
A VIEW-DEPENDENT ADAPTIVITY METRIC FOR REAL TIME MESH TESSELLATION

Tamy Boubekeur

Telecom ParisTech - CNRS LTCI, Paris, France

ABSTRACT

Real-time tessellation methods offer the ability to upsample
3D surface meshes on the fly during rendering. This upsam-
pling relies on 3 major steps. First, it requires a tessellation
kernel which can be implemented on GPU or may be already
available as a hardware unit. Second, the surface model de-
fines the positions of the newly inserted vertices - we focus
on recent visually smooth models. And third the adaptive
sampling tailors the spatially varying distribution of newly
inserted vertices on the input surface. We study the last com-
ponent and introduce a new view-dependent adaptivity metric
which builds upon both intrinsic and extrinsic criteria of the
input mesh. As a result, we obtain a better vertex distribution
around important features in the tessellated mesh. 1

Index Terms— Computer Graphics, Real Time Render-
ing, Tessellation, Adaptive Geometry, Meshes.

1. INTRODUCTION

Thanks to the native support offered by modern graphics pro-
cessor units (GPU), polygonal meshes are the dominant sur-
face representation in most interactive graphics applications
(e.g., games). For the sake of real time performance, these
meshes are usually (very) coarse and used in combination
with a variety of textures and shading methods to depict dy-
namic objects using only a limited number of polygons, most
often triangles. Although piecewise flat, polygonal meshes
appear smooth at rendering time thanks to normal interpola-
tion methods and normal maps. However, a large number of
artifacts remain visible in feature areas – high curvature, con-
tours, silhouettes, prominant geometric features and virtually
all salient regions – stemming from the underlying piecewise
linear nature of these coarse surfaces. This list is not exhaus-
tive but one may agree on the fact that artifacts will be partic-
ularly problematic in perceptually important regions.

To cope with this problem, a new stage called tessella-
tion has been recently introduced in the graphics pipeline.
Prior to rendering, real time tessellation is a special case of
geometry synthesis and aims at increasing the mesh resolu-
tion on-the-fly (see Fig. 1). At rendering time, each input
coarse polygon is subdivided, either uniformly or adaptively,

This work has been supported by the 3DLife European Network of Ex-
cellence and the ANR MEDIAGPU project.

1Author’s draft. Final version published in IEEE International Confer-
ence of Image Processing (ICIP) 2010 Proceedings.

Input Coarse Mesh Final Rendering

Input Coarse

Polygon
Standard

Rendering

Real Time

Tessellation

Smooth Patch

Evaluation

On-the-fly (GPU)

Fig. 1. Tessellation principle: at each frame, input coarse
polygons are subdivided prior to shading to produce smoother
shapes or higher resolution geometric structures.

and the set of refined vertices is displaced according to a dis-
placement map, a procedural function or an underlying high
order surface. The latter case has recently motivated several
research projects with the introduction of smooth geometric
local upsampling techniques, ranging from close-to-perfect
higher order surface approximation to cheap “geometry blur-
ring” methods.
Background. Basically, any real time tessellator unit, either
natively incorporated or implemented on the GPU, is com-
posed of three major steps: a target geometry function, evalu-
ated at each fine vertex and stored in a texture or defined ana-
lytically (e.g., smooth surface patch); a tessellation algorithm,
which efficiently generates a large number of polygonal prim-
itives for each coarse input polygon; a scalar map, precom-
puted or computed on-the-fly, which specifies the level of tes-
sellation required at each point of the input surface.
Contribution. Although the first two steps of the tessellation
pipeline have been extensively discussed lately, the last one
remains particularly unstable, as balancing a budget of poly-
gons to sample a surface involves a large number of intrinsic
and extrinsic parameters. In this paper, we restrict our work to
the case of tessellation for smooth geometric upsampling en-
tirely defined from a coarse input mesh and show how a new
tessellation metric, inspired by recent work in the fields of
optimization and expressive rendering, achieves better results
than previous methods.

