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Figure 1: Starting from a surface mesh (left, 200k triangles), we propose an approximation algorithm which generates a sphere-mesh
(middle) defining an extremely simplified model (here with 50 spheres) as a sphere interpolation over a set of edges and polygons (right). The
input mesh is shown in orange (left), the sphere-mesh is displayed in the middle (spheres in red, edges in yellow, triangles in blue) and the
interpolated sphere-mesh geometry is shown on the right (edge interpolation in grey, triangle interpolation in blue).

Abstract

Shape approximation algorithms aim at computing simple geomet-
ric descriptions of dense surface meshes. Many such algorithms
are based on mesh decimation techniques, generating coarse tri-
angulations while optimizing for a particular metric which mod-
els the distance to the original shape. This approximation scheme
is very efficient when enough polygons are allowed for the sim-
plified model. However, as coarser approximations are reached,
the intrinsic piecewise linear point interpolation which defines the
decimated geometry fails at capturing even simple structures. We
claim that when reaching such extreme simplification levels, highly
instrumental in shape analysis, the approximating representation
should explicitly and progressively model the volumetric extent of
the original shape. In this paper, we propose Sphere-Meshes, a new
shape representation designed for extreme approximations and sub-
stituting a sphere interpolation for the classic point interpolation
of surface meshes. From a technical point-of-view, we propose a
new shape approximation algorithm, generating a sphere-mesh at a
prescribed level of detail from a classical polygon mesh. We also
introduce a new metric to guide this approximation, the Spherical
Quadric Error Metric inR4, whose minimizer finds the sphere that
best approximates a set of tangent planes in the input and which
is sensitive to surface orientation, thus distinguishing naturally be-
tween the inside and the outside of an object. We evaluate the per-
formance of our algorithm on a collection of models covering a
wide range of topological and geometric structures and compare
it against alternate methods. Lastly, we propose an application to
deformation control where a sphere-mesh hierarchy is used as a
convenient rig for altering the input shape interactively.
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1 Introduction

Approximating 3D shapes using a minimal set of geometric prim-
itives offers a wide range of applications, from shape analysis to
interactive modeling. Starting from a dense surface mesh, sim-
plification methods are a popular class of algorithms to gener-
ate such approximations. They can essentially be classified in
three categories: (i) clustering methods [Rossignac and Borrel
1993][Lindstrom 2000][Schaefer and Warren 2003][Cohen-Steiner
et al. 2004], which decompose the original surface into a collec-
tion of regions and substitute each region with a single represen-
tative (e.g., point or face), (ii) decimation methods [Hoppe et al.
1993][Garland and Heckbert 1997], which iteratively remove sur-
face samples and relocate their neighbors to optimize for the orig-
inal shape and (iii) resampling methods [Turk 1992; Alliez et al.
2003; Yan et al. 2009] which compute a new, potentially coarser,
point distribution on the surface and establish a new connectivity.

Alternatively, one can also consider the volume bounded by the
surface and provide a simplification by means of the Medial Axis
Transform (MAT) [Blum 1967] for instance, leading to a represen-
tation with simplified volumetric structures [Amenta et al. 2001;
Dey and Zhao 2004; Chazal and Lieutier 2005; Sud et al. 2007;
Miklos et al. 2010].

In this paper, we introduce sphere-meshes, an approximation model
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inspired from both worlds, which are a connected set of spheres that
are linearly interpolated along simplices (i. e., edges or triangles,
see Fig. 1). In particular, we propose an algorithm which computes
such an approximation at any desired level of detail from a poly-
gon mesh. Indeed, a classical polygon mesh is a special case of a
sphere-mesh, where vertices are spheres with zero radius. Coars-
ening the approximation, sphere-meshes progressively evolve from
a surface to a volumetric object, using the radius of the spheres to
model the thickness of the shape (see Fig. 2).

In this automatic approximation process, we optimize for the
spheres by introducing the spherical quadric error metric (Sec. 2)
to optimally fit a sphere to a subset of the tangent planes of the input
surface (i. e., vertex or triangle tangent space). Our metric accounts
for the normal orientation and distinguishes naturally between the
inside and the outside of the 3D shape. We use this new error metric
in a bottom-up approximation algorithm (Sec. 3) to progressively
compute level-of-details of the input with sphere-meshes, with op-
tional local approximation control. As a result, we show that at
extreme simplification levels, a sphere-mesh succeeds at faithfully
representing the input shape while classical polygon approxima-
tions fail quickly (see Sec. 4). Finally, we propose an application
of our shape approximation model by using it as an automatic in-
termediate high-level control structure for interactive freeform de-
formation (Sec. 5). Although our representation is compatible with
triangle surface meshes, tetrahedral meshes and medial axis, we fo-
cus on the surface case.

1.1 Related work

Mesh simplification One core component of our approach, in-
spired from classical mesh decimation methods [Garland and Heck-
bert 1997], is a quadric error metric defined to measure and opti-
mize the difference between the original shape and its simplifica-
tion. Similarly, our representation is designed for shape approxima-
tion, to capture the shape of an object with very few elements. This
focus is prominent in simplification methods, which aim at finding a
small amount of good representative polygons from a dense set. To
do so, one can either use ordered edge collapse operations [Hoppe
et al. 1993; Garland and Heckbert 1997] up to a prescribed resolu-
tion, cluster spatially the input surface elements before triangulat-
ing the cluster “averages” [Rossignac and Borrel 1993; Lindstrom
2000] or use a variational framework to segment the shape and fit
simple primitives to each region, such as planes [Cohen-Steiner
et al. 2004], spheres [Wang et al. 2006], cylinders/cones [Wu and
Kobbelt 2005] and quadrics [Yan et al. 2006].

We argue that extreme mesh simplification requires defining volu-
metric elements instead of surfaces, while providing a simple topo-
logical structure between them.

