
Dynamic Arbitration of Memory Requests with
TDM-like Guarantees

Farouk Hebbache and Mathieu Jan
CEA, LIST, Embedded Real Time Systems Laboratory

Email: Firstname.Lastname@cea.fr

Florian Brandner and Laurent Pautet
LTCI, Télécom ParisTech, Université Paris-Saclay
Email: Firstname.Lastname@telecom-paristech.fr

Abstract—A major challenge with multi-cores in real-time sys-
tems is contention between concurrent accesses to shared memory.
Dynamic arbitration schemes allow for an optimal utilization
of the system’s memory, while sacrificing time predictability.
Time-Division multiplexing (TDM), on the other hand, sacrifices
average-case performance in favor of predictability. In this work,
we explore a dynamic arbitration scheme that is essentially based
on TDM, and thus preserves many of its guarantees.

I. INTRODUCTION

Multi-core architectures pose many challenges in real-time
systems, which arise from the manifold interactions between
concurrent tasks during their execution – most notably accesses
to shared main memory. These interactions make it difficult
to tightly bound the Worst-Case Execution Time (WCET) of
real-time tasks. Engineers thus often resort to isolating critical
tasks from other tasks. Time-Division Multiplexing (TDM),
for instance, guarantees a fixed time window to a task to
exclusively access memory. This provides predictable behavior
and improves composability by bounding access latencies and
guaranteeing bandwidth independently from other tasks.

TDM, however, is not work-conserving and often leads to
low resource utilization. The problem arises when the owner
of a TDM slot does not (yet) have a memory request ready
to be served. Under a strict TDM scheme, this slot cannot be
reclaimed by another task (as for instance under Round Robin).

This work explores a dynamic arbitration scheme that
is based on TDM. The main idea is to associate deadlines
with the memory accesses of tasks. The deadlines ensure that
requests of critical tasks are in the worst-case completed at
the same instant as an execution under a strict TDM scheme.
At the same time, these deadlines allow the arbiter to estimate
the slack time of each pending request in the system. If slack
times permit, the arbiter can arbitrarily change the order in
which requests are handled – and thus break with usual TDM
conventions. Since slack times are tracked for each request
individually and deadlines of critical requests are guaranteed
to be respected at all times, TDM’s guarantees are preserved.

We first provide a brief definition of a restricted system
model that is assumed for the remainder of this paper. We
then illustrate several variants of TDM-based schemes using
motivating examples in Section III. Section IV then provides a
more formal discussion. We present a preliminary evaluation
using a simple use case in Section V. Section VI discusses
related work. We finally conclude in Section VII.

II. SYSTEM MODEL

We assume a very simplified model. A system consists of
a single memory and n cores, each executing a single task.
Each task is a sequence of numbers representing the distance

in clock cycles between the completion of a memory access
and the arrival of the subsequent one (i.e., cache misses). The
sequence (2, 2, 0), for instance, represents a task performing
three memory accesses. The first access occurs two clock
cycles after the task’s activation. The task then issues its second
access two cycles after the completion of the first access,
while the third memory access is issued immediately when
the preceding access completes. We assume that the execution
time between memory requests is constant and is independent
from the execution of other tasks, ignoring the blocking time
that tasks have to wait for memory requests to be handled by
the central main memory. All task are immediately activated.

The concurrent execution of the system’s tasks is then
governed by the way memory accesses are arbitrated. For
simplicity, we define two classes of tasks: (1) critical tasks,
and (2) non-critical tasks. Critical tasks (denoted by capital
letters) have to complete their execution in time, i.e., respect
a deadline. We do not explicitly specify the deadline though,
since we assume that critical tasks meet their deadlines when
executed under a standard TDM arbitration scheme. The arbiter
may, however, diverge from such a scheme, e.g., by keeping
track of outstanding requests and selecting one of them in order
to give the owning task exclusive access to main memory.
We will cover three TDM-based arbitration schemes (TDM,
TDMdz, and TDMds) in more detail in the next section.