2. RELATED WORK

Real Time Tessellation. The introduction of geometry
shaders (GS) in DX10 hardware did not allow genuine
tessellation operators to be implemented. Although more

Input Tessellation Evaluation Tessellation Evaluation

Uniform Adaptive

16

16

8

Fig. 2. Adaptive Tessellation: spatially varying mesh up-
sampling decided on a per-primitive basis. Here the tessella-
tion ratio is specified per-edge.

flexible than a tessellator unit, the geometry shader is limited
to a rather low upsampling ratio, which limits strongly its
application to tessellation. On the contrary, instanced tessel-
lation [1][2][3][4] offers a mechanism to quickly tessellate
a mesh up to several orders of magnitude denser surfaces
at high framerate. The basic idea is to precompute tessella-
tion patterns in a parametric space and to store them in GPU
memory. At rendering time, these patterns are drawn instead
of the coarse polygons, which become transformation param-
eters. A number of methods have also been proposed to cast
tessellation as a generic data upsampling problem, addressing
it either using multi-pass texture [5] processing or CUDA [6].
Last, DirectX11 GPUs [7] provide full hardware support for
tessellation, introducing a dedicated adaptive tessellator unit
as well as 2 new programmable stages: the hull shader, defin-
ing the geometry function as a set of control points and the
domain shader, evaluating the tessellated primitives attributes
(e.g., position).
Curved Surfaces for Real Time Applications. One of the
main applications of real time tessellation is smooth geomet-
ric upsampling, which covers all techniques aiming at in-
creasing the input mesh resolution while smoothing it. As a
result, each input polygon becomes a curved patch. A number
of these techniques use a separate normal field computed in-
dependently and generalize Phong normal interpolation [8].
Vlachos et al. introduced Curved PN Triangles [9] as cu-
bic Bézier patches constructed from vertex positions and nor-
mals of a single triangle. Loop and Schaefer [10] as well as
Boubekeur and Schlick [11] proposed to approximate subdi-
vision surfaces using low degree polynomial patches. This
enables high framerates as well as better visual quality com-
pared to PN triangles. Last, simpler local operators, such as
the Phong Tessellation [12] help hidding the lack of high or-
der continuity of meshes in critical areas (contours, silhou-
ettes).
Adaptivity Metrics on Meshes. The entire tessellation pro-
cess is conducted by an importance metric defining a spatially
varying tessellation ratio. In order to ease adaptive crack-
free tessellation, this ratio is usually specified on a per-edge
or per-vertex basis. In the following, we will not make any
strong distinction between both cases and consider edge ra-
tios as the average of edges vertex ratios. Note however that
all computations can be performed per-edge directly. In any
case, the tessellation unit gathers the requested tessellation

level for the current primitive and generates the correspond-
ing amount of vertices (see Fig. 2). Depending on the appli-
cation, the tessellation ratio may be computed according to
various criteria, which can be classified into two families: (i)
Extrinsic: in every point of the coarse input mesh, the view
position and direction influence the tessellation ratio. Proxim-
ity (Fig. 3b) and silhouetteness (Fig. 3c) [13][2] [12] are ex-
amples of such view-dependent metrics. (ii) Intrinsic: these
criteria can be computed independently of any external infor-
mation. For static objects, precomputation is an option here.
Curvatures (mean, gaussian, max) are examples of such view-
independent metrics (Fig. 3d).

Overall, the adaptivity metric is a critical component, be-
cause it tailors the distribution of polygons and therefore the
geometric computation performed to improve the shape qual-
ity. Intuitively, one may want to dedicate most of the GPU’s
horsepower to visually important regions. In this work we
exploit recent work in mesh optimization and expressive ren-
dering to tailor a new adaptivity metric achieving this goal.

3. A VIEW-DEPENDENT ADAPTIVITY METRIC

We propose a new adaptive tessellation metric which takes
into account both intrinsic and extrinsic criteria. We target
smooth geometric upsampling methods which allows us to
safely consider the input coarse mesh as a plausible guess of
the final high resolution mesh and to evaluate geometric quan-
tities on it.
Visual Importance. Our basic observation is that the amount
of tessellation should be related to what we perceive from a
shape: this notion of shape perception has actually be ex-
ploited in other fields, from which we took inspiration.

First, in the context of surface optimization, Lee et al. [14]
showed that saliency is an effective indicator to simplify
meshes while preserving important areas. Their method is
based on multi-scale curvature analysis to determine visually
salient features to which purely intrinsic methods, e.g., QEM
simplification [15], may be blind. Second, conveying shapes
using simple lines while preserving important features has
led Judd et al. [16] to design a new line drawing method
extracting the so-called Apparent Ridges. These lines depict
geometry in a view dependent fashion, capturing curves cor-
responding to maxima of surface curvature in image space.

Mesh Saliency and Apparent Ridges exploit view- depen-
dent curvature, taking into account both differential properties
(intrinsic) and viewer position (extrinsic) to reduce the shape
to a minimal set of important features. Therefore, since such
metrics have proven to be effective for defining the important
surface features conveying the shape, they can also be used
for our purpose. We seek for surface locations that would
benefit the most from tessellation, i.e. an extra amount of
computation and geometric data. So, we propose to use view-
dependent curvature to detect them and consequently tailor
dynamic tessellation adaptivity.