Shapes from volumetric primitives Approximating shapes
with a set of simple geometric primitives can be performed in nu-
merous ways in digital shape modeling, with applications includ-
ing for example shape recognition, multi-resolution visualization or
collision detection. For instance, the medial axis transform [Blum
1967] (MAT) of a 3D surface mesh is the set of all 3D points hav-
ing more than one closest point on its boundary and takes the form
of a topological skeleton made of edges and faces together with a
radius function. Alternatively, constructive solid geometry (CSG)
methods model the shape of an object as a tree carrying simple geo-
metric primitives on its leaves and boolean operations on its internal
nodes. Extremely efficient at representing certain classes of man-
ufactured objects, these models are usually defined from scratch
and do not cope easily with automatic shape approximation. Be-
yond MAT and CSG, the representation of volumes as the union of
primitives has also been recently studied for spheres [Wang et al.
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Figure 2: Transition from surface to volumetric representation:
For each approximation, we show the sphere-mesh structure with
semi-transparent input and the interpolated sphere-mesh geometry.
8-spheres approx.: the base structure, made of triangles, is homeo-
morphic to the input surface. 4-spheres approx.: the base structure,
made of a single sheet of triangles, is no longer homeomorphic to
the input. 2-spheres approx.: two spheres linked by a single edge.

2006], ellipsoids [Lu et al. 2007], as well as axis-aligned or ori-
ented bounding boxes [Lu et al. 2007]. Bradshaw et al. proposed
to compute a sphere tree from an approximation of the medial
axis [Bradshaw and O’Sullivan 2002; Bradshaw and O’Sullivan
2004; Stolpner et al. 2012]. In a different context, spatial hierar-
chies have been extensively used in real time multi-resolution visu-
alization [Rusinkiewicz and Levoy 2000] and physics [James and
Pai 2004]. Often based on simple bounding primitives (e.g., spheres
or boxes) organized in a spatial binary tree, such structures aim at
quickly culling empty space but only provide poor quality shape
approximation at their coarser levels.

In contrast, we aim at representing the input 3D object with few
fitting primitives while we also consider their interpolation over the
simplices of a mesh sub-structure.

Sphere Skeletons Shape representations based on sphere inter-
polations have recently gained interest in shape modeling with the
ZBrush tool [Pixologic 2001], popular in the SFX industry. With
this tool, a skeleton of spheres – called ZSpheres – is manually con-
structed to define a shape at coarse grain, before refining its surface
with displacements. With B-Meshes, Ji et al. [2010] improved this
class of representations, in particular with a better mesh extraction.

In contrast to these methods, we propose to approximate automat-
ically an existing, possibly dense mesh (e.g., scanned geometry),
with an interpolation of spheres. Additionally, our sphere-mesh
representation extends the interpolation beyond skeletons, using
polygons as well to model non-tubular regions.

1.2 Overview

In this paper, we make the following contributions:

1. the sphere-mesh representation composed of a sphere set with
additional connectivity information – each simplex corre-
sponding to the linear interpolation of the four dimensional
points (qi; ri), with qi = (xi, yi, zi) the sphere centers and ri
their radii; this representation extends existing skeleton-based
sphere interpolations;

2. the spherical quadric error metric (SQEM) guiding the
sphere-mesh approximation and whose minimizer is a sphere
fitting a set of planes in the least squares sense;

3. a shape approximation algorithm which computes a sphere-
mesh efficiently, from an input triangle mesh, with optional
local approximation control through an importance map;

4. an interactive freeform deformation framework using sphere-
meshes as automatic multi-resolution control structures.



2 Sphere-mesh representation

We aim at approximating 3D shapes as a base mesh composed of
edges E and triangles T , indexing a sphere set S = {S(qi, ri)}i
with centers qi ∈ R3 and radii ri, this “thickness” ri being lin-
early interpolated along E and T . Intuitively, a segment [Si, Sj ]
models the union of the interpolated spheres between Si and Sj
([Si, Sj ] = ∪u∈[0,1]{S(uqi + (1� u)qj ;uri + (1� u)rj)}), and
corresponds to the convex hull of Si∪Sj . The same property holds
for higher dimensional primitives such as triangles and tetrahedra.
From a morphological point of view, a sphere-mesh {S,E, T} cor-
responds to a Minkowski sum of the polygon mesh defined by the
sphere centers with a sphere having a spatially-varying radius. One
can also see sphere-meshes as a parametric counterpart to kernel
implicit surfaces.

Notations In the following,Mmn denotes the set of real m×n-
matrices, Sn the set of symmetric matrices ofMnn, and M ij

kl the
(k � i + 1) × (l � j + 1)-submatrix of M , whose top left corner
element is Mij and the bottom right element is Mkl. a× b denotes
the cross product between two 3D vectors a and b, and at · b their
dot product. {p, n}⊥ denotes the plane that is orthogonal to n and
intersects p: {p, n}⊥ ≡ {x ∈ R3|nt · (p� x) = 0}.

2.1 Spherical quadric error metrics

We start by introducing the underlying geometric metric in our ap-
proach, the spherical quadric error metric (SQEM), which is based
on the signed distance d(S(q, r), {p, n}⊥) from the sphere S(q, r)
to the (oriented) plane {p, n}⊥ (see Fig. 3 (i)):

d(S(q, r), {p, n}⊥) = nt · (p� q)� r (1)

This distance differs from the classical distance from an unoriented
point p (as opposed to a plane {p, n}⊥) to a sphere (i. e., |p� q| �
r). It also takes into account the orientation of the normals, and
distinguishes naturally between convex and concave regions (see
Fig. 3, (ii) and (iii)). Note, that the squared value of the distance
from a point to a sphere (i. e., (|p � q| � r)2) cannot be expressed
as a quadric w.r.t. q and r.

We associate the set of spheres with center q and radius r to vec-
tors in R4 by writing s := (q; r) ' S(q, r), and we write
p̄ = (p; 0), n̄ = (n; 1) ∈ R4 in the following. Using this nota-
tion, d(s, {p, n}⊥) ≡ d(S(q, r), {p, n}⊥) = n̄t · (p̄� s).

