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Abstract—Multiview video coding is an emerging application
where, in addition to classical temporal prediction, an efficient
disparity prediction should be performed in order to achieve the
best compression performance. A popular coder is the multiview
video coding (MVC) extension of H.264/AVC, which uses a
block-based disparity estimation (just like temporal prediction
in H.264/AVC). In this paper, we propose to improve the MVC
extension by using a dense estimation method that generatesa
smooth disparity map with ideally infinite precision. The obtained
disparity is then segmented and efficiently encoded by usinga
rate-distortion optimization technique. Experimental results show
that significant gains can be obtained compared to the block-
based disparity estimation technique used in the MVC extension.

I. I NTRODUCTION

A multiview video system consists in generating multiple
views by capturing from different viewpoints the same scene
via a set of multiple cameras. A set of slightly different views
can be used to reproduce the scene in three dimensions.

The improvement of 3D technologies raised interest in 3D
television (3DTV) [1] and in free viewpoint video (FVV) [2].
While 3DTV offers depth perception of program entertain-
ments without wearing special additional glasses, FVV allows
the user to freely change his viewpoint position and viewpoint
direction around a 3D reconstructed scene. Other target fields
are expected, like Digital Cinema, IMAX theaters, medicine,
dentistry, air-traffic control, military technologies, computer
games, etc.

In the meantime, the digital TV technology and 3D displays
have largely improved recently, making even more relevant the
problem of multiview applications. Capturing, processingand
coding multiview video are now very active research topics.
In particular, in sight of the huge amount of data concerned,
compression assumes a paramount importance.

A straight method to compress multiview video is to encode
each view independently using the state-of-the-art H.264/AVC
encoder [?]. This approach is denoted, in the literature, as
simulcast coding. However, since all the cameras capture the
same scene through different viewpoints, there is an inter-view
statistical expected dependencies between adjacent cameras,
which is not exploited in the simulcast case.
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In order to better deal with inter-view redundancy, the
joint video team (JVT) is developing a multiview extension
of H.264/AVC standard, known as multiview video coding
(MVC) extension [3]. The aim of this extension is to provide
new techniques improving coding efficiency taking advantage
of both temporal and inter-view redundancies, thus leadingto
additional coding gain compared to the H.264/AVC simulcast
solution.

On the other hand, adding the inter-view prediction to
the temporal one requires more computational and memory
resource. Nevertheless, it has been shown [4] that most of the
coding gain of MVC comes from the inter-view prediction
of the temporalintra picture, while for theinter pictures
the temporal prediction is the most efficient prediction mode.
As a consequence, limiting the inter-view prediction to the
intra pictures is commonly reputed as a reasonable complex-
ity/efficiency trade-off.

The inter-view correlation between adjacent cameras is
removed via the so-called disparity estimation (DE) and com-
pensation. Two main approaches, block-based and dense, have
been used to estimate the disparity vectors (DV). A survey of
the different techniques proposed in the literature can be found
in [5]. The MVC extension employs a variable block-based
disparity estimation, assuming that within each partitionof the
current macroblock the disparity vector is constant. However,
this assumption does not always hold, especially around depth
discontinuities and in textureless regions. Dense pixel-based
approaches attempt to overcome this drawback by assigning
one disparity vector to each pixel. Of course this means that
the disparity map would require a very high bit-rate to be
encoded: for this reason, dense DVs have rarely been consider
for compression. The basic idea of this paper is to reduce the
coding cost of the dense DV map by operating a RD-driven
segmentation on it.

In particular, we propose to improve the disparity prediction
unit in the MVC extension by using the dense DE (DDE)
method described in [6] (because it achieves good results
compared with the state-of-art methods, such as graph cuts
and belief propagation based methods) followed by the seg-
mentation step. Based on a set theoretic framework, this DDE
approach incorporates various convex constraints correspond-
ing to a priori information such as the range of DVs or the
total variation regularization constraint which assures asmooth



disparity field while preserving discontinuities.
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Fig. 1. Disparity prediction: (left) block-based estimation, (right) enhanced
by a dense estimation.