III. MOTIVATING EXAMPLES

The following examples assume an architecture with 4
cores executing two critical tasks (A, B) and two non-critical
tasks (c, d). Each critical task has a dedicated TDM slot, which
alternate every 8 cycles. Non-critical tasks do not have TDM
slots on their own and may only reclaim unused TDM slots.

Considering the two critical tasks only, Figure 1a shows the
arrival dates () of memory requests (Ai, Bi) and the TDM
slot during which requests completed () under strict TDM.
Request A1, for instance, arrives 2 cycles after completing A0

in slot 4, and completes at cycle 39, the end of slot 5.

As indicated by the unused slots () at the top, TDM is
not work-conserving (e.g., request A0 at slot 2). These unused
slots can be reclaimed by non-critical tasks. Under such a
scheme, critical tasks would still be constrained to only use
their dedicated TDM slots, giving no freedom to the arbiter.

One way of interpreting TDM is to associate deadlines
with requests. For strict TDM this deadline corresponds to the
end of the next TDM slot of a critical task. For simplicity,
we assign the end of the upcoming next TDM slot as the
deadline for requests from non-critical tasks. If a critical and
a non-critical task have the same deadline, the critical task
wins. If a non-critical request misses its deadline, we simply

c0∆
0

1 2 3 4 5 6 7 8 9 10
A A A A AB B B B B

A0 A1 A2

B0 B1

(a) (Strict) TDM considering only the two critical tasks A and B.

c0∆
0

1 2 3 4 5 6 7 8 9 10 11 12 13

A A A A A A AB B B B B B

A0 A1 A2

B0 B1

c0 c1 c2 c3

d0 d1

(b) Dynamic TDMdz without slack counters

1 2 3 4 5 6 7 8 9 10 11

A A A A A AB B B B B

A0∆
0 A8∆

1 A8∆
2

B0∆
0 B0∆

1

c0∆
0 c0∆

1 c0∆
2 c0∆

3

d0∆
0 d0∆

1

(c) Dynamic TDMds with slack counters (∆)

Fig. 1: Three TDM-based variants arbitration schemes.

push the deadline a slot length into the future. Deadlines are
unique among critical tasks, the TDM arbiter thus can ensure
that requests complete exactly at their deadlines.

Now, every request carries a deadline and a more dynamic
TDM-based arbiter could very well chose to execute requests
before their actual deadlines. For this it suffices to order the
requests in a priority queue by their deadlines. On a tie the
priority queue prioritizes the critical over non-critical tasks.

Subfigure 1b shows all 4 tasks executing under such an
arbitration scheme, which we call TDMdz. Critical request
may now complete before their deadline, which is indicated
by a doted line (). In this example requests A0 and A1 each
complete 1 TDM slot earlier than their deadlines. Non-critical
tasks may reclaim unused TDM slots (c1 in slot 3), but may
also delay critical requests (d0 wins over B0 in slot 7).

A closer comparison between Subfigure 1a and Subfig-
ure 1b reveals that request A2 (and thus task A) completes
two TDM slots ahead of the original execution under TDM
(slot 5 vs. slot 7). This observation gives rise to an extension
of TDMdz that tracks and accumulates slack time with regard
to an execution under TDM. This can be done by subtracting
the completion date of a request from its deadline. The slack
(∆) is used to compute the deadline of the task’s next request.

Subfigure 1c illustrates the resulting arbitration scheme,
TDMds. Tasks may now accumulate slack, which gives more
freedom to the arbiter to choose which request to handle
next. Requests c2 and d0 can both delay request A2, which
accumulated a slack of 2 TDM slot lengths at its arrival (c.f. the
additional parameter 8∆ in Subfigure 1c). Completing request
d0 in slot 5 enables the arrival of request d1 earlier. This allows
to reduce the total number of cycles required to process all
requests, from 13 TDM slots to 11 TDM slots, while keeping
the same guarantees for critical requests as strict TDM.

IV. FORMAL DESCRIPTION

Based on the system model from Section II, we now
provide a formal definition of our arbitration schemes.