The spherical quadric error metric SQEMp,n(s) that represents
the squared distance from the plane {p, n}⊥ to a variable sphere
s is a quadric w.r.t. s, and SQEMp,n(s) = d(s, {p, n}⊥)2 =
(n̄t · p̄� n̄t · s)2 = (n̄t · p̄)2 + (n̄t · s)2 � 2(n̄t · p̄)n̄t · s, which

Figure 3: Signed distance from a sphere to a plane (i), which takes
the orientation of the normals into account. It favours the fitting of
convex surfaces (ii) while penalizing the fitting of concave surfaces
(iii). During the optimization, we forbid spheres with negative ra-
dius (here �|(p� q)t · n|) fitting concave regions (iv).

boils down to the following:

SQEMp,n(s) = Q(s) =
1

2
st ·A · s� bt · s + c (2)

with A = 2

 n · nt n

nt 1

∈ S4, b = 2(nt · p)
 n

1

∈ R4 and

c = (nt · p)2 ∈ R.

In the following, we refer to such a quadric Q in R4 by writing
its components Q ≡ (A, b, c) ∈ S4 × R4 × R explicitly. The
sum of two quadrics Q1 ≡ (A1, b1, c1) and Q2 ≡ (A2, b2, c2) is
computed by summing up their different components: Q1 + Q2 ≡
(A1 +A2, b1 + b2, c1 + c2), and the multiplication of a quadric by
a scalar is computed by multiplying each component: λ(A, b, c) ≡
(λA, λb, λc). It follows trivially that (Q1 + Q2)(s) = Q1(s) +
Q2(s) and (λQ)(s) = λQ(s).

2.2 Shape approximation

Our goal is to partition the input mesh into regions Ik (sets of ver-
tices), such that each region geometry PIk is approximated by a
sphere sk and the integral of the squared distance from the mesh to
its approximation is minimized. The cost of such a partition is

C({Ik, sk}k) =
∑
k

∫
ξ∈PIk

d2(sk, {pξ, nξ}⊥)dσξ (3)

Note that since we target shape approximation, this energy does
not enforce the spheres to remain strictly inside the shape.

edge mid-point
triangle center

We equip each vertex vi of the input mesh
with its so-called barycentric cell Pi (oppo-
site figure) given by one third of its adja-
cent triangles (denoted by T1(vi)), and de-
fine the squared L2 distance from a sphere
s to Pi as the integral over Pi of the squared
distance to s:

d(s, Pi)
2
L2

=

∫
ξ∈Pi

d2(s, {pξ, nξ}⊥)dσξ

Note that the squared distance to the sphere is constant on each ad-
jacent triangle tj (since all oriented points on tj describe the same
plane) and is given by its spherical quadric, denoted by Qtj (s) (see
Eq. 2). The squared distance from Pi to a sphere s is simply given
by a weighted sum of the spherical quadrics Qtj of the triangles
that are adjacent to the vertex vi:

d(s, Pi)
2
L2

=
∑

tj∈T1(vi)

area(tj)

3
Qtj (s) , Qi(s) (4)

Each region PIk being defined as the union of the barycentric
cells of its vertices Ik, the squared distance from a sphere s
to PIk is given by summing up the different squared distances:
d(s, PIk )2L2

=
∑
i∈Ik

d2(s, Pi) = QIk (s) where QIk =∑
i∈Ik

Qi is the sum of the spherical quadrics of the cells of the
vertices in the set Ik.

Using this notation, the cost of a partition {Ik, sk}k, defined as the
squared L2 distance from the input surface to the set of spheres, is

C({Ik, sk}k) =
∑
k

QIk (sk) (5)



Quadric Minimization Each spherical quadric Q ≡ (A, b, c) has
a global minimum (since A is a symmetric positive semi-definite
matrix by construction), which may not be unique, however. Since
we limit ourselves to the set of spheres that have a positive radius
(spheres with a negative radius describe concavities, and are located
outside the object, see Fig. 3 (iv)), the minimization of this quadric
is performed in the half-spaceR3 ×R+.

The minimizer is given by A−1 · b if A is invertible. When the
global minimizer in R4 is located in the other half-space (i. e., the
fourth coordinate r is negative), the minimizer on the restriction
(i. e., r >= 0) is found in the hyper-plane r = 0. Otherwise this
minimizer would have a local neighborhood entirely contained in
r >= 0, and would be therefore a local minimum, which is impos-
sible since a non-degenerate quadric has exactly one local, hence
global, minimum.

If A is not invertible, the set of minimizers is a vector space that
can be of dimension 1, 2, or 3.

3 Approximation Algorithm

With our SQEM in hand, we now describe how to approximate,
at a desired level of detail, an input triangle surface mesh with a
sphere-mesh, using this metric to tailor a bottom-up decimation al-
gorithm. Since a sphere-mesh models a surface as the outer bound-
ary of the interpolation of its spheres, an ideal input to our approx-
imation algorithm is a closed orientable surface. Nonetheless, as
shown later (see Sec. 4), our approach can deal with flawed input
including holes and non-manifold edges.

3.1 Basic Algorithm

Similar to [Garland and Heckbert 1997], we reduce the input mesh
by collapsing its edges iteratively in a greedy fashion, ordering the
reduction operations by the cost QI(s), I being the connected set of
vertices collapsed altogether, and s being the sphere approximating
the region.

When considering the collapse of an edge uv of the mesh, we create
the quadric Quv = Qu+Qv , find the sphere that best approximates
the constructed region suv = argmins{Quv(s)}, and set the cor-
responding collapse cost cuv of uv to Quv(suv). The suggested
edge-collapse [uv] → suv is then put into a priority queue Q with
its associated cost cuv .

At first, the priority queue Q is initialized with all possible edge-
collapses. When pruning the best element [uv]→ suv from Q, the
edge uv is collapsed, a new vertex is created with the correspond-
ing quadric Quv , all possible edge-collapses with its neighbors are
put into the queue and former neighboring ones are removed. The
algorithm stops when the number of vertices (i. e., sphere centers)
to delete is reached.

When looking for the minimizer of Quv ≡ (A, b, c), several cases
need to be considered:

• if A is invertible: we approximate the region with a sphere in
the domainR3 × [0;R] (see Par. Radius bound).

• if A is not invertible (e. g., the region is planar): we ap-
proximate the region with a sphere along the segment [uv],
still restricting the radius to be in [0;R] (i. e., in the domain
[uv]× [0;R]).