The proposed scheme is summarized in Fig. 1: we replace
the block-based disparity estimation (BDE) stage by a dense
disparity estimation (DDE) one, and then, we apply a rate-
distortion segmentation to the generated disparity map. This
is performed by optimizing a Lagrangian cost function which
takes into account the accuracy and the coding cost of the
disparity map.

The remainder of this paper is organized as follows. Sec-
tion II provides details about the DDE method. In Section III,
we address the problem of the RD-optimized segmentation
and encoding of the disparity field. Finally, in Section IV,
we give experimental results confirming the effectiveness of
the proposed method, while Section V draws conclusions and
outlines future work.

II. D ENSE DISPARITY ESTIMATION

A. Problem statement

Let I(n,t) and I(n−1,t) be two frames taken respectively
by the n-th and (n − 1)-th cameras at timet. We assume
that cameras are rectified, so that the disparity vectors are
restricted to the horizontal component, that will be denoted
by d. DDE methods attempt to determine, for each pixel in
the current frameI(n,t), the best corresponding pixel in the
reference frameI(n−1,t). Generally, the estimation is obtained
by minimizing a given cost functional, formulated in terms of
the sum of squared differences:

d̂ = arg min
d∈Ω

∑

(x,y)∈D

[I(n,t)(x, y) − I(n−1,t)(x + d, y)]2 (1)

whereD is the picture support andΩ is the range of candidate
disparity values. Generally, an initial estimatēd of d is
available, for example using a dense correlation-based method.

Assuming that the magnitude difference of both fields is
relatively small, the warped reference frame is approximated
aroundd̄ by a Taylor expansion:

I(n−1,t)(x + d, y) '

I(n−1,t)(x + d̄, y) + ∇I(n−1,t)
x (x + d̄, y)(d − d̄) (2)

where∇I
(n−1,t)
x (x + d̄, y) is the horizontal gradient of the

warped reference frame. Note that in (2), we have not made
explicit thatd and d̄ are functions ofs = (x, y) for notation
concision. Using the linearization (2), the criterioñJ in (1)
can be approximated by the quadratic convex functionalJ in
d:

J(d) =
∑

s∈D

[r(s) − L(s) d(s)]2 (3)

where

L(s) = ∇I
(n−1,t)
x (x + d̄(s), y)

r(s) = I(n,t)(s) − I(n−1,t)(x + d̄(s), y) + d̄(s) L(s)

The minimization of this quadratic functional is an ill-posed
problem as the components ofL may locally vanish. Thus,
to convert this problem to a well-posed one, we incorporate
additional constraints reflecting the prior knowledge about the
disparity field. In this work, we address the problem through
a set theoretic framework [6]. Firstly, each constraint is rep-
resented by a closed convex setSm with m ∈ {1, . . . , M},
in a Hilbert spaceH. The intersectionS of all the M sets
Sm constitutes the family of possible solutions. Therefore, the
constrained problem amounts to find the solution inS which
minimizes the functionalJ :

Find d̂ ∈ S =
M
⋂

m=1

Sm such thatJ(d̂) = min
d∈S

J(d). (4)

The constraint sets are modeled as level sets:

∀m ∈ {1, . . . , M}, Sm = {d ∈ H | fm(d) ≤ δm} (5)

wherefm : H → R is a continuous convex function for all
m ∈ {1, . . . , M} and(δm)1≤m≤M are real-valued parameters
such thatS =

⋂M

m=1 Sm 6= ∅.
Hence, it is required to define the convex setsSm to proceed

to the DDE algorithm within the set theoretic framework. At
this level, it is important to emphasize the great flexibility in
incorporating any set of arbitrary convex constraints. In what
follows, we will focus onM = 2 constraints. The first one
consists of restricting the variation of the disparityd within
a specified range[dmin, dmax]. It can be expressed by the
following constraint setS1:

S1 = {d ∈ H | dmin ≤ d ≤ dmax} (6)