(a) Input (b) Proximity metric (c) Silhoutte metric (d) Curvature metric (e) Our metric

Fig. 3. Adaptive Tessellation Metrics: the resulting upsampling ratio is depicted from blue (low) to red (high). (a) Input mesh
to tessellate. (b) Proximity is orthogonal to geometric importance. (c) Although silhouette lines contain important features, a
large part of the adaptivity is wasted in irrelevant areas. (d) Surface curvature is computed independently of the point of view
and cannot detect important low curvature regions observed from a tangential point of view. (e) View-dependent curvature
captures important regions stemming from curvature, view-dependent feature or both.

Fig. 4. View-Dependent Tessellation Metric: neighboring
normal information is projected onto the image plane to com-
pute the maximum variation and deduce a tessellation ratio.

Metric. Intuitively, we want to increase the mesh resolution
in areas where the surface variation is faster. This notion of
“variation” has to be analyzed from the current point of view,
as a given region of the surface may cover a different screen
area according to the view position. Thus, we track the cur-
vature variation in image space by projecting each vertex to-
gether with its one-ring neighborhood onto the image plane
and measure the normal variation on this plane. The requested
local tessellation ratio is defined proportionally to this value.

More formally, we denote the input coarse mesh M =
{V,F} with V = {vi} the set of coarse vertices, vi =
{pi,ni} (position and normal vector at vi) and F the list of
polygons indexed over V. We define the tessellation ratio ti at
each vertex vi as the maximum normal variation in the image
plane:

ti = arg max
j
{wij · 〈ni · nj〉}

with {nj} the set of normal vectors of the one-ring neighbor-
hood of vi and 〈·〉 the dot product (see Fig. 4).

As vertex normal vectors are supplied in any graphics en-
gine, we approximate the view-dependent curvature by com-
puting the divergence of the normal field once projected on
the view image plane: the normal term captures the curvature

at vi in the direction−−→vivj . Note that we only approximate the
surface maximum curvature direction, as we do not evaluate
the normal divergence “in-between” one-ring vertices.

The extrinsic influence (i.e. view position) is captured by
the weighting term wij :

wij =
1

||c− πc,uc(pj)||

with c the viewer position, uc = (pi − c)/||pi − c|| the
(local) view direction and π the orthogonal projection on the
so-defined plane {c,u}:

πc,u(p) = p− 〈(p− c) · u〉u

For the sake of genericity, we apply a first order normal-
ization to ti mapping it onto the range [0, 1], with 0 corre-
sponding to no tessellation and 1 to the maximum tessellation
allowed:

ti :=

1 if η(ti) > 1
0 if η(ti) < 0, with η(x) = σ+x−µ

2σ
η(ti) otherwise

µ being the mean and σ the standard deviation of {ti}. Last,
we suppose a subsequent mapping function from this value to
the adaptivity level range of the tessellator unit (which may
still be real for geomorph units).

Figure 3 compares our metric to existing ones. Overall,
this metric is able to express both intrinsic geometric features
as well as extrinsic view dependent ones. Additionally, it bet-
ter concentrates high values on features lines, avoiding slow
adaptivity variation which often result in a waste of fine ver-
tices. Last, as it only relies on orthogonal projections and
surface differentials and it is time-coherent.

4. IMPLEMENTATION AND RESULTS

We have tested our metric using the Adaptive Refinement
Kernel [3]. We used several smooth geometric upsampling

(a) (b) (c) (d) (e)

Fig. 5. Result. (a) Input (500 tri.). (b) Our metric. (c) The adaptive tessellation produced according to (b). (d) The final
rendering using smooth upsamling with adaptive tessellation (5k tri.). (e) With uniform full resolution tessellation (125k tri.).