For the second case, we write q = u+ λ~µ (~µ = ~uv)
and Q(q, r) = 1

2
(λ, r)t · Ã · (λ, r)− b̃t · (λ, r) + c̃, with Ã =[

~µt · A11
33 · ~µ A41

43
t · ~µ

A41
43

t · ~µ A44
44

]
, b̃ =

[
b13

t · ~µ− ~µt · A11
33 · u

b44 − A41
43

t · u

]
, and

c̃ = c− b13
t · u+ 1

2
ut ·A11

33 · u (Ã ∈ S2, b̃ ∈ R2, c̃ ∈ R). This
energy is a 2-dimensional quadric w.r.t. (λ, r) that we want to
minimize on the domain [0; 1] × [0;R], and whose global mini-
mizer in R2 is (λ, r) = Ã−1 · b̃. If this minimizer does not be-
long to the square [0; 1] × [0;R], the minimizer to its restriction
is once again located on its boundary (i. e., {λ = 0; r ∈ [0;R]},
{λ = 1; r ∈ [0;R]}, {r = 0;λ ∈ [0; 1]} or {r = R;λ ∈ [0; 1]}),
resulting in a simple second order polynomial minimization in di-
mension 1. If, for some reason (e. g., the region is planar), Ã is not
invertible, we collapse the edge to its mid-point (λ = 1/2), and
find the optimal value for the radius in [0;R], which is a problem
that is, this time, always properly conditioned.

Additionally, similarly to Garland and Heckert [1997], we prevent
edge-collapses that result in the inversion of the orientation of the
triangles that are involved in the operation.

Mesh data structure We use the data structure proposed by De
Floriani et al. [2004], that allows to encode manifold meshes with
a minimum memory overhead while maintaining high performance
when degenerating to a non-manifold mesh. The connectivity of
the resulting mesh is directly induced by the input connectivity and
the set of successive edge-collapses.

Radius bound Approximating a surface using a large sphere can
be cumbersome if the surface portion is not large enough itself (too
little information provided), and the resulting sphere can cover a
large part of the outside of the object in this case. For example,
an infinite number of spheres can fit a single plane, since the only
requirement is that this plane touches the sphere.

To solve this problem, we bound the diameter of the sphere by the
directional width W of the region [Gärtner and Herrmann 2001]
(i. e., the smallest extent of the region, when considering all possible
directions).

To do so efficiently, we pre-sample the unit sphere uniformly with a
fixed number of directions ~kj (30 in our implementation, plus the 3
canonical axes). Each region Pu stores its interval Ij(Pu) along all
directions ~kj (Ij(Pu) = [mj

u;M j
u] with mj

u = minx∈Pu(xt · ~kj)
and M j

u = maxx∈Pu(xt · ~kj)), and the intervals of the union
of two regions Pu and Pv can be obtained by iterating over all
directions ~kj (Ij(Pu ∪ Pv) = [min(mj

u,m
j
v); max(M j

u,M
j
v )]).

Since, at first, each region Pi is composed of only the barycen-
tric cell of one vertex vi, these are initialized with Ij(Pi) =

[minx∈Pi(x
t · ~kj); maxx∈Pi(x

t · ~kj)]. The directional widthW(P )

of the region P is approximated by W̃(P ) = minj |Ij(P )|. To al-
low coarser approximations at the first stages of the reduction, we
set the maximum diameter of the sphere representing a region Pu
to be slightly larger (R(Pu) = 3

4
W̃(Pu) in practice).

This bounding heuristic shows several benefits: (i) a sphere repre-
senting a planar region is constrained to be a point, as the directional
width of a plane is zero; (ii) for convex shapes, a sphere is likely (al-
though not guaranteed) to remain inside the shape when it is tangent
to the geometry (as the directional width of a set equals that of its
convex hull [Gärtner and Herrmann 2001]). Finally, this heuristic
proved empirically to be more efficient than other alternatives such
as bounding boxes, either axis-aligned or aligned according to the
principal component analysis of the region.

Neighborhood enrichment As for all decimation-based simpli-
fication methods, collapsing two vertices of the mesh va and vb
is often useful if they are close enough in the original mesh i.e.,
|va − vb| < ε. Although it may introduce topological changes,



Figure 4: Influence of the importance parameter σ: Fine details are better preserved as we increase the influence of the total curvature
kernel. When σ is null (left), the results correspond to the standard remeshing introduced in Sec. 3. All sphere-meshes have 77 spheres.

this strategy is especially effective if the shape contains large oppo-
site regions that should be collapsed together (e.g., large shell-like
parts such as the chair model or the wings of the Pegaso in Fig. 5).
The parameter ε is intuitive and part of common decimation-based
simplification frameworks.

3.2 Importance-driven distribution

In the context of shape approximation, it is common to allow the
user to control the relative importance of the features in the pro-
cess. We propose to parameterize our approximation process by
introducing a weighting kernel Kσ in the definition of the cost of a
partition (previously defined in Eq. 3):

Cσ({Ik, sk}k) =
∑
k

∫
ξ∈PIk

Kσ(ξ)d2(sk, {pξ, nξ}⊥)dσξ (6)

In the previous definition, Kσ describes the respective importance
of all points on the manifold. If Kσ = 1 ∀ξ, the formulation of the
cost of a partition reduces to the original one previously introduced
in Eq. 3.

The spherical quadric Qi of the vertex vi is given by averaging the
quadrics Qtj of its adjacent triangles tj ∈ T1(vi) as before, this
time taking the integral of the kernel into account:

Qi =
∑

tj∈T1(vi)

(

∫
ξ∈Pi∩tj

Kσ(ξ)dσξ)Qtj (7)

In Fig. 4 we present various results obtained when setting impor-
tance kernels based on the total curvature κ1

2 + κ2
2 (which natu-

rally favors highly-protruding geometry):

Kσ(ξ) = 1 + σ ·BBD2 · (κ1(ξ)2 + κ2(ξ)2) (8)

BBD being the bounding box diagonal of the model. The multi-
plicative factor BBD2 is used in Eq. 8 to ensure scale invariance.

For affine kernels, the various integrals
∫
ξ∈Pi∩tj

Kσ(ξ)dσξ can be
computed trivially. Note that κ1(ξ) and κ2(ξ) are not piecewise
linear, if one considers that the two-dimensional curvature tensor
should be the one quantity that should be interpolated linearly on
the triangles when considering discrete manifolds. In our imple-
mentation however, we consider that the total curvature is linearly

interpolated on the triangles to simplify the computation of the ker-
nel integrands.