Most importantly, a constraint can be incorporated in order
to strengthen the smoothness of the disparity field in the
homogeneous areas while preserving edges. Indeed, neighbor-
ing pixels belonging to the same object should have similar
disparities. This can be achieved by considering the total
variation tv(d) which can be defined as the sum overD of



the norm of the spatial gradient ofd [7]. The total variation
of the discrete disparity imaged = [di,j ] is given by:

tv(d) =
W−2
∑

i=0

H−2
∑

j=0

√

|di+1,j − di,j |2 + |di,j+1 − di,j |2

+

W−2
∑

i=0

√

|di+1,H−1 − di,H−1|

+

H−2
∑

j=0

√

|dW−1,j+1 − dW−1,j |

whereW × H is the support of the disparity image. Hence,
a total variation based regularization constraint amountsto
impose an upper boundτ on the tv of the image, leading
to the following constraint set:

S2 = {d ∈ H | tv(d) ≤ τ} (7)

It is worth pointing out that the positive constantτ can
be estimated for example through a learning procedure on
image databases [8]. However, in our case we choose the value
maximizing the quality of the disparity compensated picture,
as shown in next section.

Finally, the disparity estimation problem is formulated by
minimizing the quadratic objective functionJ in Eq. 3 under
the mentioned constraint sets. To solve this problem, we used
the efficient constrained quadratic minimization technique
developed in [9], which is adapted to problems with quadratic
convex objective functions. For the sake of brevity, we will
not describe the algorithm here: for more details, the reader is
referred to [9], [6]. In order for this algorithm to converge, the
objective functionJ must be strictly convex. We introduce an
additional term in order to assure this condition:

J(d) =
∑

s∈D

[r(s) − L(s) d(s)]2 + α
∑

s∈D

[d(s) − d̄(s)]2 (8)

whered̄ is an initial estimate andα is a positive real number:
when it is large, we favor the regularization term and tend to
have a final solution close to the initialization; on the contrary,
whenα is small, the data attachment term becomes dominant,
and the solution can diverge from the initialization.

B. Influence of the parameters

In practice, the optimal value of the parameters[dmin, dmax],
τ and α may not be known exactly and it is, therefore,
important to evaluate their impact in terms of coding rate and
PSNR of the compensated picture. The choice of the range
[dmin, dmax] can be accurately found by matching certain
points of interest selected manually in the two stereo frames.
The upper boundτ , used to enforce the smoothness of the
estimated disparity map, may be estimated from a scale value
of the total variation of the initial disparity map̄d, as shown
in Fig. 2. A low scale value results in smoothing more the
disparity map, and so, reducing the number of bit required for
the transmission.

Table I and Table II show the impact of the parametersτ and
α on the coding rate of the disparity map and on the quality of

(a) Initial disparity mapd̄ (b) τ = 0.15 · tv(d̄)

(c) τ = 0.10 · tv(d̄) (d) τ = 0.05 · tv(d̄)

Fig. 2. Example of dense disparity maps at different values of the upper
boundτ parameter (from “Book arrival” sequence, frame 36).

TABLE I
EXAMPLE OF THE INFLUENCE OF THE PARAMETERτ ON THE BITRATE

AND THE PSNROF THE DENSE DISPARITY COMPENSATED PICTURE(FROM

“B OOK ARRIVAL” SEQUENCE, FRAME 36).

bitrate (H.264/AVC intra, QP=0) PSNR
τ = 50000 0.6416 bpp 37.13 dB
τ = 40000 0.5222 bpp 37.23 dB
τ = 30000 0.4036 bpp 37.24 dB
τ = 20000 0.3051 bpp 36.48 dB
τ = 10000 0.2878 bpp 33.44 dB

TABLE II
EXAMPLE OF THE INFLUENCE OF THE PARAMETERα ON THE BITRATE

AND THE PSNROF THE DENSE DISPARITY COMPENSATED PICTURE(FROM

“B OOK ARRIVAL” SEQUENCE, FRAME 36).