The arbiter represents requests as pairs (a, d), consisting of
the arrival date and deadline. Requests are immediately issued
to the arbiter’s priority queue upon arrival and ordered by their
deadline (prioritizing critical tasks over non-critical). At the
beginning of each TDM slot the arbiter selects a request r
with the highest priority (i.e., lowest deadline) and assigns a
completion date C(r) to it. The deadline of all non-critical
requests that missed their deadline is incremented by the slot
length. If the queue is empty the TDM slot is unused, and no
request is completed. An execution is valid if for every request
Xi = (a, d) of a critical task C(Xi) < d holds.

The arbiter drives the system’s execution based on the ar-
rival times and deadlines of requests. As a first step, the arbiter
needs to compute the arrival times of a memory request by
accessing individual elements of the specification of its owning
task, i.e., the sequence of numbers introduced in Section II.
The ith entry in the sequence of task X is denoted by X(i).
Considering, for instance, task A from before with its sequence
(2, 2, 0), the first and last elements of the sequence are given
by A(0) = 2 and A(2) = 0 respectively. The arrival date of a
request Xi = (a, d) is then simply a = C(Xi−1) + X(i) + 1.

Algorithm 1 shows how to compute the deadline d of a
critical request under the TDMdz scheme. The algorithm takes
three arguments, the arrival date, the start of the current TDM
period, and the offset of the task’s own TDM slot with regard
to the beginning of a TDM period. In addition, the constant
length of the TDM period is needed (TDMPERIOD). For non-
critical tasks the deadline is the end date of the current TDM
slot plus the TDM slot length. The arrival date and deadline
of request A2 in Figure 1b is computed from the completion
date of the previous request C(A1) = 31 as follows: A2 =
(31 + 1 + 0, 31 + 1 + 7) = (32, 39). The arrival date and the
start of the current TDM period, are at cycle 32, and the end
of A’s TDM slot w.r.t. the beginning of a TDM period is 7.

For the TDMds approach, an additional slack counter (X∆)
needs to be stored for each critical task X. The request’s actual
arrival date does not change. Instead of computing the deadline
from this arrival date as in TDMdz, Algorithm 1 is invoked
with the arrival date of the request as it would have occurred
under strict TDM: C(Xi−1)+X(i)+1+X∆. Considering again
request A2 from the motivating example. The original arrival
date under strict TDM is computed from C(A1) = 31 and the
value of A’s slack counter X∆ = 8, which gives 31+1+8 = 40
(as in Subfigure 1a). The request thus falls into the TDM period
starting at cycle 32, from which the deadline is computed as
follows: 32 + 7 + 16 = 55. Since the request’s arrival offset
(40−32 = 8) is too large (Line 4), the request misses A’s slot
at offset 7 and is delayed by a TDM period (+16).

It remains to define how slack counters are updated. It is
not possible to simply accumulate slack from one request to
another by summation. The slack counter of a critical task
X∆ has to be recomputed after completion of its most recent

Algorithm 1 Deadline computation for critical tasks.
1: function DEADLINE(arrival, curPeriod, slotOffs)
2: deadline = curPeriod+ slotOffs

3: if arrival− curPeriod > slotOffset then
4: deadline = deadline+ TDMPERIOD

5: return deadline

request r = (a, d) as follows: X∆ = d−C(r). This allows to
accumulate slack over sequences of requests, as the deadline
is pushed further into the future (e.g., for requests A1 and A2).

V. PRELIMINARY EVALUATION

We evaluated the TDMds approach using a simple use case
consisting of 4 benchmarks from the MiBench [2] benchmark
suite that were executed on the Patmos [7] architecture. For
this, we extended the Patmos simulator to generate traces
matching our system model. The traces were collected in
single-issue mode (Patmos’ VLIW features were disabled),
using the following hardware configuration: a 32 KB method
cache using the LRU replacement policy on 32 entries and 32
byte blocks, a 256 byte stack cache with block size 4, a 32 KB
write-through data cache with LRU replacement on 4 sets and
32 byte blocks. We used Patmos’s default configuration for
main memory, which assumes an access latency of 21 cycles.
The duration of TDM slots thus was set to 21 cycles.