Other properties, e. g., local feature size [Amenta and Bern 1999]
or conformal factor [Ben-Chen and Gotsman 2008], could be used
as importance kernels. We focused on the total curvature-based ker-
nels and left alternative ways to control local importance for future
work.

4 Results

We implemented our shape approximation method in C++ and re-
port performances on an Intel Core2 Duo running at 2.5 GHz with
4GB of main memory. The entire algorithm is controlled by two
parameters: the target number of spheres and σ (set to 1 unless
otherwise mentioned).

4.1 Interpolated geometry

In this section, on top of sphere-mesh structures, we provide
sphere-mesh geometries corresponding to the linear interpolation
of spheres along edges and triangles. This interpolated geometry
corresponds to the union of spheres, interpolated edges and inter-
polated triangles. Each interpolated edge corresponds to a cone cut
by a plane orthogonal to the edges at each extremity and each inter-
polated triangle corresponds to a triangular prism made of 3 faces
extruding the triangle edges and 2 triangles for the lower and upper
crusts of the interpolation. Alternatively, a discrete interpolation
can be generated by sampling many spheres along edges and trian-
gles, in the manner of the ZBrush tool [Pixologic 2001].

4.2 Performances

In Fig. 5, we present results of our automatic shape approximation
method for 22 different input models, covering a wide range of ge-
ometric features, topology and quality. For all examples but the
last, we show the input shape, the resulting sphere-mesh structure
(sphere, edges, triangles) and the shape approximation emerging
from the linear interpolation of the spheres along the structure (in-
terpolated geometry in grey for edges and blue for triangles). We
can observe that, even under a drastic approximation restricted to
tens of spheres, each sphere-mesh succeeds at capturing, in an adap-
tive manner, the essence of the shape. This becomes even clearer
when displaying the interpolated sphere-mesh geometry: spheri-
cal, conic and cylindrical components are quickly captured with the
sphere-mesh, even in the presence of numerous fine scale features.
We can also observe a number of cases where a tubular structure
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Figure 5: Sphere-mesh approximation results with the algorithm described in Sec. 3 on various meshes at different levels of simplification.
Results obtained with σ = 1. The number of spheres of the approximation is shown between the parentheses.



INPUT MODEL INIT. DEC. SPHERE-MESH QEM SIMPLIFICATION
(#V / #T) (MS) (MS) (#S / #E / #T) H M12 M21 (#V / #T) H M12 M21

Boz. (22774 / 45564) 1701 1844 100 / 22 / 146 3.020 0.472 0.438 100 / 194 11.703 1.519 0.591
Camel (2020 / 4040) 122 113 50 / 19 / 34 7.201 0.465 0.384 50 / 96 12.477 1.071 0.576
Neptune (28052 / 56112) 1714 2358 60 / 15 / 72 2.650 0.384 0.388 60 / 124 10.186 0.943 0.518
Centaur (3401 / 6796) 209 212 50 / 17 / 42 3.557 0.373 0.401 50 / 94 15.626 1.629 0.523
Chair (9935 / 19894) 568 745 35 / 16 / 22 1.517 0.313 0.345 35 / 72 14.974 1.404 0.364
Dancer (7942 / 15884) 472 551 54 / 11 / 67 1.352 0.166 0.182 54 / 102 5.970 0.517 0.319
Gorilla (1917 / 3830) 121 112 36 / 5 / 37 6.109 0.530 0.446 36 / 68 9.353 1.610 1.122
Elk (5194 / 10388) 309 370 45 / 2 / 69 2.560 0.273 0.289 45 / 90 20.802 2.199 0.936
Hand (11724 / 23464) 696 884 70 / 53 / 16 1.980 0.324 0.352 70 / 130 14.074 1.140 0.561
Flamengo (26394 / 52839) 1403 1941 40 / 12 / 32 2.837 0.417 0.479 40 / 74 35.135 5.738 0.507
Sea monster (39485 / 78966) 2210 3169 150 / 60 / 161 6.081 0.367 0.364 150 / 292 11.445 0.947 0.402
Elephant (24955 / 49918) 1263 1818 45 / 6 / 68 3.357 0.564 0.620 45 / 90 6.371 1.038 0.684
Wolf (3401 / 6796) 220 212 55 / 12 / 75 3.618 0.380 0.405 55 / 106 8.144 1.079 0.441
Fish (7376 / 14748) 532 521 12 / 3 / 6 4.272 0.762 0.735 12 / 20 14.661 1.395 1.036
Sea horse (162248 / 324524) 18859 16271 200 / 18 / 344 1.324 0.257 0.271 200 / 400 4.668 0.324 0.231
Moebius (21126 / 42523) 1275 1615 700 / 316 / 366 0.762 0.078 0.074 700 / 1510 1.675 0.242 0.123
Raptor (12908 / 25852) 1423 879 45 / 23 / 30 4.310 0.428 0.425 45 / 84 18.069 1.555 0.577
Vase (51801 / 103598) 6442 5203 120 / 8 / 197 2.093 0.321 0.395 120 / 230 4.698 0.539 0.265
Camel grid (5752 / 11508) 296 503 50 / 5 / 72 4.199 0.900 0.629 50 / 92 17.104 1.853 0.730
Half bear (9202 / 17969) 530 642 60 / 5 / 66 14.784 0.400 2.559 60 / 80 14.296 0.939 0.362
Pegaso (15319 / 30658) 899 1153 100 / 11 / 170 2.554 0.381 0.393 100 / 204 6.113 0.578 0.424
– – – 75 / 12 / 119 4.676 0.485 0.479 75 / 148 6.835 0.790 0.496
– – – 50 / 12 / 71 4.973 0.621 0.600 50 / 94 7.554 1.179 0.634
– – – 25 / 7 / 34 6.128 1.237 1.081 25 / 46 21.096 2.478 1.056

Table 1: Performance and timings for our sphere-mesh approximation algorithm (models of Fig. 5). All models were computed with σ = 1.0.
The initialization time comprises the mesh structure construction from a file and the initialization of the priority queue with all possible
edge-collapses. Decimation is performed until no edge remains (computation of the whole multi-resolution structure). #S / #E / #T: number
of spheres, wire edges, and triangles in the output sphere-mesh. We compare our approximation with QSlim for the same number of primitives
(smallest error in bold). H: Hausdorff distance. M21: mean distance from the approximation to the original model. M12: mean distance
from the original model to the approximation. All distances are expressed in percentages of the input model bounding box diagonal.

would not properly capture the shape at coarse scales (e. g., Chair,
Elk and Vase models), highlighting the usefulness of polygons (on
top of edges) in the sphere-mesh representation.