bitrate (H.264/AVC intra, QP=0) PSNR
α = 0.1 0.4667 bpp 35.79 dB
α = 6 0.4036 bpp 37.24 dB
α = 10 0.3943 bpp 37.20 dB
α = 50 0.3905 bpp 36.50 dB
α = 100 0.3837 bpp 35.78 dB

the disparity compensated picture, evaluated as PSNR between
the original view and the disparity-compensated estimation.
First, an arbitrary fixed value ofα is used to determine the
parameterτ . Then, the optimal value ofα is determined. The
value of both parameters is selected according on the highest
PSNR value of the disparity compensated picture. Note that,
in Table I and Table II, the bitrate of the dense disparity map
has been computed using the dense disparity map as a picture
with H.264/AVC in intra mode at a QP value of 0.

III. R ATE-DISTORTION-BASED SEGMENTATION

The purpose of the segmentation is to obtain, from the
dense map produced by the algorithm described in the previous
section, another map, which will be compatible with the rep-



resentation of motion vectors in H.264/AVC. This means that
we have to segment the disparity map using the macroblock
(MB), block and subblock shapes defined in the standard.

A. Block-based representation

As defined in the norm of H.264/AVC, the vector field can
be described using a single vector per macroblock (16×16
pixels). However the MB can be partitioned in 16×8, 8×16
or 8×8 blocks, which can have a different vector each. Finally,
block can be split into 8×4, 4×8 and 4×4 subblocks, which
in turns can have a single vector.

B. Partition-based segmentation

As mentioned earlier, the dense disparity estimation method
generates a map with real valued disparity vectors. A first ap-
proximation consists in truncating the precision with a quarter-
pixel accuracy as in H.264/AVC standard. The disparity in the
current MB is then represented by 256 quarter-pel vectors.
Then, for any partition we have to choose a single vector
from those of the dense representation. For example we have
to choose one vector for the 16×16 partition, 2 for each of
the 16×8 and 8×16 partitions and so on. In particular for any
partition we consider the set of dense vectors that falls within
it. Among them, we select 6 candidates: the average vector,
the median (in the sense of the norm) vector, and the four
vector whose norm is closest to the median one.

C. Rate-distortion optimization

Let the quantization parameterQP be given. The distortion
measure is the sum of squared intensity differences (SSD),
andR the number of bits to be transmitted for the predictive
disparity vector error. For thepth partition B

p
k of the kth

macroblockBk, the best approximated disparity vectord̂ is
computed by minimizing the following:

d̂ = arg min
d∈Ω

Jd(Bp
k |QP) (9)

with Jd(Bp
k|QP) = SSD(Bp

k ,d|QP) + λ · R(Bp
k ,d|QP)

The main relevance of the segmentation of the dense dispar-
ity map which finally ends in a block-based representation isto
make good use of the smoothness of the dense disparity map.
Indeed, despite the segmentation process reduces the quality
of the solution provided by the dense disparity estimation
algorithm, the resulting map, followed by a RD segmentation
still can be consider as a good quality/bitrate trade-off repre-
sentation over a direct block-based estimation. Furthermore,
unlike H.264/AVC in which the disparity estimation is causal
and local, our proposed disparity estimation has a global
approach which favors the regularization of the disparity field.
As a consequence, more MB will be coded in the SKIP
mode, which is particularly efficient when the vector field is
regular, since it consists in sending no side information nor
residual: the vector is computed as the median of neighbors,
and the block is copied from the compensated position of the
original frame. The proposed method takes advantage from
the augmented effectiveness of the SKIP mode which will be

selected quite often, resulting in a remarkable rate reduction
(see next section).

IV. EXPERIMENTAL RESULTS

In this section, we provide some simulation results to
evaluate the rate-distortion performance of the proposed struc-
ture. The experiments were run on three rectified multiview
video sequences : “Book arrival”, “Door flowers” and “Out-
door” [10]. For all the video sequences, we use four views with
a spatial resolution reduced to 512×384. We use the software
JMVM 8.0 [11].