methods, such as the Curved PN Triangle, Loop Subdivi-
sion Surface Approximation and Phong Tessellation. The
entire system is implemented in C++, using OpenGL and
GLSL with a GeForce GTX 280 graphics device. The in-
put coarse mesh is stored on GPU using 2 textures, one for
per-vertex data (position, normals, etc) and the other for the
connnectivity information (i.e. triangles). The tessellation
ratio is evaluated in a preliminary rendering pass and gath-
ered using a framebuffer object. A second pass is used to
normalize these values. Note that a CUDA implementation
is straightfoward and we believe this will be as easy to im-
plement on DX11 hardware tessellator units. Alternatively,
as input meshes are by definition coarse, we did not observe
any bottleneck when computing these values on the CPU.
From a qualitative point of view, we performed empirical
tests on a variety of coarse models ranging from 50 to 10000
polygons, all upsampled with maximum level 8 (1-for-65k
tessellation). As a result, our metric automatically balances
between local intrinsic curvature and view dependent feature
lines without explicit weighting control. We refer the reader
to Cole et al. [17] who assess how view dependent curvature
faithfully depicts important geometric features in line draw-
ing. From a quantitative point of view and compared to other
metrics, we observed a reduction of the requested number
of tessellated polygons ranging from 15 to 75% for similar
final rendering quality. Although not as impressive, the fram-
erate improvement was between 5 and 30 percent compared
to other metrics, and between 2 and 5 times higher when
compared to conservative uniform tessellation (see Fig. 5).
In all cases, a higher maximum tessellation ratio makes these
values bigger. Note however that performance here is rele-
vant only for the chosen tessellation technique and subject to
drastic changes with hardware tessellation.

5. CONCLUSION

Our view-dependent adaptivity metric offers a fair balance
between extrinsic and intrinsic properties. It is easy to im-

plement and offers a graceful upsampling distribution around
visually important features, as long as the evaluated smoother
geometry is correctly approximated by the coarse one, which
is usually the case. As future work, we plane to pursue the
evaluation of this metric, validating it with a perceptual study.

6. REFERENCES

[1] Tamy Boubekeur and Christophe Schlick, “Generic
mesh refinement on GPU,” in Proceedings of ACM SIG-
GRAPH/Eurographics Graphics Hardware, 2005, pp.
99–104.

[2] C. Dyken, M. Reimers, and J. Seland, “Real-time GPU
silhouette refinement using adaptively blended bezier
patches,” Comp. Graph. Forum, vol. 27, no. 1, pp. 1–
12, 2008.

[3] Tamy Boubekeur and Christophe Schlick, “A flexible
kernel for adaptive mesh refinement on GPU,” Com-
puter Graphics Forum, vol. 27, no. 1, pp. 102–114,
2008.

[4] Christopher Dyken, Martin Reimers, and Johan Seland,
“Semi-uniform adaptive patch tessellation,” Computer
Graphics Forum, vol. 28, no. 8, 2009.

[5] Le-Jeng Shiue, Ian Jones, and Jorg Peters, “A real-
time GPU subdivision kernel,” in SIGGRAPH, 2005,
pp. 1010–1015.

[6] Michael Schwarz and Marc Stamminger, “Fast gpu-
based adaptive tessellation with cuda,” Computer
Graphics Forum, vol. 28, no. 2, pp. 365–374, 2009.

[7] A. Klein, “Introduction to the direct3d 11 graphics
pipeline.,” http://www.microsoft.com/downloads/.

[8] Bui Tuong Phong, Illumination of Computer-Generated
Images, Ph.D. thesis, University of Utah, 1973.

[9] Alex Vlachos, Jorg Peters, Chas Boyd, and Jason
Mitchell, “Curved PN triangles,” in Proceedings of
ACM Symposium on Interactive 3D, 2001, pp. 159–166.

[10] Charle Loop and Scott Schaefer, “Approximat-
ing catmull-clark subdivision surfaces with bicubic
patches,” ACM Transaction on Graphics, vol. 27, no.
1, pp. 1–8, 2008.

[11] Tamy Boubekeur and Christophe Schlick, “QAS: Real-
time quadratic approximation of subdivision surfaces,”
in Proceedings of Pacific Graphics 2007, November
2007, pp. 453–456.

[12] Tamy Boubekeur and Marc Alexa, “Phong tessellation,”
ACM Trans. on Graph. (Proc. SIGGRAPH Asia 2009),
vol. 27, 2008.

[13] P. Sander, X. Gu, S. Gortler, H. Hoppe, and J. Snyder,
“Silhouette clipping,” in ACM SIGGRAPH, 2000, pp.
327–334.

[14] C. H. Lee, A. Varshney, and David Jacobs, “Mesh
saliency,” in ACM SIGGRAPH, 2005, pp. 659–666.

[15] M. Garland and P. S. Heckbert, “Surface simplification
using quadric error metrics,” in SIGGRAPH, 1997, pp.
209–216.

[16] Tilke Judd, Frédo Durand, and Edward H. Adelson,
“Apparent ridges for line drawing,” ACM Trans. Graph.,
vol. 26, no. 3, pp. 19, 2007.

[17] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher,
Heather Stoddart Barros, Adam Finkelstein, Thomas
Funkhouser, and Szymon Rusinkiewicz, “Where do
people draw lines?,” ACM Transactions on Graphics,
vol. 27, no. 3, pp. 88:1–88:11, Aug. 2008.