We selected the 4 longest running programs from the
benchmark suite, namely rijndael (task A, AES encryp-
tion), blowfish (task B, encryption), djikstra (task c,
shortest path search), and adpcm (task d, audio encoding),
and simulated a concurrent execution. Two of the benchmarks
(rijndael, blowfish) where considered critical, which
results on a TDM period of 42 cycles (42 = 21 · 2). Table I
summarizes the benchmark characteristics, including the num-
ber of accesses to main memory, the execution time as a single
task in isolation (using TDM), and the execution time when
running all four benchmarks concurrently.

During the simulation the evolution of various metrics was
recorded, such as the number of granted memory accesses
(Subfigure 2a), average memory wait time (Subfigure 2c), and
slack counter values (Subfigure 2b). Due to the large number
of simulated TDM slots (about 20 million) a data point in the
figures represents approximately 6400 TDM slots. The figures
show average values during this sampling period.

A close lock at the memory wait times (Subfigure 2c)
reveals 5 different phases during the simulation, where the first
phase ends after about 7 million TDM slots, which appears to
be triggered by changes in the memory access patterns of a
benchmark. The other phases are marked by the completion of
one of the benchmark programs, after about 11.3, 16.7, 17.3,
and 19.3 million TDM slots respectively.

Overall we can observe that the critical tasks exhibit a very
constant behavior in terms of wait time and access numbers,
while non-critical tasks appear to be subject to large variations.
It also appears that the critical tasks largely saturate the main
memory bandwidth, which results in large waiting times, in
particular for adpcm (d). This also explains the low average
slack counter values during the first execution phase. Note,
however, that the average numbers are misleading here. Most
of the time both critical tasks accumulate and immediately
spend up to 200 cycles of slack during each sampling period.

TABLE I: Benchmark characteristics.

Execution Time (cycles)
Benchmark Memory accesses isolated concurrent
rijndael 7165378 236881722 349949607
blowfish 3527173 219815862 237530328
djikstra 4856155 209856906 362402145

adpcm 1716629 141243669 405932856
Total 17265335 – –

The second phase appears to be marked by a reduction in
the number of memory requests of adpcm (d) (see Subfig-
ure 2a). While we were unable to determine the cause, we
can observe that the average wait times for adpcm increases
while that of djikstra (c) decreases. The reduced memory
demand leads to a visible increase in the accumulation of slack
for the critical tasks. Also the maximum slack values rise (up
to 1000 cycles), which are as before quickly consumed.

The end of the critical task blowfish (b) marks the
beginning of the third phase. Both non-critical task profit
from the additional memory bandwidth. This is particularly
true for djikstra (c), whose waiting times and access
numbers are frequently better than those of the remaining
critical task rijndael (A). However, there are marked spikes
in djikstra’s (c) waiting times and access numbers that
often coincide with drops in the slack counter values of the
critical task. We also observe a huge increase in the slack
counter values, which rise up to a maximum of 17136 cycles.
As before slack is quickly consumed by the non-critical tasks.

The two final phases show considerable improvements in
the waiting time and access number for adpcm (d) which
terminates last in our simulation run.

From this simple use case we conclude that TDMds allows
to accumulate considerable amounts of slack even when the
memory bandwidth is highly saturated. The high variability in
the slack counter values also indicates that our approach offers
a very fine granularity of memory arbitration, while providing
TDM-like guarantees for critical tasks.

VI. RELATED WORK

A common approach is to improve the resource utilization
of TDM by increasing the number of TDM slots according to
task weights [8]. Others apply strict TDM arbitration to critical
tasks [1], while allowing other schemes for non-critical tasks.
In both cases the TDM strategy itself is not modified, which
remains non-work-conserving.

Kostrzewa et al. propose a technique to dynamically adapt
to a varying number of active tasks [4], which execute under
non-work-conserving TDM. Yonghui et al. truly skip unused
entries in a TDM schedule in order to allow for variable-sized
TDM slots [6]. Our approach likewise is work-conserving, but
additionally allows to track and accumulate slack.