(a) Original reference frame (b) Original current frame

(c) Block-based H.264/AVC DV at
QP22

(d) DDE+segmented DV at QP22

(e) Block-based H.264/AVC DV at
QP42

(f) DDE+segmented DV at QP42

Fig. 3. Example of block-based disparity vectors (from “Book arrival”
sequence, frame 36).

As seen in Section II-B, the parameters[dmin, dmax], τ

and α have to be chosen, and we have determined them
heuristically. However they can be adjusted for each different
sequence, by specifying their value in the Sequence Parameter
Set (SPS). The increase in bitrate related to this side informa-
tion is very small, such that we neglect this contribution when
reporting experimental data about the coding rate.

Within the H.264/AVC framework, the rate-distortion es-
timation of the disparity vector generates different disparity
fields at different QP values (Fig. 3). Disparity fields are
usually smooth at low bit-rate which favors the selection of
the SKIP mode. At high bit-rate, the distortion is privileged
against the cost of the predictive disparity error which reduces



(a) H.264/AVC SKIP map at QP22(b) DDE+segmented SKIP map at
QP22

(c) H.264/AVC SKIP map at QP42(d) DDE+segmented SKIP map at
QP42

Fig. 4. Example of SKIP map correspondig to the disparity vectors field
in Fig. 3. In black there are the SKIP macroblocks and in whitethe inter-
macroblocks.

the number of SKIP macroblocks. We present a comparison
in Fig. 4 at two QP points: 22 and 42. We can see in black
the SKIP macroblocks. Our method has the benefit to generate
a smooth block-based representation of the disparity vectors
field at high bit-rate, which reduces the predictive disparity er-
ror, and subsequently uses more SKIP macroblocks. Especially
at high bit-rate, when our method is used, the number of SKIP
macroblocks increases, with a beneficial effect on the required
coding rate. For example at QP=22 on the multiview video
sequence “Book arrival” (Fig. 4), with the proposed method
58% of MB are coded in the SKIP mode, with respect to a
mere 16% for the original encoder. At QP=42, we obtained a
percentage of 78% against 71%.

Fig. 5 shows the results in terms of rate-distortion perfor-
mance. Comparing the dense disparity estimation to the block-
based reference H.264/AVC estimation clearly indicates the
benefits of a dense estimation followed by a segmentation
optimized for rate-distortion efficiency, especially for the “Out-
door” sequence, where a coding gain of 1.5 dB is achieved.
The curve consists of 5 QP points which are 22, 27, 32, 37,
42.

In addition, to measure the relative gain we used the
Bjontegaard metric [12]. The results are shown in Table III
for low bitrate and high bitrate corresponding respectively
to the four QP points 27, 32, 37, 42 and 22, 27, 32, 37.
We can see that our method works especially well on the
sequence “Outdoor” (in which the disparity range is small,
[dmin, dmax] = [0, 8]).

V. CONCLUSION

In this paper, we have presented the benefits of using a dense
disparity estimation followed by a block-based segmentation
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Fig. 5. Rate-distortion coding results.



TABLE III
CALCULATION OF AVERAGE PSNR DIFFERENCES AND THE BITRATE

SAVING.

bitrate saving PSNR gain
low high low high

Book arrival -1.49 % -2.86 % 0.04 dB 0.10 dB
Door flowers -12.83 % -10.86 % 0.58 dB 0.52 dB
Outdoor -60.03 % -45.58 % 1.93 dB 1.59 dB

and coding of the disparity field in multiview video coding.
As expected, a dense disparity estimation produces a smooth
disparity field with an ideally infinite precision. This fieldis
then presented with a quarter pixel precision and segmented
based on an RD-optimized fashion. The smooth property of
the estimated disparity vectors field allows a reduction of the
bit-rate cost of the disparity vectors with a small reduction of
the quality of the reconstructed picture.

Future work will focus on the RD selection of the disparity
estimation parameters, and on the introduction of a new coding
mode using the DDE and inspired to the inter-view DIRECT
mode.
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