Our approach robustly handles fine components (e. g., Flamingo
model), complex topologies (e. g., Moebius model) and non-
uniformly distributed geometric structures with rapidly varying
sizes (e.g., Sea horse model). Indeed, one desirable property of
extreme approximation methods is the ability to ignore small struc-
tures to quickly “abstract” a complete shape component with a sin-
gle primitive. In this context, we can observe that near spherical
components are promptly captured with a single sphere (e. g., Elk
and Elephant models), while near tubular structures are modeled
with edge chains (e.g., arms and legs). The last row of Fig. 5 il-
lustrates the natural multi-resolution structure that comes with our
approach, with smaller components emerging progressively while
reaching finer level-of-details.

We also performed experiments on pathological cases: the Camel
grid model shows how a poor quality input mesh, with numerous
shape singularities, is smoothly approximated at coarse scale with
a sphere-mesh; the Half bear model illustrates how the algorithm
behaves for incomplete data sets (right part of the model). Note in
particular that the shape approximation quality is not damaged in
the regions where the input is complete.

Additionally, we analyze the influence of noise in Fig. 6: although
the global structure of the approximation is preserved when adding
more and more noise, it is the local volume approximation which
suffers the most from the input quality degradation. Indeed, when
the input is very noisy, the SQEM minimization leads naturally to
zero radius spheres (i.e., points), and thus becomes equivalent to
QEM minimization in that case. The impact of σ also becomes less
critical.

Figure 6: Noise sensitivity: evolution of the sphere-mesh approxi-
mation with an increasing amount of noise (random per-vertex dis-
placement expressed in percentage of the bounding box diagonal).

Worst case scenarios Fig. 7 shows what we identified to be the
worst case scenarios for our approach: thin-shell models contain-
ing large concave parts and disconnected components encompass-
ing each other.

At the final stages of the simplification, spheres fitting a large re-
gion with low curvature can bulge out from the shape (red boxes in
Fig. 7) due to the locality of the surface optimization process. The
Concentric Spheres example represents a thin-shell sphere with the
outer sphere approximated by a single large sphere, which covers
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Figure 7: Results on thin shell models (cross sections with back
faces shown in grey). Green boxes: Results using our neighbor-
hood enrichment strategy (additional potential collapses in green).
Red boxes: Results using the initial connectivity, without neighbor-
hood enrichment. Top: Bell model. Using the neighborhood en-
richment allows thin shell volumes to be approximated with single
sheets made of double sided triangles, mimicking the MAT. Bottom:
Concentric Spheres model. Without neighborhood enrichment, the
two disconnected spheres will be simplified independently.

its inside entirely and ignores the inner concave sphere. A proper
sphere-mesh approximation of such a thin shell can again be ob-
tained using the neighborhood enrichment strategy (green boxes in
Fig. 7) which allows to collapse vertices which are not explicitly
linked by an edge but close enough (green edges in the figure) and
on opposite sides of the shell. This results in topological changes in
the mesh, eventually leading to double sided triangles – similar to
the medial axis. Such collapses are likely to be favored at the early
stages of the simplification, because the “Radius Bound” heuristic
prevents the apparition of large spheres approximating a low curva-
ture surface with small directional width. Collapses of vertices that
are “facing” each other are unlikely to happen, since the SQEM
accounts intrinsically for the normal orientation; we also prevent
linking them during the neighborhood enrichment based on their
normals. Lastly, we prevent explicit triangle inversion.

Finally, a large number of spheres are required to approximate such
shapes (20-100 for the Bell, 15-100 for the Concentric Spheres),
because the sphere-mesh representation captures shapes with few
connected convex components better.

4.3 Comparisons

Mesh decimation We compare our method to QSlim which im-
plements a mesh simplification algorithm based on the quadric
error metric [Garland and Heckbert 1997] (QEM), and also of-
fers a multi-resolution approximation of the input in the form of
coarser triangle meshes. Fig. 8 illustrates our claim: when a suf-
ficient number of primitives is allowed, traditional triangle meshes
simplifications approximate faithfully enough the input 3D object.
However, as the number of primitives diminishes, meaningful parts
completely vanish. Our sphere-mesh approximation captures sim-
ilarly well the objects with a high number of primitives, but de-
grades gracefully to volumetric structures even when drastically
decimated, preserving the main parts of the objects, which is a de-
sirable behavior for applications requiring high level shape abstrac-
tions (e. g., shape modeling, see Sec. 5).
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Figure 8: Comparison to polygonal simplification: evolution of
the approximation with a decreasing number of spheres (resp. ver-
tices) for the sphere-mesh (resp. simplified mesh). From left to
right: sphere mesh approximation with semi-transparent original
surface, interpolated sphere-mesh geometry and QSlim (Garland
and Heckbert 97) polygonal simplification in green.

In Tab. 1, we report the approximation error of QEM simplifica-
tions, for the same number of primitives as with our SQEM method.
Beyond the visual assessment, this experimental study shows that
the approximation quality of our sphere-meshes clearly outper-
forms the one of decimated polygon meshes, both for Hausdorff
and mean distances, for most examples. However, in the case of
incomplete inputs (Half bear model), the mean distance from the
approximation to the input surface (M21) is significantly higher us-
ing a sphere-mesh: indeed, the sphere-mesh geometry interpolation
tends to “fill” holed regions which, depending on the application,
may be a benefit or a drawback.

