rate, when our method is used, the number of SKIP
macroblocks increases, with a beneficial effect on the redui
coding rate. For example at QP=22 on the multiview video
sequence “Book arrival” (Fig. 4), with the proposed method
58% of MB are coded in the SKIP mode, with respect to a
mere 16% for the original encoder. At QP=42, we obtained a
percentage of 78% against 71%.

Fig. 5 shows the results in terms of rate-distortion perfor-
mance. Comparing the dense disparity estimation to thekbloc
based reference H.264/AVC estimation clearly indicates th
benefits of a dense estimation followed by a segmentation
optimized for rate-distortion efficiency, especially fbet*Out-
door” sequence, where a coding gain of 1.5 dB is achieved.
The curve consists of 5 QP points which are 22, 27, 32, 37,
42.

In addition, to measure the relative gain we used the
Bjontegaard metric [12]. The results are shown in Table I
for low bitrate and high bitrate corresponding respectivel
to the four QP points 27, 32, 37, 42 and 22, 27, 32, 37.
We can see that our method works especially well on the
sequence “Outdoor” (in which the disparity range is small,

[dmina dmax] = [Oa 8])

PSNR-Y (dB)

V. CONCLUSION

In this paper, we have presented the benefits of using a dense
disparity estimation followed by a block-based segmeaotati
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TABLE Il
CALCULATION OF AVERAGE PSNR DIFFERENCES AND THE BITRATE

SAVING.
bitrate saving PSNR gain
fow high fow high
Book arrival | -1.49 % | -2.86 % | 0.04 dB| 0.10 dB
Door flowers| -12.83 % | -10.86 % | 0.58 dB| 0.52 dB
Outdoor -60.03 % | -45.58 % | 1.93 dB| 1.59 dB

(2]

(3]

(4]

and coding of the disparity field in multiview video coding. [5]
As expected, a dense disparity estimation produces a smooth
disparity field with an ideally infinite precision. This field
then presented with a quarter pixel precision and segmented

(6]

based on an RD-optimized fashion. The smooth property %

the estimated disparity vectors field allows a reductionhef t
bit-rate cost of the disparity vectors with a small reductad
the quality of the reconstructed picture.

(8]

Future work will focus on the RD selection of the disparity
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