Similar to our approach, Kritikakou et al. [5] track the
slack time of critical tasks in software. Non-critical tasks can
access memory as long as all critical tasks still have slack left,
otherwise all non-critical tasks are stopped. In our case, non-
critical tasks may always continue execution and arbitration is
performed at the granularity of individual memory accesses.

MemGuard [9] ensures isolation between cores by imple-
menting a credit-based approach for tracking memory requests
in software. Tasks executed by a core are suspended when
the budget of memory requests, periodically assigned to the
core, is depleted. A reclaim manager can donate predicated
non-used budget of memory requests to other cores, making
the approach suitable for soft real-time systems only. Our
slack counters correspond to a memory budget that is not
periodically replenished but accumulated, based on execution
history. This allows for more flexibility while providing strict
timing guarantees for critical tasks.

Closest to our work, Jun et al. [3] propose a slack-aware
arbiter at the granularity of individual requests. However, slack

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

·107

103

104

Slot Number

N
u
m
b
e
r
o
f
A
c
c
e
ss
e
s

A
B
c
d

(a) Number of accesses.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

·107

100

101

102

103

Slot Number

A
v
g
.
S
la
ck

C
o
u
n
te
r
(c
y
c
le
s)

A
B

(b) Slack counter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

·107

102

103

Slot Number

A
v
g
.
W

a
it

T
im

e
(c
y
c
le
s) A

B
c
d

(c) Average memory wait time.

Fig. 2: Trace of the concurrent execution of rijndael (A), blowfish (B), djikstra (c), adpcm (d).

is statically defined by a fixed parameter for each core (master)
that is independent from the actual load on the main memory.
Timing errors may thus occur, since it cannot be guaranteed
that requests complete before their slack is entirely consumed.
Also, slack cannot be accumulated across successive requests.

VII. CONCLUSION

We evaluated the behavior of TDMds using software sim-
ulation of a simple use case and obtained interesting results
w.r.t. the dynamic behavior of slack counters, which allow a
dynamic sharing of the memory resource between critical and
non-critical tasks. Our evaluation considers a single use case
only and does not capture realistic execution scenarios in a
multi-task environment. As future work, we plan to investigate
more realistic execution models, and implement our arbitration
policies in hardware, using tree structures [6]. We also plan
to allow other forms of slack to be accumulated, e.g., from
execution time [5].

REFERENCES

[1] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. A
globally arbitrated memory tree for mixed-time-criticality systems. IEEE
Trans. Comput., 66(2):212–225, Feb. 2017.

[2] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. Mibench: A free, commercially representative
embedded benchmark suite. In Proc. of the Int. Workshop on Workload
Characterization, pages 3–14, 2001.

[3] M. Jun, K. Bang, H. J. Lee, N. Chang, and E. Y. Chung. Slack-based bus
arbitration scheme for soft real-time constrained embedded systems. In
Asia and South Pacific Design Automation Conf., pages 159–164, 2007.

[4] A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst. Flexible TDM-based
resource management in on-chip networks. In Int. Conf. on Real Time
and Networks Systems, pages 151–160. ACM, 2015.

[5] A. Kritikakou, C. Pagetti, M. Roy, C. Rochange, M. Faugère, S. Girbal,
and D. Gracia Pérez. Distributed run-time WCET controller for concur-
rent critical tasks in mixed-critical systems. In Int. Conf. on Real-Time
Networks and Systems, 2014.

[6] Y. Li, B. Akesson, and K. Goossens. Architecture and analysis of a
dynamically-scheduled real-time memory controller. Real-Time Syst.,
52(5):675–729, Sept. 2016.

[7] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn. Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach. In Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, OASICS, pages
11–21, 2011.

[8] M.-K. Yoon, J.-E. Kim, and L. Sha. Optimizing tunable WCET with
shared resource allocation and arbitration in hard real-time multicore
systems. In Real-Time Systems Symp., pages 227–238. IEEE, 2011.

[9] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms. In 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 55–64, April 2013.