Medial axis transform The medial axis transform (MAT) is not
designed to represent shapes with the same number of primitives
as sphere-meshes, which become volumetric structures only at very
coarse simplification levels (see Fig. 10). The extraction parameters
also differ: while we allow the user to tune the final number of
primitives, typical MAT extraction techniques [Amenta et al. 2001]
propose to tune the reconstruction error rather than the number of
polar spheres.

Nevertheless, sphere-meshes and the MAT share geometric and
structural similarities: First, the MAT is defined as well in terms
of sphere interpolation over a non-manifold structure composed of
triangles and edges; second, the MAT can offer as well a multi-
resolution description of the input shape, through a filtering pro-
cess. For instance, Tam and Heidrich [2003] suggest to remove
entire manifold sheets of the medial axis iteratively, based on the
volume each one carries in the final reconstruction. Attali and
Montanver [1996] propose to filter medial spheres based on the an-
gle formed by their two closest boundary points w.r.t. their center;
whereas Chazal and Lieutier [2005] use the circumradius of the two
closest boundary points instead. Alternatively, Miklos et al. [2010]
compute a filtered medial axis as the medial axis of a set of scaled
spheres.

Beside these similarities, there are at least two main differences be-
tween our approach and MAT (see Fig. 10): First, sphere-meshes
degenerate from surface to volumetric structures progressively and
parts of the sphere-mesh geometry can remain homeomorphic to
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Figure 10: Visual comparison to the medial axis transform (pink).
Sphere-meshes obtained with σ = 0. Medial axes extracted with
Powercrust [Amenta et al. 2001].

the input surface (see bodies of Flamengo and Camel in Fig. 10
for instance). Moreover, this transition from surface to volumetric
structures arises in an adaptive manner (see the body of the Fla-
mengo sphere-mesh compared to its legs in Fig. 10). In contrast, the
MAT is a purely volumetric structure. Second, although a filtering
process can also provide a MAT-based multi-resolution description
of the input shape, this comes as a natural side effect of our approx-
imation technique. In our case, we simplify the input mesh directly,
in a progressive and continuous manner, instead of simplifying a
precomputed medial structure (that can be even more complex than
the input shape itself). Indeed, the MAT is not designed to reach the
simplification levels we obtain: existing filtering techniques focus
on denoising the medial axis rather than coarsening it.

Sphere skeletons In contrast to sphere-meshes, which target the
approximation of an existing high resolution mesh (e.g., scanned
object), sphere-skeletons such as Z-Spheres [Pixologic 2001] or B-
Meshes [Ji et al. 2010] are designed for interactive shape creation
and facilitate the creation of coarse shapes from scratch. However,
both representation models can be compared in terms of flexibil-
ity and expressiveness. To some extent, the sphere-mesh represen-
tation extends Z-Sphere and B-Meshes beyond tubular structures.
The presence of polygons (in addition to edges) in the sphere-mesh
topological structure helps modeling large flat regions which can-
not be captured by tubular components. The chair example in Fig. 5
illustrates this notion: while most thin parts are approximated using
edges, the seat is captured by a sphere interpolation over polygons.
Using a sphere skeleton (e.g., Z-Spheres), this region would either
be more complex to model or less accurate in terms of approxima-
tion. Indeed, sphere skeletons methods often come with a specific
surface extraction method, to pursue the modeling session with dis-
placement painting for instance. Sphere-meshes allow the reversal

Z-Spheres Mesh

Meshing Automatic

Approximation

Sphere-Mesh

Structure Interpolation

ZBrush

Figure 11: Comparison with sphere skeletons: On the left, a
sphere skeleton constructed with ZBrush and its associated mesh
surface (i.e., ZBrush skin). On the right, a sphere-mesh (30 spheres)
with edges and triangles, automatically computed from this surface.

of the pipeline, by recovering automatically a sphere-based struc-
ture from a detailed input surface (see Fig. 11).

5 Application to Deformation Control

Beyond shape approximation, a sphere-mesh degenerates naturally
into an internal structure – eventually into a skeleton in tubular re-
gions – which is a convenient metaphor for a number of interactive
shape modeling applications. Alternatively to skeletons and cages,
a sphere-mesh can for instance be used as an automatic high-level
structure for controlling a shape. In this section, we explain how
to tie a mesh to its sphere-mesh and use the latter to interactively
control the deformation of the former in a multi-resolution fashion.

Overview Given a mesh, its sphere-mesh and a skinning machin-
ery (e. g., linear blends [Lewis et al. 2000]), we compute a skin-
ning of the mesh establishing a mesh/sphere-mesh relationship and
provide the user with interactive control primitives in the form of
spheres, edges and triangles from the sphere-mesh (see Fig. 9).
The mesh geometry is updated in real time according to the skin-
ning and the current sphere-mesh layout i.e., translations, rotation
and scaling prescribed by the user on the primitives. Moreover,
the user can instantly change the editing scale by navigating the
sphere-mesh hierarchy (see Fig. 12). After each deformation, the
sphere-mesh is updated to fit the deformed geometry. This frame-
work, as well as providing an automatic multi-resolution control
structure (while most deformation cages are constructed manually
for instance), combines interesting properties of several alterna-
tive methods: (i) as with skeleton-based systems, elongated parts
(e.g., arms, legs) can be bent by simply setting rotations on se-
lected spheres; (ii) as with cages [Lipman et al. 2008], the volume
of a region can be smoothly controlled, using spheres radii; (iii) as

Input mesh Sphere-Mesh skinning weigths  Input mesh Sphere-Mesh skinning weigths  skinning weigths  Results  

Figure 9: Sphere-mesh-based deformation: starting from a surface mesh (left), a sphere-mesh is automatically computed (middle left) and
the input mesh is skinned to its elements (middle). The user can then manipulate the sphere-mesh to smoothly deform the input (right).
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Figure 12: Sphere-mesh based deformation: a multi-resolution editing session, where the sphere-mesh acts as an automatic multi-resolution
control structure, refined on-demand to match the desired deformation scale.

with multi-resolution mesh editing [Zorin et al. 1997], the user can
quickly go from large scale deformation to tuning fine details. The
good behavior of sphere-meshes at extreme simplification levels is
a key feature here.

Skinning To illustrate the use of sphere-meshes as control struc-
tures, we implemented a deformation machinery based on the work
of Baran and Popović [2007]. More precisely, we define the weights
wji (weight of the vertex i w.r.t. the control primitive j) as the so-
lution to the following system: (∆ +H) · wj = H · pj where ∆

is the discrete surface Laplacian; wj is the vector of weights wji
for all vertices i (of size n); H = λIn is a diagonal matrix with λ
being a value describing the diffusion of the weights over the mesh
(the smaller λ, the bigger the diffusion is performed); and pj is a
vector with pji = 1, if j is the closest control primitive to vertex i,
0 otherwise. We limit the search of the closest primitive to the ones
adjacent to the sphere to which the vertex corresponds in the clus-
tering of the original mesh. The result of this linear system is a set
of weights wji that sum up to 1 for all vertices i [Baran and Popović
2007]. The left hand-side matrix of the linear system ∆ + H is
sparse and independent of j, we can therefore factorize the sys-
tem once and solve it iteratively over each primitive j to obtain the
weights of the whole input mesh w.r.t. j. As a result, the user can
easily define smooth deformations on the mesh by applying rigid
transformations on the primitives of its sphere-mesh approximation
(see Fig. 9).

Multi-resolution freeform deformation To turn the previous
framework into a multi-resolution one, we record, at each edge-
collapse of the initial sphere-mesh approximation (see Sec. 3), the
positions and radii of the two collapsed vertices and of the resulting
one, as well as the set of edges/triangles that were created/deleted.
We structure these events in a binary tree so that the user can nav-
igate through the so-defined hierarchy to gather the desired control
structure intuitively (i. e., level-of-detail sphere-mesh).

At deformation time, the user simply applies rigid transformations
to the individual primitives of the sphere-mesh at a chosen level of
detail and gets a real-time feedback of the induced smooth defor-
mation on the original high-resolution mesh (see Fig 12). Since
the left hand side of the linear system (∆ + H) does not depend
on the control structure, it does not need to be re-factored, and
the update of the whole structure as well as the computation of
new weights can be performed in real-time. Each time the user
switches the current editing level of detail, the spheres in the hi-
erarchy are updated bottom-up, computing new SQEM Qi at each
level of the hierarchy. This update step is necessary to ensure that
the entire sphere-mesh hierarchy fits the deformed geometry of the
mesh, and not the initial one. In practice, we start by computing
the new SQEM for each leaf (i.e., mesh vertex) of the tree based on

the current geometry of the mesh. For all recorded collapses (i.e.,
internal tree node) uv → w, the sphere sw of the parent w is ob-
tained by minimizing children quadrics, i. e., Qw = Qu+Qv , and
sw = argminsQw(s). This tree update is linear in the number
of input vertices and is performed in a few milliseconds on models
made of several hundreds of thousands vertices, as only the geom-
etry of the spheres requires an update, while the topology of the
initial sphere-mesh remains unchanged.

Although the skinning method of Baran and Popović works well in
our experiments, any alternative skinning scheme may be used with
our structure, thus providing a multi-resolution control interface for
all linear blend skinning (LBS) techniques.

6 Discussion

6.1 Limitations & Future work

Representation Currently, a sphere-mesh represents the surface
as a base complex (vertices, triangles, ...) and a spatially-varying
thickness (spheres radius), but the actual surface geometry is ex-
pressed as the linear interpolation of the spheres over the complex
and is not directly transformable into e. g., a triangle mesh. “Clos-
ing the loop” and extracting a high quality mesh from the sphere-
mesh boundary is an interesting direction for future work.

Incomplete data and open surfaces As shown in the result sec-
tion, incomplete surfaces with large holes often see their holes filled
by the sphere-mesh geometry. Indeed, there is no explicit modeling
of boundaries in the sphere-mesh representation and defining a re-
striction of the interpolated geometry to an open 2-manifold is left
as future work.

Shape approximation Currently, our definition of sphere-
meshes does not allow to enforce, in a simple manner, that spheres
remain strictly inside the shape or that the resulting mesh preserves
the input’s topology i.e., topological errors can occur at extreme
simplification levels. Furthermore, sphere-meshes represent shapes
with few connected convex components better, and models featur-
ing large concave parts still require a large number of spheres to be
modeled properly.

Optimization Our approximation algorithm worked well on all
the examples we tried but does not, unfortunately, provide the
global minimizer. Indeed, our approximation strategy is limited
by the fact that we fit spheres to regions, but do not optimize for
the interpolation between the spheres, which is our major research
direction for future work. In some cases, the interpolated sphere-
mesh geometry can be a poor approximation of the input surface
even if the spheres fit their respective regions correctly. Bottom-



up algorithms (e. g., [Garland and Heckbert 1997]) typically do
not optimize for the connectivity at each step, which is not op-
timal and could benefit, for instance, from intermediate try-and-
test steps. However, this would require efficiently computing the
input/sphere-mesh distance for each try, dramatically increasing the
computational complexity of the algorithm.The partitioning is also
computed by minimizing the one way L2 distance from the input
mesh to its simplified geometry, and the results could be further
improved by minimizing the Hausdorff distance instead. Lastly,
we use a bottom-up reduction of the input mesh connectivity as
the backbone of our approximation algorithm. Alternative mecha-
nisms, such as variational or statistical sphere distributions may be
derived to exploit our SQEM differently.

6.2 Conclusion

We proposed a shape approximation algorithm based on a sphere in-
terpolation over a mesh substructure, for capturing complex shapes
with a reduced set of connected spheres. The main technical contri-
bution is the SQEM whose minimization finds spheres representing
best the tangent spaces of a set of polygons. We also proposed an
algorithm for efficiently computing a sphere-mesh approximating a
triangle mesh, with a natural multi-resolution structure and an ex-
plicit control on its feature sensitivity. We analyzed its performance
on a diverse set of inputs, showing that a sphere-mesh approxima-
tion performs in general better than mesh decimation. Lastly, we
proposed an application of sphere-meshes to shape modeling by
using them as automatic multi-resolution control structures for in-
teractive freeform deformation. Beyond the possible technical im-
provements discussed earlier, we believe that sphere-meshes can be
further developed for shape processing and analysis methods, in-
cluding reconstruction from point clouds, progressive compression,
shape recognition and visualization scenarios.
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